Engineering Directorate @ NSF Budget and Priorities

Pramod Khargonekar Assistant Director for Engineering National Science Foundation

Presentation ASEE Engineering Research Council March 17, 2014

Directorate for Engineering

Fundamental

EFRI

CBET

- •Chemical, Biochemical, and Biotechnology Systems
- •Biomedical Engineering and Engineering Healthcare
- Environmental Engineering and Sustainability
- •Transport and Thermal Fluids Phenomena

CMMI

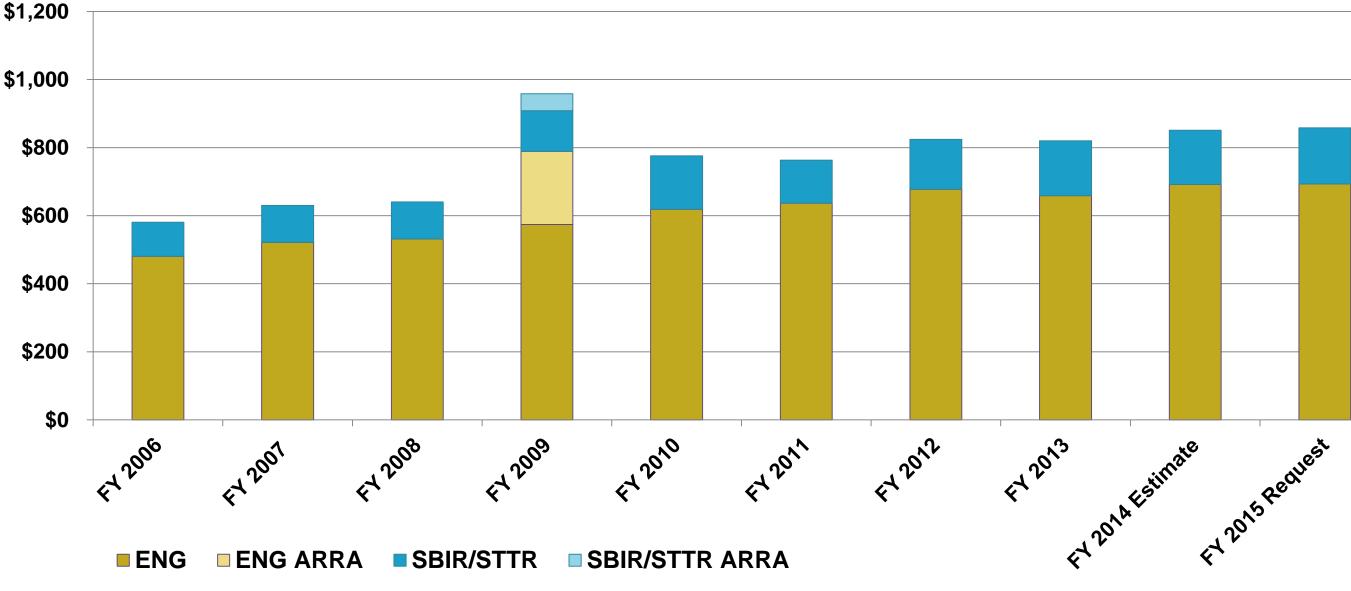
- Advanced Manufacturing
- •Mechanics and Engineering Materials
- Resilient and Sustainable Infrastructure
- Systems Engineering and Design

ECCS

- •Electronics, Photonics, and Magnetic Devices
- •Communications, Circuits, and Sensing Systems
- •Energy, Power, and Adaptive Systems

EEC

 Engineering Research Centers
 Engineering Education
 Engineering Workforce



Translational

IIP

Academic
Partnerships
Small Business
Partnerships

ENG and SBIR/STTR R&RA Budgets (\$M)

ENG R&RA Budget (\$M)

	FY 2013 Actual	FY 2014	FY 2015 Request		
		Estimate		Amount	Percent
CBET	\$167.01	\$173.00	\$174.99	\$1.99	1.2%
СММІ	200.81	209.20	210.40	1.20	0.6%
ECCS	104.58	110.06	110.41	0.35	0.3%
EEC	115.21	122.24	117.38	-4.86	-4.0%
IIP	202.41	205.97	213.69	7.72	3.8%
SBIR/STTR	161.34	159.39	164.99	5.61	3.5%
EFRI	30.16	30.60	31.30	0.70	2.3%
ENG TOTAL	\$820.18	\$851.07	\$858.17	\$7.10	0.8%

