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Abstract

We describe how the algebra of relations provides a suitable framework for the study of
interconnected dynamic systems and enriches students’ understanding of systems, circuits,
machines, processes, and feedback control. Compared to the traditional approach based on
transfer functions, the theory is shown to be simpler yet more general and rigorous. Previously
introduced in the technical literature within the setting of abstract algebra, the theory is presented
here in a less general but more accessible manner. We also introduce some new concepts and
constructs that increase its utility and pedagogical value. These include relation diagrams (the
counterpart of traditional block diagrams) and impedance relations. Examples illustrate
applications of the theory and its potential benefits for engineering education.

1 Introduction

Engineers use problem solving to invent, design, build, and improve structures, machines,
devices, systems materials, and processes. Thus, a central goal of engineering education is to
develop the problem solving abilities of students. Since mathematics is the basis for modeling,
reasoning, and communicating solutions of technical problems, the quality of this foundation is
crucial to engineering education.

In prior work1, mathematics education has been evaluated from the viewpoint of relevance and
rigor, where rigor is defined as difficulty or cognitive load. Here, we instead use rigor to mean the
validity of the justification provided for a theory. This justification is the understanding (the
“why?”) underlying our beliefs, which is arguably the most important aspect of knowledge from
an educational standpoint. We distinguish rigor from difficulty since, for example, a justification
(proof) that 0 + 1 = 1 may be simple yet rigorous.

Simplicity is another important quality of a theory. For example, a 10 page proof that 0 + 1 = 1
which involves polynomials, calculus, and trigonometry could be rigorous (valid), but would be
unnecessarily complex. While such a proof might fair well in a journal article, it has low
educational value. In contrast, the clear thinking and penetrating insight of a simple proof has
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higher educational value. When evaluating the simplicity of a proof or explanation, the required
prerequisite knowledge should be also be taken into account.

A third important quality is generality–the mathematical scope or power of a theory. We will use
‘depth’ as a comprehensive term for generality, simplicity, and rigor, although how one weights
these attributes to judge the depth of a theory is a subjective matter of preference and purpose,
and trade-offs typically occur between these attributes. For example, a rigorous proof might not
be as simple as a non-rigorous one (as evidenced by the fact that some authors use rigor to mean
difficulty1). However, one theory may outperform another in all three depth attributes.

In the context of engineering education, a theory can also be evaluated in terms of its relevance to
engineering problems. Increasing depth can also improve relevance, since a more general theory
may apply to a larger class of engineering problems, a simpler theory may be more practical to
learn and implement, and a more rigorous theory gives more reliable results.

Many difficult junior and senior undergraduate courses in electrical, mechanical, aerospace, and
chemical engineering involve the study of interconnected dynamic systems modeled by
differential or difference equations, such as feedback control systems. The traditional framework
for the analysis and design of such systems is based on the transfer function, which models
single-input single-output (SISO) linear time-invariant (LTI) systems. It can be defined by taking
the Laplace transform of a differential equation (in continuous time) or the z-transform of a
difference equation (in discrete time).

In the continuous LTI case, the differential equation may be written the form ua(D) = yb(D),
where u ∈C∞ is the input signal, y ∈C∞ is the output signal, a,b ∈ R[x] are real polynomials with
b 6= 0, and D is the differential operator, applied in postfix notation. To obtain the transfer
function of this system, one assumes that the initial conditions of the input and output signals are
zero and applies the Laplace transform to both sides of this differential equation to give
U(s)a(s) = Y (s)b(s), where U(s) and Y (s) are the Laplace transforms of u(t) and y(t),
respectively, and s is a complex variable. This yields the transfer function Y (s)/U(s) = a(s)/b(s),
which may be multiplied by a particular transformed input U(s) to find the corresponding
transformed output Y (s).

Transfer functions are appealing in that they model dynamic systems as rational functions that can
be added, multiplied, and inverted to reduce networks of interconnected subsystems. However,
the educational value of the transfer function is deficient with respect to both relevance and depth.
It lacks generality since it applies only to LTI systems, and even for LTI systems, it does not
model the free response. This is a problem because the free response of a system determines the
essential property of stability. Although textbooks, instructors, and students often draw
conclusions about a system’s free response and stability from a system’s transfer function, we will
see that such conclusions can be wrong, and even when they are right, the reasoning is not. This
illustrates another common trade-off in the depth attributes: the (perceived) gain in generality
achieved by applying a theory beyond its domain of validity comes at the expense of rigor.

A third way that the transfer function lacks generality is that it operates only on Laplace
transformable signals (or z-transformable signals in the discrete case). Even the constant function
y(t) = 1 on t ∈ (−∞,∞) has no (two-sided) Laplace transform, as its transform does not converge.
Consequently, transforms are essentially limited to causal signals, i.e. signals that are zero for
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t < 0, and even these are not transformable if not exponentially bounded. This causality
constraint leads to the use of the one-sided Laplace transform or the left-truncation of the input
using the unit step function, resulting in loss of information about system behavior at negative
times. This truncation introduces another problem if there are system zeros, namely the
differentiation of a discontinuous input, which requires Laplace transforms of distributions. Since
a rigorous theory of distributions is largely inaccessible to undergraduate engineers, there is much
confusion around this issue2, and suggested remedies vary from rigorous but impractical3 to
non-rigorous but practical2.

Beyond these issues, the Laplace transform itself is a difficult concept for engineering students to
grasp4. It involves an improper contour integral (i.e. with at least one limit approaching infinity)
in the complex plane and models signals in the mysterious s-domain. Laplace transforms can be
avoided by using an alternative operational calculus5 6 7, but the resulting transfer functions have
the same basic limitation: they do not model the free response of a dynamic system.

