
Paper ID #16425

Inclusive and Evidence-based Instruction in Software Testing Education

Vignesh Subbian, University of Cincinnati

Vignesh Subbian is an instructor in the Department of Electrical Engineering and Computing Systems at
the University of Cincinnati. His interests include biomedical informatics, healthcare systems engineer-
ing, STEM integration, and engineering education.

Dr. Nan Niu, University of Cincinnati

Nan Niu is an Assistant Professor of Electrical Engineering and Computing Systems at the University of
Cincinnati. He received his Ph.D. in Computer Science in 2009 from the University of Toronto, where he
specialized in requirements engineering for software product lines. His current research interests include
information seeking in software engineering, requirements engineering, program comprehension, and
software engineering education. He is a member of ASEE and a senior member of IEEE.

Dr. Carla C. Purdy, University of Cincinnati

Carla Purdy is an associate professor in the School of Electrical Engineering and Computing Systems,
College of Engineering and Applied Science, at the University of Cincinnati and an affiliate faculty mem-
ber in UC’s Department of Women’s, Gender, and Sexuality Studies. She received her Ph.D. in Math-
ematics from the University of Illinois in 1975 and her PhD. in Computer Science from Texas A&M
University in 1986. She is the head of UC’s B.S. in Computer Engineering Program and the coordina-
tor of the Preparing Future Faculty in Engineering Program. Her research interests include embedded
systems and VLSI, intelligent embedded systems, software and systems engineering, computational biol-
ogy and synthetic biology, agent based modeling and simulation, mentoring, and diversity in science and
engineering.

c©American Society for Engineering Education, 2016

Inclusive and Evidence-based Instruction in Software Testing

Education

Abstract: This work-in-progress paper will present our experiences in developing a new

Software Testing and Quality Assurance (QA) course that integrates evidence from research and

new developments in software testing as well as engineering education. The specific goals are:

1. To incorporate empirical studies in software engineering to supplement instruction in testing

of all aspects, including safety, security, reliability, and performance.

2. To increase focus on particular topics of high relevance such as formal testing of safety-

critical systems and software inspection through targeted pedagogical interventions.

3. To leverage existing instructional materials from the software engineering education

community to create and explore blended learning models such as a flipped classroom.

4. To integrate and promote inclusive and reflective teaching practices in computer engineering

courses, in general.

We present detailed courseware and instructional modalities, including implementation

details of daily in-class active learning activities, out-of-class assignments, and project resources,

along with supporting materials from the literature and student feedback results.

1. Introduction

Evidence-based instruction or education is generally considered as the utilization of existing

evidence from research and literature on education1. While findings from educational research

are critical, appraisal of discipline-specific research is often overlooked or not well-integrated

into instruction. We propose a unique research-to-practice model that combines evidence from

research on education as well as the discipline itself. As a case in point, research literature in

software testing is rich in empirical studies on software testing techniques, tools, and processes,

encompassing systematic testing of both traditional stand-alone software systems as well as the

increasingly larger systems of systems and embedded software2. Educators and educational

researchers, on the other hand, have equally contributed towards pedagogical methods and

instructional materials for software engineering education. In this paper, we present our

experiences in developing a new Software Testing and Quality Assurance (QA) course that

integrates evidence from research and new developments in software testing as well as

engineering education.

2. Background

Our department is currently developing several new courses in an effort to expand the

undergraduate and graduate curriculum in crosscutting areas of software engineering, embedded

systems, and cybersecurity. The software engineering curriculum (Table I), in particular, has

been expanded significantly during the 2014-15 academic year with the introduction of three

new area-specific courses (CS 6027 – Requirements Engineering, CS 6028 – Large-scale

Software Engineering and EECE 6032 – Software Testing and Quality Assurance) and one cross

disciplinary course (CS 7040 – Trustworthy System Design, Implementation, and Analysis).

These new courses build upon the undergraduate introductory software engineering course3 and

complement the existing embedded systems curriculum4,5.

