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Integrating Computer Engineering Labs with a “Sound Theme”  
 

 

1.  Motivation 

Recent engineering education studies call for change to enhance student learning and to better 
prepare graduates to meet the new challenge1,2,3.  A good engineer should have a deep 
understanding of a domain and can apply the knowledge to solve problems4.  This requires two 
types of practices – the “component skill,” which is the knowledge of a specific domain, and the 
“integration skill,” which applies and integrates component skill to address complex and realistic 
problems5.  The Carnegie Foundation for the Advancement of Teaching conducted a five-year 
study of engineering education and published the results in a book titled Educating Engineer: 
Designing for the Future of the Field 3.  It points out that one deficiency is that engineering 
curricula mainly focus on the component skill and teach each subject in isolation and without 
proper context. Students are not adequately prepared for the integration skill.  The study 
recommends a “spiral model” to provide more effective learning experiences:  

“… the ideal learning trajectory is a spiral, with all components revisited at 
increasing levels of sophistication and interconnection.  Learning in one area supports 
learning in another.” 

The study also calls the labs a missed opportunity and states that3: 
“…[The labs] can be more effectively used in the curriculum to support integration 
and synthesis of knowledge, development of persistence, skills in formulating and 
solving problems, and skills of collaboration.  Design projects offer opportunities to 
approximate professional practice, with its concerns for social implications; integrate 
and synthesize knowledge; and develop skills of persistence, creativity, and 
teamwork.” 
 
Our work is motivated by the study.  Instead of treating the labs as the adjuncts that follow 

the learning of the theories and presenting them in a limited “component context,” we use them 
as a cohesive framework to connect and integrate the individual courses.  The lab framework will 
keep the lecture content intact but update the experiments and projects to make students aware of 
the big picture, help them to relate the individual subjects, and apply and integrate the previous 
learning in a new context. 

 
The labs spread over all hardware related courses, including freshman engineering, 

introductory digital systems, advanced digital systems, computer organization, embedded 
systems, hardware-software co-design, and senior capstone design.  The complexities and 
abstraction levels of the experiments and projects gradually grow as students progress through 
the curriculum. The key concepts are repeated in different courses with increasing sophistication 
and studied from different aspects and contexts, such as software implementation versus 
hardware implementation, gate-level design versus system-level integration, etc.   

 
The overall work consists of three “themes.” The sound theme is one of the themes and the 

focus is to use software and hardware to generate a music tone, essentially constructing a music 



synthesizer6.  This theme is selected for two reasons.  First, most students have a general idea 
about music instruments and many play some types of music instruments.  Thus, they can easily 
relate to this theme.  Second, a music tone is a periodic wave, which is the fundamental function 
used in circuits and signal analysis, and its generation connects to many subject areas in 
electrical and computer engineering. 

 
The remaining article is organized as follows:  Section 2 provides on an overview of the 

basic characteristics of a music tone; Sections 3 introduces the concept of music synthesis;  
Section 4 discusses the hardware schemes used to generate periodic waveforms and the 
construction of a music synthesizer I/O core; Section 5 illustrates experiments and projects 
associated with the synthesizer hardware and discusses the methods to integrate them into 
computer engineering curriculum; and the last section summarizes the work.   

2.  Overview of a Music Tone 

A music tone is a steady periodic waveform and is characterized by four aspects: 
• Frequency (also known as pitch). 
• Amplitude (also known as loudness). 
• “Shape” (also known as timbre).   
• Duration.   

A music note8 specifies the frequency and may also contain the duration information.  The notes 
are grouped into octaves and their frequencies are doubled after each octave.  There are twelve 
notes in an octave, represented by C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, and B.  The frequencies 
from the octave 0 to the octave 8 are summarized in Table 1.   
 

 
 

Table 1. Frequencies of music notes 
 

 
There is a simple relationship between two successive note frequencies.  Let the frequencies of 
two notes be fi and fi+1, then 

   fi+1 = 21/12 * fi 



 
The equation implies that a frequency is doubled after one octave (i.e., 12 notes): 

  fi+12 = (21/12)12  * fi = 2 fi 
For example, the frequency of note C in the octave 1 is twice the frequency of note C in the 
octave 0.  This relationship can help us to calculate the note frequency. 
 

A music note may include information to express the relative duration. The basic unit is a 
quarter note. Its duration is twice the duration of an eighth note and four times the duration of a 
sixteenth note and is half the duration of a half note and a quarter the duration of a whole note. 
The tempo specifies the time interval of a quarter note. It is expressed in terms of BPM (beats per 
minute).  For example, 120 BPM specifies that the interval of a quarter note is 0.5 second (500 
milliseconds).  

 
For a tone generated by a real music instrument, its shape is very complex and irregular.  

This aspect cannot be described by mathematical functions.    