In this paper, we present an alternative theory for the analysis of dynamic systems and compare
its educational value with the traditional theory. The theory was originally introduced in8 based
on the algebra of relations. Here, we present it from a more pedagogical perspective and
introduce some new elements, such as relation diagrams and generalized impedances, which have
counterparts in the traditional theory.

We present no empirical data, as this work addresses the question of what material to teach and
why, rather than how to teach. While this question does not necessarily have empirical answers, it
is nonetheless an important question in educational research. Improved techniques for teaching
and learning, while also important, lose their value if the quality (relevance and depth) of the
content is poor. Hence, our goal is to present a new theory, discuss its educational value, and
solicit the perspectives of fellow educators.

2 Relation to Prior Work

The use of relations to model and analyze dynamic systems8 is related to the behavioral
approach9 of mathematical systems theory, but adopts the input-output viewpoint of classical
control by emphasizing binary relations, which can be composed, added, and inverted (via the
relational converse). The theory8 is presented here in a less formal and more accessible style
suitable for undergraduate engineering students, with an emphasis on pedagogy and engineering
applications, and with some new elements (relation diagrams and impedance relations).

We focus mainly on SISO LTI dynamic systems, which are represented as a rational relations.
These are written as ratios of differential operators (or shift operators in the discrete case) and are
distinct from rational symbols or rational matrices 10 11 12. Rational relations look like transfer
functions, but model the system directly in the time domain and include its free response. The
algebraic rules for addition, multiplication, and inversion of rational relations are similar to the
corresponding rules for transfer functions but prescribe when to cancel common pole-zero pairs
that arise in parallel, series, and feedback interconnections. Uncancelled pairs represent
uncontrollable modes in the system output.
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Rational relations complement the operational calculus of5 6 7. Whereas relations are used to
reduce networks of interconnected systems, operational calculus allows one to solve for the output
of such systems in terms of the input and the initial conditions. Rational relations can be extended
to discontinuous functions by using the operational calculus to define a generalized derivative.
Together, these complementary theories cover (and extend) all aspects of the classical treatment
of LTI dynamic systems (i.e. based on Laplace transforms and transfer functions).

3 In a Nutshell

Although relations apply to very general systems, we will briefly introduce some key ideas in the
specific context of SISO LTI dynamic systems. The differential operator D (on the space of
smooth signals C∞) has no inverse because it is not injective: there are multiple signals that have
the same derivative, all differing pairwise by a constant signal. The integration operator (i.e. with
limits from zero to t ∈ R) also does not have an inverse because it is not surjective: there are some
signals that lie outside of its range (i.e. output set), namely, any signal that does not pass through
the origin. Since neither of these operators has an inverse, they are certainly not inverses of each
other. Transfer functions neglect this basic fact by incorrectly treating differentiation and
integration as inverses.

More generally, a (non-scalar) polynomial operator b(D) has no inverse for the same reason.
However, if b(D) is viewed as a relation between its input and output, then it has a converse
relation b(D)−1, whose input is the output of b(D) and conversely. This converse relation is not
an operator because it is nondeterministic: it relates each input value to many output values, all
differing pairwise by the kernel of b(D) (i.e. the set of signals annihilated by b(D)). Hence,
b(D)−1 could be called a multi-valued operator (although this is technically a contradiction in
terms).

Consider a differential equation of the form

ua(D) = yb(D), (1)

where u ∈C∞ is the input signal, y ∈C∞ is the output signal, a,b ∈ R[x] are real polynomials with
b 6= 0, and D is the differential operator, applied in postfix notation. This defines a binary
(input-output) relation R between u and y, and so we write it as uRy. This relation is obtained
from (1) as R = a(D)b(D)−1, which is the (postfix) composition of two relations: the operator
a(D) and the converse relation b(D)−1. This rational relation8, also written as R = a(D)/b(D),
represents the set of all (u,y) ∈C2

∞ satisfying (1).

Like transfer functions, rational relations may be added, composed, and inverted (via the
converse) to model parallel, series, and feedback interconnections of subsystems, and
algebraically reduced to find the relation between any input and any output of the network. The
algebraic rules for doing so are simple but differ from those used for transfer functions.
Differences occur whenever transfer functions hide certain behaviors, called hidden modes. For
example, consider the unstable system u̇(t)−u(t) = ÿ(t)− y(t), which allows the unstable free
response y(t) = et (i.e. when u(t) = 0). Its transfer function Y (s)/U(s) = 1/(s+1) hides the
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unstable mode et via a pole-zero cancellation. In contrast, this system is represented exactly by
the rational relation

(D−1)
(D2−1)

6= 1
(D+1)

. (2)

This inequality, which simply says that u̇(t)−u(t) = ÿ(t)− y(t) and u(t) = ẏ(t)+ y(t) are
different systems, illustrates one way in which rational relations differ from transfer functions.
The system on the left has a hidden mode (and is thus uncontrollable9), while the system on the
right has no hidden modes (and is thus controllable9). Unfortunately, even systems composed
entirely from controllable subsystems can be uncontrollable. Unlike transfer functions, rational
relations keep track of any hidden modes, including those introduced by series, parallel, and
feedback connections.

The transfer function T (s) = Y (s)/U(s) does not model hidden modes because it does not model
the free response at all: U(s) = 0 implies that Y (s) = 0. This problem has nothing to do with the
Laplace transform. The problem is that the initial conditions in (1) are set to zero (before taking
Laplace transforms) in order to get the transfer function. This produces a unique y(t) for each u(t)
and turns the relation between u and y into an operator R0. But the relation R = a(D)/b(D)
defined by (1) is not an operator but rather a nondeterministic relation that relates each value of
the input signal u to (infinitely) many values of the output y, which all differ pairwise by a free
response 0R 6= 0 of the system (1). Hence, the (deterministic) operator R0 only approximates the
actual relation R.