4

Engineering prioritizes research critical to the Nation's Challenges

- National Initiatives ightarrow
 - Advanced Manufacturing
 - Clean Energy ____
 - National Nanotechnology Initiative

- NSF Cross-cutting Priorities •
 - **Cognitive Science and Neuroscience**
 - Communications and Cyberinfrastructure
 - Cyber-Enabled Materials, Manufacturing, and Smart Systems (CEMMSS)
 - Science, Engineering, and Education for Sustainability (SEES)
 - Education and Career Development
 - Interdisciplinary Research
 - Research Centers
 - Innovation Corps

Advanced Manufacturing

- ENG will support system modeling, complex engineering systems • design, biomanufacturing, and nanomanufacturing
 - Research to advance sensor- and model-based smart manufacturing, robotics, and materials
 - Research on cyber-physical systems to transform static manufacturing systems into "smart" systems that can sense and adapt to environmental change
 - Advanced semiconductor and optical device design, fabrication and processing, for use in biomedical, communications, computing, energy and sensing systems

Clean Energy

- ENG will invest significantly in fundamental ulletresearch for clean energy
 - Conversion, storage and distribution of diverse power sources (including smart grids)
 - Renewable energy generation and storage
 - Research and engineering of energy materials, energy use, and energy efficiency; and the ways that people think about and use energy

7

National Nanotechnology Initiative

- The Directorate will continue support for nanomaterials and • nanodevices; nanosystems; nanomanufacturing; and environment, health, and safety
 - Focus on composite nanomaterials, two-dimensional nanolayers, nanoelectronic logic devices, metamaterials, plasmonics, and nanomedicine
- ENG will emphasize research for the Signature Initiatives ullet
 - Nanoelectronics for 2020 and Beyond
 - Sustainable Nanomanufacturing
 - Nanotechnology for Solar Energy Collection and Conversion
 - Nanotechnology Knowledge Infrastructure
 - Nanotechnology for Sensors and Sensors for Nanotechnology

NSF Cross-cutting Priorities

- Cognitive Science and Neuroscience
- Communications and Cyberinfrastructure
- Cyber-Enabled Materials, Manufacturing, and Smart Systems
- Science, Engineering, and Education for Sustainability
- Education and Career Development
- Interdisciplinary Research
- Research Centers
- Innovation Corps

art bility

ENG will invest in Cognitive Science and Neuroscience

- ENG investments are critical to success of the ightarrow**BRAIN** Initiative
 - ENG will drive integration across scales and across disciplines
 - ENG will accelerate the development of new experimental and analytical approaches, including computational and data-enabled modeling, and new neural engineering and technology research and development
 - ENG focus areas will include optogenetic mapping and stimulation of the brain, noninvasive or minimally invasive imaging technologies, and advanced neuroprosethetics for neuron repair or regeneration

\$5M

ENG will support advances in Communications and Cyberinfrastructure

- Enhancing Access to the Radio Spectrum (EARS) ENG will prioritize research on more efficient radio spectrum use and energy-conserving device technologies
- Cyberinfrastructure for the 21st Century (CIF21) The ENG investment will focus on research platforms, engineering modeling and simulation, smart networks, and sensors
- Secure and Trustworthy Cyberspace (SaTC) ENG support will focus on the engineering aspects of the Networking and Information Technology Research and Development (NITRD) strategic plan

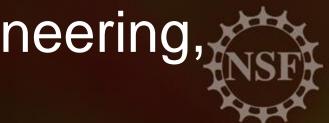
\$8M for EARS

\$10M for CIF21

\$3M for SaTC

ENG will be a major contributor to Cyber-Enabled Materials, Manufacturing, and Smart Systems