3.  Overview of Sound Synthesis 

3.1 Sound generation  

A music tone can be synthesized electronically9.  The waveform is periodic and continuous 
and its frequency and amplitude can be adjusted.  To emulate the duration aspect, a gating 
mechanism can be added to pass the waveform to the output for a specific amount of time.   

 
The main limitation of the synthesized waveform is in the shape aspect.  While the timbre of 

a real musical instrument is very complex and irregular, a synthesizer can only generate simple 
and structured patterns, such as a square wave or a sinusoidal wave.  The square wave contains a 
large number of high-frequency harmonics and its sound is unnatural and unpleasant.  The 
sinusoidal wave is the pure tone but its sound is plain and flat. One method to mimic a real music 
instrument is to modulate the sinusoidal waveform with a loudness envelope, which is discussed 
in the next subsection.  

 
The music synthesis is mainly done by custom hardware.  However, software can be used to 

generate a simple low-frequency square wave. The software approach is discussed in  
Subsection 3.3 and the hardware synthesizer is discussed in Section 4.  

3.2 ADSR envelope modulation 

When a note is produced in a real music instrument, the loudness changes over time.  It rises 
quickly from zero and then decays over time.  To model the effect, we can multiply the constant 
tone by a loudness envelope.  The ADSR (attack-decay-sustain-release) envelope is the most 
widely used scheme and is the foundation of a music synthesizer10.  A representative ADSR 
envelope is shown in Figure 1.  The contour of the envelope corresponds to pressing and 
releasing a key of a music instrument, such as a piano. When a key is pressed, the loudness 
quickly rises to the maximum (attack segment), then falls (decay segment) to a rather constant 
level (sustain segment), which is maintained until the key is released.  The sound then quickly 



fades away (release segment).  We can imitate the tones of different instruments and obtain 
special effects by adjusting the levels and lengths of various segments.  After the release segment, 
the amplitude returns to zero.  Thus, the envelope also implicitly performs the gating mechanism.  
The duration corresponds to the sum of the four segments.  

 

 
 

Figure 1. ADSR Amplitude Envelope   
 

 

3.3 Software Sound Generation 

A software program can generate a square wave and control its frequency. A square wave is 
a one-bit signal that oscillates between 0 and 1 with a fixed interval.  For a 10 KHz signal, its 
period is 100 µs and the signal toggles every 50 µs.  A microcontroller or an embedded processor 
can generate the signal with its general-purpose output port and timer. The program checks the 
progress of the timer and toggles the output when the timer reaches the designated interval.  
While the algorithm is simple, it imposes a rigid timing constraint since the signal must be 
switched in a precise moment.  A software program can also control the duration of a note in a 
similar fashion.  However, its interval is around a fraction of a second and thus the timing is not 
as critical.  A program cannot adjust the amplitude or shape of the output wave unless a special 
sound generation I/O peripheral is included in the embedded system.  

4.  Hardware Sound Generation 

Because of the strict timing constraint, custom hardware is needed to generate the waveform.  
DDFS (direct digital frequency synthesis) is the most widely used scheme for digital 
implementation11,12.  It is incorporated into instrumentation as well as music synthesis.  The 
following subsections discuss the development in stages13: 

• Digital DDFS (to generate a square wave).     
• Analog DDFS (to generate a sinusoidal wave).    
• Modulated analog DDFS (to generate a modulated sinusoidal wave).    
• Music synthesizer (to modulate an analog wave with an ADSR envelope generator). 
• Music synthesizer I/O core.  
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Figure 2. DDFS block diagrams 



 

4.1 Digital DDFS  

A digital DDFS circuit consists of a phase register and an adder and its block diagram is 
shown in Figure 2(a).  The output is the MSB (most significant bit) of the register, which is a 
square wave, and the input is the frequency control word, labeled M in the diagram, whose value 
is added to the phase register in every clock cycle.  

 
Let fsys and fout be the frequency of the system clock and the frequency of the output square 

wave, let N be the number of bits in the phase register and the adder, and let M be the value of 
the frequency control word.  The typical width of N is between 24 and 48 bits.   

 
The value of the phase register starts from 0, gradually increases to 2N-1, and then wraps 

around.  The MSB starts as 0, changes to 1 when the phase register reaches 2N-1.  It then returns 
to 0 and repeats when the phase register wraps around.  The duration of incrementing from 0 to 
2N-1 is the period of the MSB (i.e., 1/fout).  Since M is added to the phase register every clock 
cycle, it requires 2N/M additions to complete one circulation and the required time for this task is 
(2N/M) * (1/fsys); i.e.,  

1/fout = (2N/M) * (1/fsys) 

The DDFS system can generate the desired output frequency by properly setting the value of M:  

M = (fout/fsys) * 2N  

Note that the shape of the digital DDFS is always a square wave and its amplitude cannot be 
adjusted. An additional circuit is needed to control the duration.  