We will see that there is no need to approximate relations as operators, as relations can be
composed, added, and inverted as easily as operators and in a more general (inclusive) manner.
Rational relations, such as those in (2), provide more precise models of LTI systems and represent
them in the familiar time domain.

4 Relations

Here, we will formalize some of the above concepts in the general context of relations. The
relation is a primitive of mathematical logic. For example, set theory is founded on the binary
relation of membership ∈. It is called binary because it relates two objects; for example u ∈ y.
The relational framework in8 deals specifically with relations on sets (of signals) and focuses on
binary relations that relate the inputs and outputs of a dynamic system.

A binary relation (or graph) R is simply a subset of U×Y , where the set U is called the source,
and the set Y is called the target. In this paper, the source and target are usually the same set M,
and so R⊆M2. If (u,y) ∈ R, then we say that u and y are related by R, and express this in infix
notation as uRy. Examples include u < y, u = y, and u is-married-to y. The left object (u) in these
expressions is called the input of the binary relation and the right object (y) is the output.

By definition, R is the set of all (u,y) ∈M2 such that uRy. For example, the binary relation < on
R (the reals) is the set of all points (u,y) ∈ R2 that lie above the line given by u = y (with input u
plotted on the horizontal axis). Similarly, the identity relation = on R is simply the line given by
u = y. This identity relation is also written as 1, so u1y means u = y. These examples illustrate
why a relation is called a graph.
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The domain of a binary relation R⊆M2 is the set of all u ∈M such that uRy for some y ∈M. In
other words, it is the set of values that the relation allows the input to have. If the domain of R is
all of M, we say that the relation is total. Most dynamic systems encountered in engineering do
not constrain the input and are therefore total relations. In fact, having a freely specified value is
normally considered a basic characteristic an input (versus an output).

A relation is called deterministic if each input corresponds to a unique output. A relation that is
both total and deterministic is called a function. When the domain of a function is a vector space
(e.g. a signal space), it is called an operator. However, a dynamic system is not an operator
because it is nondeterministic: even if its input is zero, its output can be any transient response
generated by the system. This observation is the key motivation for the relational approach to
dynamic systems8. The classical approach is to approximate such systems as operators (usually
as transfer functions in a transformed domain), instead of as the nondeterministic relations that
they actually are. We will show that modeling these systems correctly (as nondeterministic
relations) is easy and avoids several problems.

Binary relations can be composed just like functions (or operators). The composition of R1 ⊆M2

and R2 ⊆M2 is formally defined as8

R1R2 = {(u,y) ∈M2 : ∃x ∈M,uR1x,xR2y}. (3)

This definition just says that the output (x) of R1 is the input of R2. Here the order of composition
is written in postfix and denoted by juxtaposition. Composition is associative and has identity
1 = {(u,u) ∈M2}.

The converse R−1 of a binary relation R⊆M2 is the relation

R−1 = {(y,u) ∈M2 : (u,y) ∈ R}. (4)

Thus, the converse is found simply by swapping the input and output, i.e. flipping the graph
(relation). For example, as a binary relation on R, the converse of < is >. This generalizes the
inverse of a function (or operator): if the converse of a function is a function, then it is the inverse
of the function. Otherwise the inverse (function) does not exist (i.e. the converse is not total or not
deterministic or both). This is another advantage of relations: every relation (including every
operator) is invertible in the sense of converse. (Even the zero operator has a converse relation!)
From (3) and (4), we obtain

(R1R2)
−1 = R−1

2 R−1
1 , (5)

which generalizes the familiar identity for invertible functions.

In the context of dynamic systems, M is a vector space of real or complex-valued signals in
continuous or discrete time. Addition of such signals naturally defines addition and negation,
respectively, of binary relations R1,R2 ⊆M2 as follows8:

R1 +R2 ={(u,y1 + y2) ∈M2 : uR1y1,uR2y2}, (6)

−R1 ={(u,−y) ∈M2 : uR1y}. (7)

Stated simply, we add relations by adding their outputs, and negate them by negating their
outputs, just as we would for functions (or operators). Addition of relations is commutative and
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associative. The additive identity is 0 = {(u,0) : u,0 ∈M}. A useful equivalent definition of
addition is

R1 +R2 = {(u,y) ∈M2 : ∃y1,uR1y1,uR2(y− y1)}. (8)

Addition, composition, converse, and scaling are closed operations on the set S of all binary
relations on a vector space M and thus form an algebraic system. When M is a signal space, S
includes every dynamic system having inputs and outputs in M, including nonlinear time-varying
systems and differential-algebraic (or descriptor) systems. Input-output relations of systems
composed of series, parallel, and feedback interconnections of subsystems can be expressed
algebraically in terms the subsystems (binary relations) using these operations. We will give some
examples of this after introducing relation diagrams.

5 Image Notation and Operators

Nondeterministic total relations can be viewed as multi-valued functions (or operators), as
formalized here using image notation. The image of a point u ∈M under a relation R is defined as
uR = {y ∈M : uRy}. Hence, we may write uRy as y ∈ uR. If R is an operator, we can simply write
uR = y. Similarly, the image of a subset M1 ⊆M is defined as M1R = {y ∈M : ∃u ∈M1,uRy}. In
this notation, we may write the range of R as MR, and the domain of R as MR−1. The zero image
of R is 0R, and the kernel of R is 0R−1. A relation R⊆M2 is called surjective (or onto) if
MR = M and is called injective (or one-to-one) if u1Ry and u2Ry imply that u1 = u2. It is total if
its converse is surjective (i.e. MR−1 = M), and it is deterministic if its converse is injective.