Table I Core Software Engineering Courses

Course ID* Course Name (credit hours) Level&

EECE 3093C Software Engineering (4) U

CS 6027 Requirements Engineering (3) U/G

CS 6028 Large-scale Software Engineering (3) U/G

EECE 6032 Software Testing and Quality Assurance (4) U/G

EECE 8XXX Topics in Software Engineering (3)** G

* ‘C’ denotes Integrated lab component; & U – Undergraduate, G – Graduate; ** under development;

3. Methods (Courseware)

The overall goal of the EECE 6032 – Software Testing and Quality Assurance course was for

each student to understand the basic principles of software testing and quality, and their role in

contemporary software engineering. An additional goal for graduate students was to examine

research areas of interest, and be prepared to conduct research in software engineering in general.

The ABET student learning outcomes of the course were:

• To understand how to develop a test plan for a set of software requirements and how to

measure the quality of software and the development process itself (a, e)

• To comprehend the software testing and quality assurance processes for both traditional and

distributed projects (a, g)

• To apply testing and quality assurance concepts to small-scale software projects (a, c, e, g, k)

• To comprehend formal verification methods (a, e)

The course was designed to include in-class learning through group problem-solving and

traditional lectures, out-of-class learning through online lectures and/or research literature

reading for selected topics, and a semester-long team project focused on application of testing

techniques as well as performing QA activities. Additionally, graduate students were required to

complete a research component.

Course Topics

 The topics in the EECE 6032 course were primarily aligned with two Knowledge Areas

(KAs) in the Software Engineering Body of Knowledge (SWEBOK): software testing (KA5) and

software quality (KA10), with some overlap in other relevant KAs such as software

configuration management, software engineering process, and software engineering models and

methods (see Table II for details).

Course Delivery

 We used different instructional modalities and methods based on the nature and priority of

topics. For example, traditional lectures on most testing techniques were followed by in-class

group problem solving (marked as in Table II). These in-class activities were designed to

immediately apply and reinforce concepts covered in the lecture.

 Selected concepts such as test selection criteria, test oracles, exploratory testing, and the

complexity (or perhaps, the impossibility) of complete/exhaustive testing, were offered as

“blended learning (flipped)” modules i.e., students watched video lectures outside of class

(marked as in Table II) and spent the class time for group problem-solving and discussion.

Although there was no reduction in face-to-face (F2F) time, we refer the combination of F2F

interactions and out-of-class online instruction as “blended learning”. This was made possible by

the availability of publicly-available instructional materials that were developed through

federally funded projects for the sole purpose of improving education in software testing (see

“Acknowledgment” section for details).

Integration of Evidence from Software Engineering Research

A number of empirical studies in the software engineering research literature were utilized to

supplement instruction of several topics (marked as in Table II) throughout the course. Such

studies, particularly the results, were introduced as a part of in-class lectures or discussions.

Students were then asked to critically review the study as an out-of-class assignment, reflect on

how the concepts and results related to their current understanding, and report a summary and

reflection, with particular emphasis on quantitative results. For example, to highlight the

inefficacy of code coverage as a metric of test suite quality, we incorporated a recent study by

Inozemtseva and Holmes6. A total of eight experimental studies6-13, one case study14, and two

survey/review articles15,16 were integrated into the course content. Of these, five studies/articles

had accompanying required “review-reflect-and-report” assignments. It is noteworthy that

reflection was a critical aspect of these assignments. Students were explicitly asked to retrospect

on their prior experiences in software engineering projects and identify how it relates to

concepts, results and/or arguments in their reading assignments.