4.2 Analog DDFS  

An analog DDFS consists of an additional phase-to-amplitude lookup table, a DAC (digital-
to-analog convertor), and a low-pass filter, as shown in Figure 2(b).  The key component is the 
lookup table.  Let the N-bit output of the phase register be pN-1  pN-2  pN-3 … p0. The digital DDFS 
uses the MSB (i.e., pN-1) as the square wave output.  One interpretation is to treat the pN-1  bit as a 
signal that divides the output period into two equal parts (i.e., two equal phases).  The values of 0 
and 1 are assigned to the two phases, respectively. It is possible to assign multi-bit values, such 
as 2 and 7, for the amplitude, and the output wave will oscillate between 2 and 7 instead.    

 
Similarly, if two MSBs (i.e., pN-1  pN-2) are considered, the same period is divided into four 

phases.  Different values can be assigned to the four phases. The same concept can be extended 
to S MSBs, which leads to 2S phases in a period.  A phase-to-amplitude lookup table with 2S 
entries can be created to define the shape of the output waveform. To obtain a sinusoidal wave, 
we just need to create a lookup table with the sinusoidal function.  The output of the lookup table 
is the digitized sinusoidal wave. The subsequent DAC transforms it into a continuous analog 
signal and the low-pass filter removes the high-frequency noises. 

 
A DAC is usually implemented by an analog circuit in a separate IC chip.  However, because 

the frequency of the system clock (around 50 MHz to 100 MHz) is much higher than that of the 



audio signal, it is possible to “oversample” the output signal and use a one-bit sigma-delta 
DAC14,15.  The one-bit DAC can be implemented digitally without any analog component and 
can perform noise shaping, which pushes quantization noises into the high-frequency range.  
This imposes less constraint on the subsequent low-pass filter and a simple RC filter can be used.  

 
As in digital DDFS scheme, only the frequency aspect of the waveform can be adjusted and 

an additional circuit is needed to control the duration. 

4.3 Modulated analog DDFS  

The analog DDFS outputs a pure sinusoidal wave. We can modulate it to obtain more 
interesting effects.  In signal processing, modulation is the process that modifies a high-
frequency carrier signal in accordance with a low-frequency message signal.  The carrier signal 
is a sinusoidal waveform and the message signal adjusts its amplitude, frequency, phase, or a 
combination of them.  Assume that the carrier signal is sin(2ft).  The modulated signals become 
the following: 

• Amplitude modulation: A(t)*sin(2ft). 
• Frequency modulation: sin(2(f +f(t))t). 
• Phase modulation: sin(2ft +P(t)). 

The A(t), f(t), and P(t) terms are slow time-varying message signals.  The three schemes 
can be combined and the modulated signal becomes A(t)*sin(2(f +f(t))t +P(t)).  A DDFS 
system can incorporate the desired modulation schemes by inserting additional adders to adjust 
the frequency control value and the phase count and a multiplier to scale the amplitude.  The 
complete diagram of a modulated analog DDFS system is shown in Figure 2(c).   
 

A modulated analog DDFS system can control the frequency and the amplitude.  It also can 
generate different wave shapes by loading “shape functions” to the phase-to-amplitude lookup 
table.  However, the shape from a real music instrument is very complex and unstructured and 
thus the sinusoidal function is used in general.  

4.4 Music synthesizer 

An ADSR envelope generator circuit produces an amplitude envelope.  The ADSR envelope 
contour is specified by seven parameters, including three amplitude points, A1, A2 and A3, and 
four segment intervals, Ta, Td, Ts, and Tr, as shown in Figure 1.  The circuit can be constructed 
with an FSM (finite state machine) in conjunction with an amplitude counter. The FSM contains 
four main states, state_atk, state_dcy, state_sus, and state_rel, which correspond to the four 
segments of the ADSR envelope.  The amplitude counter increments or decrements a specific 
amount in a state and the amount is derived from the designated time interval.  For example, the 
increment amount in state_atk is (A1- 0) / Ta  and the decrement amount in state_dcy is  
(A1 – A2 ) / Td.  The counter is cleared to 0 initially.  When the FSM is triggered, it enters 
state_atk and the counter increments with (A1- 0) / Ta every clock cycle  The FSM stays in 
state_atk until the counter reaches A1.  It then moves to state_dcy and the counter decrements 
with (A1 – A2 ) / Td .  When the counter reaches A2, the FSM moves to state_sus and the counter 
decrements with (A2 – A3 ) / Ts.  The same activity is repeated until the FSM completes state_rel.  
As the FSM progresses, the counter continues incrementing or decrementing a specific amount.  



The counter output corresponds to the envelope contour in Figure 1.  Note that the incrementing 
and decrementing amounts are calculated in advance and used as FSM inputs.   No division 
circuit is needed.  