These above definitions can be expressed algebraically as follows. A binary relation R⊆M2 is
surjective if 1⊆ R−1R, injective if RR−1 ⊆ 1, total if 1⊆ RR−1, and deterministic if R−1R⊆ 1. It
thus follows that R is total and injective iff RR−1 = 1, and R is deterministic and surjective iff
R−1R = 1.

A deterministic relation is called a partial function, and, as mentioned, a total deterministic
relation R is called a function (or operator). We will henceforth use lowercase letters for
deterministic relations (i.e. partial operators and operators). From the preceding identities, an
injective operator g on M satisfies gg−1 = 1, while a surjective operator g satisfies

g−1g = 1 (9)

The set of all total relations on M is closed under composition, addition, and scaling, but not
closed under converse. The same is true of the set of all deterministic relations.

6 Linear Relations

The algebra of relations gains additional structure when restricted to relations that are total and
linear. To define a linear relation on M, first define a space (M2,+,R), where addition and scalar
multiplication are defined as (u1,y1)+(u2,y2) = (u1 +u2,y1 + y2) for u1,y1,u2,y2 ∈M and

P
age 26.674.8



α(u1,y1) = (αu1,αy1) for α ∈ R. Then, a linear relation on M is defined simply a subspace of
(M2,+,R).

The set of all linear functions (operators) that map M into M is called End(M), which forms a ring
(called the endomorphism ring) under addition and composition. Let L(M) be the set of all total
linear relations on M. Whereas End(M)⊂ L(M) is a ring, L(M) is only a seminearring13, as it
lacks additive inverses, and only the right distributive law holds8: for all R,S,T ∈ L(M),
(R+S)T = RT +ST . The reason the left distributive law fails is because these relations may be
nondeterministic8.

7 Relation diagrams

Relation diagrams generalize the block diagrams of classical control theory and are useful for
representing and reducing interconnections of subsystems. They are introduced here in a general
setting that includes nonlinear time-varying systems.

Relation diagrams consist of variables, binary relations, and summing junctions. The notation is
illustrated here for a series connection:

R1//
u x //R2

y

⇔ R1R2//u y
(10)

and for a parallel connection:

R1
y1 //© y

R2
��

u

OO

y2

>>}}}}}}}
(11)

⇔ u //R1 +R2
y

Edges such as u,x,y ∈M are variables, and vertices such as R1,R2,© are relations on these
variables. Arrowheads at the binary relations R1 and R2 indicate the inputs to these relations. The
tertiary relation©, called a summing junction, sums its edges to zero, negating edges that have
no arrowheads at©. For example, the summing junction in (11) represents the relation
y1 + y2− y = 0.

The equivalences diagrammed in (10) and (11) are the definitions of relational composition and
addition given by (3) and (6), respectively. The diagrams in (10) justify the use of postfix notation
R1R2 (versus prefix R2R1) for composition and infix u(R1R2)y for membership.

Linear relation diagrams may be reduced using algebraic identities, such as the following. If
T ∈ L(M) (i.e. T is a total and linear), then for all x,y,z ∈M,

(x+ y)T z⇔∃x1,xT x1,yT (z− x1). (12)

Proof: the existence of x1 in xT x1 follows from totality of T , while yT (z− x1) follows from
linearity of T , by subtracting xT x1 from (x+ y)T z. Conversely, adding xT x1 to yT (z− x1) gives
(x+ y)T z.
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This identity is diagrammed below:

©
��x

//
OO

y
T z ⇐⇒

x //T

©
��

x1
z
OO

y //T

(13)

The directions of arrowheads entering T are critical to the identity, but the directions of arrows at
the summing junction are not (as these merely denote sign). A corollary is that if T is surjective
(and not necessarily total), then T−1 is total, and so the identity in (13) holds for T−1 in place of
T , or equivalently, with all arrowheads at T reversed in (13). A familiar special case of (13) is
when T is a linear operator, such as a transfer function.

This identity is used below to the right distributive law of total linear relations, which is implied
by the following more general result: Given any relations R,S⊆M2 and any total linear relation
T ∈ L(M),

(R+S)T = RT +ST. (14)

Proof: Diagrams (15) to (18) are all equivalent with respect to (u,y), where the equivalence
of (17) and (18) is obtained by moving T across the summing junction via (13).

u //(R+S)T
y

(15)

R //© //T
y

S
��

u

OO ??��������

(16)

RT //© y

ST
��

u

OO ==||||||||

(17)

u //RT +ST
y

(18)

Application of (13) also gives immediately the identity

R TOO

��
S
��

u

OO

//© y
⇐⇒

R //© T oo
y

S
��

u

OO

//T

OO (19)

which says that for any relations R,S⊆M2 and for any total linear relation T ∈ L(M),

RT−1 +S = (R+ST )T−1. (20)
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8 Feedback Loops

Consider the feedback system
©//r e //

y @@
@@

@@
@ C

P
��
u

(21)

which is equivalent to a system of three relational equations:

r− e− y = 0 (22)

eCu (23)

uPy (24)

Note that it is incorrect to write uP = y for (24) unless P is deterministic (i.e. an operator).