Table II Course Schedule

I = In-class group activity; O = Online lecture; E = Integration of evidence from research

literature

Topic (hours*) I O E

Software Testing Fundamentals (6)

- Testing-related Terminology

- Static versus Dynamic Testing 10

- Test Selection Criteria 7

- Test Oracles

- Complexity of Exhaustive Testing 8

Levels of Testing(6)

- Unit Testing

- Integration Testing

- System-level Testing

Testing Techniques(13)

- Coverage-based Testing 6

- Input Domain-based Testing 8

- Control flow and Data flow Testing

- Mutation Testing 9

- Usage-based Statistical Testing

- Model-based Testing 11

• Finite-state Machines

• Testing from Formal Specifications 15

• Model Checking

- Exploratory Testing

Testing Process (1) **

- Test Activities

Software Quality(8)

- Relationship of Testing to Software Quality

- Software Quality Assurance

• Defect Prevention

• Fault Tolerance and Failure Containment 12

- Software Quality Improvement

- Software Process Assessment and Improvement

(Maturity Models)

- Verification versus Validation

- Software Quality Metrics

Special Topics (6)

- Software Configuration Management

- Formal Verification of Safety-critical Systems 15,16

- Testing in Distributed/Global Software Development 13

- Intellectual Property and its Implications for Software

Testing

* Includes online lecture hours; ** Extensively covered as a part of the team project

Team Project and Research

 Each student team consisted of 3-4 members with at least one graduate student and one

student in the computer science program. The goal of the team project was to provide an

opportunity for students to apply some specific testing techniques or tools to one or more chosen

System Under Test(s) (SUTs) of interest (either open-source software, or software that they

developed for other projects). The minimum project requirements were: (1) including both

testing and QA components, although it was up to each team to decide on the proportion of both

components, (2) developing and executing a test plan, even if testing was a small part of the

project, and (3) performing a manual software inspection for selected modules or the whole SUT.

 Students were encouraged to leverage publicly-available SUTs and test suites to apply testing

techniques and tools. Here, we provide a summary of resources that other educators can use as

well as provide as recommendations to their students.

• Software Assurance Reference Dataset (SARD)17: Developed and maintained by the

National Institute of Standards and Technology (NIST), SARD provides a collection of

test programs and test suites, along with known defects and vulnerabilities (most defects

are security-related). The test cases in the dataset are well-documented and allows for

understanding the defects as well as writing new test cases.

• Recommended open-source test suites and test programs: apache-poi18, google-vis19,

jdom20, jfreechart21, jgrapht22, jmeter23, joda-time24, and weka25.

 For the research component, graduate students were required to identify and answer a

research question of interest. Undergraduate students shadowed graduate student mentors in their

team and completed a short abstract along with a reflection of their experience. To allow for

interactions with different programs within engineering and computer science, the research

component was integrated into assignments, and the second offering (Fall 2015) increased focus

on interdisciplinary team projects, including tool-supported test management and testing of

large-scale software-intensive systems.

Targeted Pedagogical Interventions

In order to increase focus on topics of high relevance to testing of software-intensive safety-

critical systems26, 27 (formal verification and software inspection), two interventions were

implemented:

1. Besides regular instruction and learning activities on formal methods, a leading

researcher and proponent of formal methods was invited to construct and present a

follow-up talk on formal verification of safety-critical systems. The goal of this

intervention was to emphasize on construction of formal specifications for automatic

static analysis and symbolic model checking, both, in the context of testing software in

aerospace systems.

2. For software inspection, students were required to perform manual inspection of their

SUTs as a part of their team project. Additionally, an invited lecture was arranged to

promote an awareness of intellectual property and its implications for software testing,

particularly during manual or tool-supported inspection.

Inclusive Teaching Practices

 As a part of our personal interest in creating inclusive learning experiences for engineering

students, we adopted several strategies to uphold inclusivity in teaching and learning. We report

these ideas and methods here for several reasons: (1) some of these strategies were inspired by

diversity initiatives led by ASEE as well as our own institutional/departmental working groups

and therefore, we believe that reporting our experiences will highlight and better capture the

impact of such initiatives, (2) inclusiveness is presumably perceived and actualized in different

ways in engineering education, and it may be important to identify and share the differences and

similarities in inclusive practices and its significance in development of engineers, and (3) we

believe this will stimulate educators to consider, develop, and report such practices as a part of

their course or program development. Here, we summarize a few inclusive approaches as they

relate to software engineering education.