- ENG will focus on breakthrough materials, advanced ulletmanufacturing, robotics, and cyber-physical systems
 - integrates materials discovery, property optimization, systems design and optimization, certification, manufacturing and deployment
 - integrates computational methods with data-enabled scientific discovery and innovative experimental techniques
 - includes the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) focus area



ENG will continue support for Science, Engineering and Education for Sustainability (SEES)

- ENG's investment will focus on sustainability research networks and sustainable chemistry, engineering, and materials
- ENG will continue funding for sustainable infrastructure and disaster-resilient systems
- ENG will promote sustainability research and education in the areas of the water/energy/food nexus

ENG will strategically invest in Education and **Career Development**

- The Directorate emphasizes support for
 - CAREER awards
 - NSF Research Traineeship (NRT) and Integrative Graduate Education and Research Traineeships (IGERT) programs
 - Exploring new approaches to address engineering education challenges, in connection with Improving Undergraduate STEM Education (IUSE)
 - Broadening participation at all levels ____

\$43M for CAREER

\$4M for NRT

\$6M for **IUSE**

ENG will continue its support for Emerging Frontiers of Research and Innovation

- The ENG investment in EFRI provides strategic support for fundamental research that may overcome scientific and/or national challenges and lead to breakthrough technologies
 - FY 2014 topics: Two-Dimensional Atomic-layer Research and Engineering (2-DARE) and Resilient Interdependent Infrastructure Processes and Systems (RIPS)
 - FY 2015 topics: Two-Dimensional Atomic-layer Research and Engineering (2-DARE) and other(s) in development

\$31M for EFRI

ENG will maintain support for integrative Research Centers

- Engineering Research Centers (ERCs)
 17 active centers, competition underway
- Science and Technology Centers (STCs)
 - CBET will continue supporting the Center on Emergent Behaviors of Integrated Cellular Systems
 - ECCS will continue supporting the Center for Energy Efficient Electronics Science

\$64 M for ERCs

\$10 M for STCs

ENG will continue to strengthen Innovation Corps

- The NSF investment will provide mentoring and resources to help determine the commercial readiness of technology built on **NSF-funded basic research**
- ENG will continue to support I-Corps Teams, Sites, and Nodes to further build, utilize, and sustain a national innovation ecosystem
- NSF FY 2015 plans include approximately 189 new Teams, 15 new Sites, and 2 new Nodes

\$25M from NSF

\$11M from **ENG**

President's Opportunity, Growth & Security Initiative

\$552 million

Research in a Broader Context

How do we leverage research for larger societal benefits?

Merit Review Criterion: Broader Impacts

- The Broader Impacts criterion encompasses the potential to benefit society • and contribute to achieving specific, desired societal outcomes, including:
 - increased participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM);
 - improved STEM education at all levels; ____
 - increased public scientific literacy and public engagement with science and ____ technology; improved well-being of individuals in society;
 - development of a globally competitive STEM workforce;
 - increased partnerships between academia, industry, and others; ____
 - increased national security; ____
 - increased economic competitiveness of the United States; ____
 - and enhanced infrastructure for research and education.

NSB Report MR-11/22 - National Science Foundation's Merit Review Criteria: Review and Revisions

NSB Recommendation

- "Just as institutions play an important role in facilitating research-related activities ulletof their investigators, often in ways that align with strategic departmental and institutional (and possibly state-wide, regional, or national) priorities and investments, such a role can extend to activities directed toward the broader impacts of the project as well."
- "... such efforts might be more effective if coordinated appropriately in ways that leverage particular institutional assets or strategic directions and even link investigators from multiple projects."
- NSF should encourage institutions to pursue such cooperative possibilities, which • have the dual benefit of retaining the contributions of individual investigators while addressing national goals and yielding benefits broader than those within a given project.
- How can engineering colleges and departments respond to this • opportunity?

March 20, 2014

The Directorate for Engineering

- Empowers research in frontiers of engineering
- Builds an innovation economy
- Prepares today's students for tomorrow's challenges and opportunities

Credits, from left: Electronic Visualization Laboratory, University of Illinois at Chicago; Philip DeCamp and Deb Roy; Integrated Surface Technologies, Menlo Park, CA: NSF: Erik Demaine and Martin Demaine, MIT

22