In the context of feedback control systems, P in (21) represents a (nonlinear) plant, C a controller,
y the output to be controlled, r a reference to track, and e = r− y the tracking error. The relation
P, defined by differential equations, is generally nondeterministic: each value of the input u
corresponds to (infinitely) many values of the output y. The feedback system (21) yields the
binary relations Rre, Rru, and Rry between the reference r and the outputs e, u, and y, respectively.
For example, Rre ⊆Mn×Mn is the set of all (r,e) that satisfy (22), (23), and (24), or equivalently,
Diagram (21).

Multiplying (22) through by −1 shows that reversing the sign of all variables at the summing
junction has no effect. Therefore, the summing junction of (21) is equivalent to the one shown
in (25) below. Also, eCu in (21) has been replaced in (25) by the equivalent proposition
uC−1e:

©r oo e
aa

y CC
CC

CC
CC

C C−1

P
��
u

OO (25)

Comparing (25) with (11), we see that the feedback connection (25) is just a parallel connection
from u to r given by u(C−1 +P)r, which is equivalent to r(C−1 +P)−1u. Hence, we conclude
that

Rru = (C−1 +P)−1. (26)

This insight that a feedback connection is just a parallel connection in disguise does not generally
hold in an operator-theoretic framework, since C may not be invertible. For example, if C = 0 and
P is total, then Rru = (0−1 +P)−1 = 0. This expression is undefined in an operator-theoretic
framework since the relation 0−1 is not an operator.

Other closed-loop relations are found similarly. For example, since C and P are in series, we may
redraw (21) as

©r oo e //oo
y

CP (27) P
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where we have again inverted the signs at the summing junction. This may be written as

©r oo e
aa

y BB
BB

BB
B 1

CP
��
e

OO (28)

since e1e (i.e. e = e). This graph is a parallel connection from e to r given by e(1+CP)r.
Equivalently, r(1+CP)−1e, and so

Rre = (1+CP)−1. (29)

To find Rry, we replace eCPy in (27) with y(CP)−1e (reversing the arrows at (CP)−1 to swap input
and output):

©r oo e
oo

y
//(CP)−1 (30)

This may be written as
©r oo e
cc

y
##H

HH
HH

HH
HH

H (CP)−1

1

y
OO (31)

which is a parallel connection from y to r given by y(1+(CP)−1)r. Equivalently,
r(1+(CP)−1)−1y, and so

Rry = (1+(CP)−1)−1. (32)

If C,P ∈ L(M) (i.e. total and linear), then other forms of Rru and Rry are also valid. In particular,
applying (20) to (26) gives

Rru = (C−1 +P)−1 (33)

= ((1+PC)C−1)−1 (34)

=C(1+PC)−1. (35)

Similarly, applying (20) to (32) gives

Rry = (1+(CP)−1)−1 (36)

= ((1+CP)(CP)−1)−1 (37)

=CP(1+CP)−1. (38)

Table 1 summarizes closed-loop relations under various restrictions. For example, if
C,P ∈ End(M) (i.e. C and P are linear operators), then the expressions in the last column (which
are also valid for transfer functions) are obtained. Since the restrictions decrease from right to
left, any expression to the left of a valid expression is also valid. These expressions are also valid
for MIMO feedback loops.

P
age 26.674.12



Table 1: Expressions for Closed-loop Relations

Restrictions: None C,P ∈ L(M) C,P ∈ End(M)

(i.e. nonlinear (i.e. linear (i.e. linear,
and partial) and total) total, and

deterministic)

Rre = (1+CP)−1 (1+CP)−1 (1+CP)−1

Rru = (C−1 +P)−1 C(1+PC)−1 (1+CP)−1C
Rry = (1+(CP)−1)−1 CP(1+CP)−1 (1+CP)−1CP

9 Rational Relations

Consider the continuous SISO LTI system

ua(D) = yb(D), (39)

where u ∈C∞ is an input signal, y ∈C∞ is an output signal, a,b ∈ R[x] are real polynomials with
b 6= 0, and D is the differential operator, applied in postfix notation. This defines a relation on
M =C∞, so we write (39) as uRy, where the relation R = a(D)b(D)−1 between u and y is called a
rational relation. In what follows, we will omit the D and write R = a/b≡ ab−1.

Let B = R[D] be the set of all real polynomials in D. Then for every nonzero b ∈ B and u ∈C∞,
the differential equation u = yb(D) has a solution y. Thus, every nonzero b ∈ B is surjective. This
can be written in image notation as

C∞b =C∞. (40)

By (9), this equivalent to b−1b = 1.

Also, every b ∈ B is determined (up to a scalar factor) by its kernel. That is, for all nonzero
b1,b2 ∈ B,

ker(b1) = ker(b2)⇔ b1 ∼ b2, (41)

where b1 ∼ b2 means that there is a real scalar α such that

b2 = αb1. (42)

10 Algebra of Rational Relations

Two polynomials are called coprime if they have no common factors other than scalars. A simple
proof of the following lemma follows from the Bezout property of polynomials8:

Lemma 10.1 If a,b ∈ B are coprime, then b−1a = ab−1.
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Algebraic rules for the addition, composition, and inversion of rational relations will now be
stated and proved. The following theorem extends that given in8 by adding a rule for the equality
of two rational relations. Also, the proof presented here uses relational identities.