• Developing and including a statement of inclusion in the syllabus such as, “The diversity of

the participants and their ideas are a valuable source of ideas and software engineering

creativity…”, and mindfully putting the statement into practice throughout the course

delivery and interactions with students.

• Featuring pioneers in software engineering during in-class discussions and presentations:

Kent Beck and Eric Gamma (unit testing), Richard Battin and Margaret Hamilton (safety-

critical systems), Martin Fowler (continuous integration, extreme programming), Grace

Hopper (who coined the term software “bug” and “debugging”), John Musa (software

reliability and usage-based statistical testing), and Mary Shaw (software architectures).

Contributions of these pioneers and brief historical perspectives were integrated at

appropriate places into course activities and materials.

• Ensuring diversity in reading materials (see assigned articles6-13) and guest speakers.

Assessment

 Students were assessed based on the following grade distribution: In-class activities and

participation (10%), out-of-class assignments (25%), two exams (15% each), testing and QA

team project (35%).

4. Preliminary Results

The course has been offered twice so far (Spring 2015 and Fall 2015) serving a total of 46

students from three program areas (computer science, electrical engineering, computer

engineering). Figure 1 and Figure 2 show demographics of course participants. While the course

was open to both undergraduate seniors and graduate students, only the first offering had

students from both levels (13 graduate and 9 undergraduate seniors); participants in the second

offering were all graduate students. Table III shows qualitative feedback obtained from students

on various course activities. The majority of students found the course to be well-structured and

collaborative. The in-class activities, in particular, received positive reviews.

Figure 1 Enrollment Demographics of Course Participants by Major

Figure 2 Course Participants by Gender

Table III Qualitative Student Feedback Results

Course activity Excerpts from student feedback

In-class group activities

“One of my favorite parts were the in-class activities because it

allowed me to apply the material that we just learned as well as

work with other students and get to know them.”

Intervention on formal methods

“The idea of formal methods and automated testing is absolutely

amazing. After this talk, it definitely makes logical sense how it

is done. All of this relates to my current work experience and I

am eager to get back to work and apply them to a project that

might not have these tools implemented yet!”

Blended learning

“This style of teaching is still relatively new to me. The videos

that were posted articulate the material well. I think this course

could be done with a reverse (flipped) class room setting if the

size stays small.”

“Regarding the proposed new model of the class of watching

some videos or reading some papers then discussing them in

class, I do not really like it. I do find it useful to review the

current literature and research on the topics, but I think it would

be more worthwhile to watch the videos or read the articles in

class and discuss them as a whole.”

Limitations and Future Work

 First, there were no quantitative methods or a control group to statistically measure the impact

of pedagogical interventions. However, based on the qualitative results, we believe that our

implementation was successful, particularly in emphasizing and promoting formal methods and

software inspection. Furthermore, the integrated inspection component in the team project and

the two invited in-house experts are sustainable resources for subsequent offerings of this course.

 Second, tool-supported test plan management was highly encouraged, but not mandated in

team projects. Streamlining tool usage for test management as well as static and dynamic code

analysis are a part of ongoing work. Last, blending learning was limited to a few topics and does

not represent the true scope of the technique. We are currently developing an online version of

the course and exploring how we can leverage the online content for our on-campus students.

5. Conclusion

 In summary, we have successfully developed and implemented a new course in software

testing and quality assurance that integrates blended learning, evidence from software

engineering research, and topic-specific interventions. We believe that this work will be of

interest to practitioners of evidence-based instruction and other educators in the software

engineering community.

Acknowledgment

We acknowledge the use of video lectures created by Prof. C. Kaner (Director, Center for

Software Testing Education and Research, Florida Institute of Technology) and team. These

video lectures were used for implementing blended learning modules in our course. We thank

Prof. T. Armstrong (College of Law, University of Cincinnat), Prof. K. Rozier (College of

Engineering and Applied Science, University of Cincinnati and Mr. C. St. Pierre (AppDynamics

Inc.) for their contributions to this course.