Theorem 10.2 The set of rational relations (Q,+, ·) is a subseminearring of L(C∞). For all
a1,a2 ∈ B, and all b1,b2,g ∈ B\{0},

coprime(b1,a2)⇒
a1

b1g
ga2

b2
=

a1a2

b1b2
, (43)

coprime(b1,b2)⇒
a1

gb1
+

a2

gb2
=

a1b2 +a2b1

gb1b2
, (44)(

a1

b1

)−1

=
b1

a1
, (45)

a1

b1
=

a2

b2
⇔ (b1 ∼ b2 ∧ a1b2 = a2b1). (46)

Proof If coprime(b1,a2), Lemma 10.1 gives b−1
1 a2 = a2b−1

1 . This and (9) give
a1b−1

1 g−1ga2b−1
2 = a1a2b−1

1 b−1
2 , which proves (43). Now, suppose coprime(b1,b2). Then

a1

gb1
+

a2

gb2
= a1b−1

1 g−1 +a2b−1
2 g−1 (47)

= (a1b−1
1 +a2b−1

2 )g−1 (48)

= (a1 +a2b−1
2 b1)b−1

1 g−1 (49)

= (a1 +a2b1b−1
2 )b−1

1 g−1 (50)

= (a1b2 +a2b1)b−1
2 b−1

1 g−1 (51)

= (a1b2 +a2b1)(gb1b2)
−1 (52)

=
a1b2 +a2b1

gb1b2
, (53)

where (47) and (52) follow from (5), (48) follows from (14), (49) and (51) follow from (20),
and (50) follows from Lemma 10.1. The rule for inversion (45) follows from (4). (N.B. This
converse relation is in Q iff a1 6= 0.) Finally, suppose a1/b1 = a2/b2, or equivalently

a1b−1
1 = a2b−1

2 . (54)

Postmultiplying (54) by b1b2 gives a1b2 = a2b1, as required by (46). Also, taking the image of
0 ∈M under each side of (54) gives 0b−1

1 = 0b−1
2 , which is equivalent to ker(b1) = ker(b2).

By (41), this implies that b1 ∼ b2, as required. Conversely, suppose that b1 ∼ b2 and a1b2 = a2b1.
Substituting (42) into this last expression gives a1αb1 = a2b1, which implies that a1α = a2. This
and (42) give

a1b−1
1 = a1(αα

−1)b−1
1 (55)

= a1α(b1α)−1 (56)

= a2b−1
2 . (57)
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Although the signals in Theorem 10.2 are assumed to be smooth (C∞), this theorem generalizes
straightforwardly to discontinuous signals by applying the notion of generalized derivative
introduced in our companion paper.

11 Examples in Rational Relation Algebra

The example in Section 3 demonstrates the identity (46) for equality of two rational relations. The
two relations in (2) are not equal because their denominators differ by the nonscalar factor D−1
(so b1 � b2).

The following examples further demonstrate how the algebra of rational relations (Q,+, ·) differs
from that of transfer functions. Applying (43) shows that composition of rational relations is not
commutative in general. For example, the following (postfix) compositions are different:

1
D−1

D−1
D+1

=
1

D+1
, (58)

whereas
D−1
D+1

1
D−1

=
D−1
D2−1

⊃ 1
D+1

. (59)

A pole-zero cancellation occurs in (58), but a zero-pole cancellation does not occur in (59).

The rational relation 1/(D+1) has no additive inverse since (44) and (46) give

1
D+1

+
−1

D+1
=

0
D+1

6= 0. (60)

The reciprocal of a rational relation is its converse, but is in general not its left or right inverse.
For example, (

D+1
D+2

)−1

=
D+2
D+1

, (61)

but
D+1
D+2

(
D+1
D+2

)−1

=
D+1
D+1

⊃ 1. (62)

Composition is not left-distributive over addition, but it is right-distributive. An example of the
failure of the left-distributive law is

0 =
0
D

0 =
0
D
(1−1) 6= 0

D
(1)+

0
D
(−1) =

0
D
. (63)

In contrast, right distribution always holds; for example,

0
D

= 0
0
D

= (1−1)
0
D

= (1)
0
D
+(−1)

0
D

=
0
D
. (64)

The algebra in these examples differs from that of transfer functions, which do not model the free
response or the hidden modes.

P
age 26.674.15



12 Discrete-time Case

Another example of a class of rational relations is the set of discrete-time LTI systems described
by difference equations. Let M be the set of all causal (i.e. one-sided) discrete-time signals
mapping N to R. Let L denote the left-shift operator, defined as xL(k) = x(k+1), where x ∈M.
Then, given polynomial operators a(L) and b(L) 6= 0, the discrete-time rational relation
a(L)/b(L)≡ a(L)b(L)−1 is the set of all (u,y) ∈M2 such that ua(L) = yb(L). If Q is the set of all
such relations, then an analogous version of Theorem 10.2 applies, and the resulting seminearring
Q is isomorphic to that obtained in the (noncausal) continuous-time case. Hence, all the examples
of Section 11 apply with D replaced by the left-shift operator L.

These relations have the same advantages over transfer functions as those in the first example. For
example the rational relation

L−2
L−2

6= 1, (65)

has an unstable (and noncausal) output 2k when its input is zero. In contrast, the corresponding
transfer function reduces to the identity operator 1, which fails to model the uncontrollable mode
2k.

In the noncausal case, discrete time input/output signals are defined on the full time interval Z
instead of on the non-negative interval N. In this case, the left shift operator L has a trivial kernel
and has an inverse L−1 (the right-shift operator). The set of operators generated by L is not the
ring of polynomials, but rather the ring of Laurent polynomials, which contain negative powers of
the operator L. A slightly modified version of Theorem 10.2 still applies in this case, but the
obtained seminearring Q of rational relations are is not isomorphic to that obtained for the causal
discrete-time case (and for the noncausal continuous-time case). In particular, common factors of
L can be cancelled from the numerator and denominator of a noncausal discrete-time rational
relation. For example, L/L = LL−1 = 1, whereas (L−2)/(L−2) 6= 1, as this last relation has an
unforced response of 2k, where now k ∈ Z.

13 Relational Impedance

An electrical or mechanical impedance has a relational model. The normal rules for reducing an
impedance network, such as an electrical circuit, can be applied to relational impedances, as
shown below using relation diagrams and demonstrated on circuits.

a) Series Circuit In the circuit below, i is the current through the voltage source v, v1 is the
voltage across impedance Z1, and v2 = v− v1 is the voltage across Z2. These impedances could
represent single electrical components or could be the equivalent impedances of sub-circuits
containing several elements.

. v Z2
v1 Z1

0 .

.

i

OO

GFED@ABC+v− .ioo

(66)
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The relations describing the circuit are iZ1v1, iZ2v2, and v = v1 + v2, which are diagrammed
as:

Z1
v1 //© v

Z2
��

i

OO

v2

>>~~~~~~~~
(67)

⇔ i //Z1 +Z2
v

Thus, two impedances in series give a parallel connection (11) between i and v. Hence, (67)
reduces to iZv, where Z = Z1 +Z2 is the equivalent impedance. This result is readily obtained
without a relation diagram: by (6), simply add iZ1v1 and iZ2v2 to obtain i(Z1 +Z2)v.

The same expression for Z is obtained using transfer function impedance models. The difference
is that adding relations Z1 and Z2 yield the full system Z, including any uncontrollable modes (as
demonstrated in the examples below). This circuit is analogous to a feedback loop (21), with v as
reference, v2 as output, v1 as error, i as control signal, Z2 as plant, and the admittance Z−1

1 as the
controller. The equivalent impedance Z is the closed-loop relation Rvi from reference v to control
signal i.

b) Voltage Division To find the relation between v and v1 in circuit (66), we eliminate i and v2
from (67):

©v oo v1
``

v2 @@
@@

@@
@@

Z1

Z2
��
i

OO (68)

©v oo v1 //oo
v2

Z−1
1 Z2 (69)

©v oo v1
bb

v2 EE
EE

EE
EE

1

Z−1
1 Z2

��
v1

OO (70)

v
(1+Z−1

1 Z2) oo
v1 (71)

v //(1+Z−1
1 Z2)

−1 v1 (72)

and thus Rvv1 = (1+Z−1
1 Z2)

−1. In the feedback analogy of Section 8, this is the closed-loop
relation between reference v and error v1 (compare (70) with (28)).

As a concrete example, suppose Z1 = Z2 = D−1 are unit capacitors. Then, Rvv1 = (1+DD−1)−1,
which reduces to Rvv1 = D/2D≡ 0.5DD−1 by the rules of Theorem 10.2. This gives the
(uncontrollable) differential equation v̇ = 2v̇1. In particular, v or v1 can be a nonzero constant
when the other is zero, whereas a transfer function model gives v = 2v1. The uncontrollability in
this example is structural, as it occurs for any capacitance values. An analogous mechanical
system is two parallel springs, which can have equal and opposite tensions without an external
force applied.
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Since relations are more precise than transfer functions, care is needed in their computation. For
example, (68) gives Rvi = (Z1 +Z2)

−1 and iZ1v1, but it is incorrect to conclude that
Rvv1 = RviZ1 = (Z1 +Z2)

−1Z1. This equals the correct expression Rvv1 = (1+Z−1
1 Z2)

−1 if Z1 is
surjective and deterministic, but may not if Z1 is nondeterministic. This is because the value of v1
in iZ1v1 may disagree with the value of v1 implicit in Rvi = (Z1 +Z2)

−1. Although every true
solution (v,v1) lies in RviZ1, this relation also contains false solutions (v,v1) /∈ Rvv1 since
Rvv1 ⊂ RviZ1.

To demonstrate this, suppose Z1 = D−1 is a unit capacitor and Z2 = 1 is a unit resistor. Then
RviZ1 = (D−1 +1)−1D−1 = D/(D(D+1)), whereas the exact relation is
Rvv1 = (1+Z−1

1 Z2)
−1 = (1+D)−1 ⊂ D/(D(D+1)). The correct relation Rvv1 = (1+D)−1 is

controllable, but RviZ1 is not.

c) Series and Parallel Circuit Suppose we wish to find the equivalent impedance Z = Riv of the
following circuit:

. i1 //Z1 Z2 .

. i2 //Z3 Z4 .

.

i

OO

GFED@ABC+v− .ioo

(73)

If vi is the voltage across each Zi, then the system equations are i1Z1v1, i1Z2v2, i2Z3v3, i2Z4v4,
i = i1 + i2, and v = v1 + v2 = v3 + v4.

Adding the first two of these equations gives i1(Z1 +Z2)(v1 + v2), which gives (from the sixth
equation) i1(Z1 +Z2)v, or equivalently, v(Z1 +Z2)

−1i1. Similarly, v(Z3 +Z4)
−1i2. Adding these

last two equations gives v
(
(Z1 +Z2)

−1 +(Z3 +Z4)
−1) i since i = i1 + i2. Inverting this gives iZv,

where
Z =

(
(Z1 +Z2)

−1 +(Z3 +Z4)
−1)−1

(74)

is the equivalent impedance between i and v.

Equation (74) is identical to that obtained by treating the impedances as transfer functions or
phasors but gives an exact model of the system behavior, including the free response. For
example, suppose in circuit (66) that Z1 = D is a unit inductance, Z2 = 1 and Z3 = 1 are unit
resistances, and Z4 = D−1 is a unit capacitance. Replacing each impedance element in (73) with
its impedance relation gives

. i1 //D 1 .

. i2 // 1 D−1 .