References:

1. Davies P. What is evidence‐ based education? British journal of educational studies. 1999;47(2):108-121.

2. Ostrand T, Weyuker E. Software testing research and software engineering education. Proceedings of the

FSE/SDP workshop on Future of software engineering research. 2010:273-276.

3. Subbian V, Purdy C. A hybrid design methodology for an introductory software engineering course with

integrated mobile application development. Annual ASEE Conference. 2014.

4. Subbian V, Purdy C. Redesigning an advanced embedded systems course: A step towards interdisciplinary

engineering education. IEEE Integrated STEM Education Conference. 2013.

5. Subbian V, Beyette F. Developing a new advanced microcontrollers course as a part of embedded systems

curriculum. Frontiers in Education Conference. 2013:1462-1464.

6. Inozemtseva L, Holmes R. Coverage is not strongly correlated with test suite effectiveness. Proceedings of the

International Conference on Software Engineering. 2014:435-445.

7. Harder M, Morse B, Ernst MD. Specification coverage as a measure of test suite quality. ACM. 2001;25:452.

8. Kuhn DR, Wallace DR, AM Gallo J. Software fault interactions and implications for software testing. Software

Engineering, IEEE Transactions on. 2004;30(6):418-421.

9. Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G. Are mutants a valid substitute for real faults in

software testing. Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software

Engineering. 2014.

10. Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y. Evaluating static analysis defect warnings on

production software. Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering. ACM. 2007:1-8.

11. Dalal SR, Jain A, Karunanithi N, et al. Model-based testing in practice. Proceedings of the 21st international

conference on Software engineering. 1999:285-294.

12. Knight JC, Leveson NG. An experimental evaluation of the assumption of independence in multiversion

programming. Software Engineering, IEEE Transactions on. 1986(1):96-109.

13. Bird C, Nagappan N, Devanbu P, Gall H, Murphy B. Does distributed development affect software quality?: An

empirical case study of windows vista. Commun ACM. 2009;52(8):85-93.

14. Jee E, Wang S, Kim JK, Lee J, Sokolsky O, Lee I. A safety-assured development approach for real-time

software. IEEE International Conference on Embedded and Real-Time Computing Systems and Applications.

2010:133-142.

15. D'silva V, Kroening D, Weissenbacher G. A survey of automated techniques for formal software verification.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on. 2008;27(7):1165-1178.

16. Sandler K, Ohrstrom L, Moy L, McVay R. Killed by code: Software transparency in implantable medical

devices. Software Freedom Law Center. 2010:308-319.

17. National Institute of Standards and Technology. Software assurance reference dataset (SARD).

https://samate.nist.gov/SARD/. Updated 2015.

18. Apache POI. Apache-poi. https://github.com/apache/poi. Updated 2016.

19. google-vis. Google visualization. https://github.com/google/google-visualization-java.git. Updated 2012.

20. JDom. https://github.com/hunterhacker/jdom. Updated 2015.

21. Gilbert D. jFreeChart. https://github.com/jfree/jfreechart-fse. Updated 2016.

22. Naveh B. JGraphT. https://github.com/jgrapht/jgrapht. Updated 2016.

https://samate.nist.gov/SARD/
https://github.com/apache/poi
https://github.com/google/google-visualization-java.git
https://github.com/hunterhacker/jdom
https://github.com/jfree/jfreechart-fse
https://github.com/jgrapht/jgrapht

23. Apache JMeter. JMeter. https://github.com/apache/jmeter. Updated 2016.

24. Joda-time. https://github.com/JodaOrg/joda-time. Updated 2015.

25. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: An

update. https://github.com/bnjmn/weka. Updated 2009. Accessed 1, 11.

26. Lutz RR. Software engineering for safety: A roadmap. Proceedings of the Conference on the Future of Software

Engineering. 2000:213-226.

27. Parnas DL, van Schouwen AJ, Kwan SP. Evaluation of safety-critical software. Commun ACM. 1990;33(6):636-

648.

https://github.com/apache/jmeter
https://github.com/JodaOrg/joda-time
https://github.com/bnjmn/weka