.

i

OO

GFED@ABC+v− .ioo

(75)

Substituting these values into (74) and simplifying via the algebraic rules of Theorem 10.2
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gives

Z =
(
(D+1)−1 +(1+D−1)−1)−1

(76)

=

(
1

D+1
+

D
D+1

)−1

(77)

=
D+1
D+1

6= 1. (78)

From (78), the differential equation relating v and i is

v(D+1) = i(D+1). (79)

For a given v ∈C∞, the response of (79) is i ∈ v+Re−t ≡ {v+ ce−t : c ∈ R}. In contrast, the
transfer function of (79) is Tvi = 1, which yields the response i = v. The system (79) is
uncontrollable (as defined in9). Whether or not a system is controllable, there is no mathematical
basis for recovering the differential equation of a reduced system from its transfer function, since
the assumption of zero initial conditions (used to reduce the system) cannot be reversed after the
reduction.

14 Analysis of LTI Systems

Stability and system type are two key concepts in the classification of dynamic systems. The
relational framework provides a simple and rigorous basis for their analysis.

For a given signal space S , we define the set of stable signals Ss = {y ∈S : limt→∞ y(t) = 0}.
A rational relation R is stable if 0R⊆Ss, i.e. if its unforced (free) response is stable. Since
R = a(D)b(D)−1, we have

0R = 0b(D)−1 = kerb(D) =
n

∑
j=1

m j−1

∑
k=0

Re(Ctkeλ jt). (80)

where each λ j ∈ C is a root of b having multiplicity m j ≥ 1, Ctkeλ jt = {ctkeλ jt ∈S : c ∈ C}, and
where the Re operator and addition are applied pointwise to the sets of functions in the summand.
It follows that a necessary and sufficient condition for stability is that the roots of b are in the
open left-half plane.

As shown in the examples of the previous section, the denominator of the transfer function does
not necessarily match the denominator of the actual relation. If an unstable mode in the relation is
missing from the transfer function, then the system may incorrectly be determined to be stable.
Even if (by luck) this does not occur, a stability analysis based on transfer functions is not
rigorous.

The internal model principle (IMP) of control theory14 characterizes the set of reference
trajectories that can be tracked by a given plant and controller, which is related to the system type.
Rational relations provide a simple derivation of this principle. The relation between tracking

P
age 26.674.19



error e and reference r was obtained in (29) as e(1+CP)r. Exact tracking (e = 0) gives
0(1+CP)r, so the set of references that can be tracked is given by

r ∈ 0(1+CP) (81)
= 0CP (82)

= 0
aCaP

bCbP
(83)

= 0(bCbP)
−1 (84)

= kerbCbP, (85)

where bC and bP are the denominator polynomials of the controller and plant, respectively.

For examples, the feedback system can track a ramp iff bCbP contains a factor of D2 and can track
a sinusoid at frequency ω iff bCbP contains a factor of D2 +ω2. Of course, for arbitrary initial
conditions, asymptotic tracking additionally requires that the free response 0(1+CP)−1 is stable,
which requires that the numerator of the relation 1+CP has all of its roots in the open left
half-plane.

We define the system type n of the relation CP as the number of factors of D in the polynomial
bCbP. Then (85) shows that the closed-loop system can track a constant reference iff n≥ 1, a
ramp if n≥ 2, etc. Moreover, the system type of P tells us how do design C to track a given
reference.

15 Discussion and Conclusions

This presentation of the relational approach to dynamic systems is aimed at readers interested in
mathematics for engineering education and as such may not represent the ideal presentation for
undergraduates. While our somewhat top-down presentation, from abstract concepts to particular
examples, emphasizes the generality of relations, a more bottom-up presentation may be more
suitable in engineering courses.

When the material is integrated with a specific course topic (such as feedback control systems), it
might occupy forty lectures, so extrapolating this paper to that setting requires some thought. One
approach is to mirror the pedagogical order typically followed within the traditional framework,
wherein students first become acquainted with the behavior of specific systems (e.g. using
operational calculus to solve initial value problems) and then investigate the stability and
performance of interacting subsystems (such as feedback loops). The latter activity would be
facilitated by using (nondeterministic) relations to model, reduce, and analyze interconnected
dynamic systems.

We conclude with some brief observations regarding the educational value of relations compared
to transfer functions, beginning with the attributes of depth (generality, rigor, and simplicity).
Relations are more general because they include operators (such as transfer functions) as a special
case. The algebra of relations (addition, composition, and inversion) generalizes that of operators,
and the relation diagram generalizes the block diagram of the operator-theoretic framework.
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As applied to dynamic engineering systems, relations are more rigorous because they model such
systems exactly as nondeterministic relations instead of approximating them as operators. In
particular, relations model the free response of dynamic systems, including any hidden modes.
Since transfer functions exclude the free response, conclusions drawn about the response and
stability of the systems they model are invalid and sometimes incorrect. This was demonstrated
by circuit examples, but pertains to any type of dynamic system.

The relational approach is simpler than the transfer function approach since there is no need to
approximate relations as operators before manipulating them: one simply adds, composes, and
inverts them as they are. Moreover, relations avoid transforms (and operational calculus) and
model systems directly in the time-domain. While the algebraic rules for rational relations are
more subtle than those of transfer functions, the differences arise only when hidden modes occur.
Hence, they are only as complicated as they need to be.

Finally, relations are more relevant to engineering systems because they model a larger class of
them and model them more precisely. But beyond its utility in the context of dynamic systems
analysis, the relation is a fundamental concept that applies to a larger world of knowledge than the
standard engineering problems that may come to mind when we think of relevance. A deep
understanding of such fundamentals may improve knowledge retention, innovation, and original
problem solving in new or unfamiliar contexts.
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