 
The block diagram of a music synthesizer is shown in Figure 2(d).  It is composed of a DDFS 

circuit and two ADSR envelope generators.  The first one modulates the amplitude, as discussed 
in Section 3.2.  The second one is optional.  It is connected to the frequency modulation input to 
generate special effects.    

 
A music synthesizer uses the DDFS circuit to specify the frequency of a music note and uses 

the ADSR envelope generator to control its amplitude and duration as well as to manipulate the 
shape of the envelope.  

4.5 Music synthesizer I/O core  

The music synthesizer discussed in the previous subsection is constructed from scratch with 
hardware.  As the circuit becomes more sophisticated, the number of input signals increases.  It 
will be tedious to set up the system parameters and play a music melody with just buttons and 
switches.  A better alternative is to use software to perform this task.  Since an ADSR envelope 
corresponds to the duration of a music note, its interval is around a fraction of a second.  Setting 
up and initiating envelopes can be easily handled by an embedded processor or microcontroller. 

 
To connect the music synthesizer to a processor bus, the music synthesizer should be wrapped 

with additional interface logic and appeared as an I/O core (i.e., an I/O peripheral).   A common 
interface scheme is memory-mapped-I/O, in which an I/O core is treated as a collection of 
addressable registers and the processor uses the normal memory read and write instructions to 
access an I/O register13.  The write interface with four addressable registers is shown in Figure 3.  
The decoding circuit uses two lower address bits and the chip-select (cs) signal to generate a 
register enable signal. When attached to a processor bus, the peripheral is assigned with a base 
address.  When the processor writes a register, the system interface decodes the upper address 
bits and asserts the cs signal, and the local write interface decodes the two lower address bits and 
stores data to the designated register.      

 
A similar write interface can be created for the music synthesizer to make it a standard I/O 

core.  Since the memory-mapped-I/O scheme is used in FPGA’s internal bus interconnect, the 
music synthesizer core can be easily incorporated into an FPGA based embedded system.    



 
 

Figure 3. Memory-mapped I/O write interface 
 

5.  Lab Integration 

5.1 Introduction 

The purpose of this work is not to create a sophisticated project for a single course but to 
develop a collection of theme-based experiments and projects for the entire computer  
engineering curriculum.  We divide the lab experiments and projects into following levels:    

 Level 1: Freshman engineering. 
 Level 2: Basic digital systems. 
 Level 3: Advanced digital systems without processor.  
 Level 4: Advanced digital systems with processor. 
 Level 5: Capstone projects.  

 
Level 1 is intended for freshman engineering students.  Many schools now have an 

“introduction to engineering’’ course for new engineering students.  It is usually a project-
oriented course to introduce the basic engineering concepts and practices.    

 
Level 2 corresponds to the basic digital systems topics in the curriculum16, which cover 

combinational circuits, sequential circuits, and FSM.  After the basic materials, there is no single 
“standard” follow-up subject.  The advanced topics can be spread over a wide variety of courses, 
such as advanced digital systems, computer organization, VHDL/Verilog, embedded systems, 



hardware-software co-design, and so on.  For our development purposes, one key distinction is 
whether a processor is incorporated into the course.  Based on this, we divide the follow-up into 
two levels – Level 3 (without processor) and Level 4 (with processor).  Because the course 
length (e.g., semester versus quarter) and the credit hours (e.g., 3- versus 4-credit hours) are 
different in each curriculum, a course may contain more than one level.    

 
The level 5 is to apply the materials from the previous levels for the term projects or capstone 

design projects.   

5.2  Lab logistics and adoption 

The experiments and projects require a simple microcontroller board, an FPGA prototyping 
board, and a powered speaker.  The microcontroller board is for the introductory freshman lab 
and the FPGA board is for the remaining labs.  We select the Arduino board for the 
microcontroller board.  It contains an 8-bit microcontroller and a dozen connectors to access 
external I/O devices.  It supports a subset of C/C++ and provides a simple user development 
environment17.  The setup is targeted for beginners without much prior programming or 
hardware experience.  There are many FPGA boards designed for academic learning, such as the 
Altera DE series boards and Xilinx Nexys and Basys series boards18,19.  Since the DDFS system 
does not use any proprietary vendor IP (intellectual property) and the music synthesizer requires 
only one output pin, they can be implemented in any entry-level FPGA board.   

 
The experiments and projects are intended as companion hands-on exercises for the 

theoretical topics covered in a typical computer engineering curriculum.  Adopting and 
integrating the experiments into an existing curriculum are straightforward and flexible.  There is 
no need to modify the existing course structure since only the lab portion is updated.  An 
instructor first identifies the corresponding experiment of a specific subject area and then 
substitutes it with a sound-theme experiment.  To achieve the best result, the instructors in 
charge of various courses should coordinate and perform this across the entire curriculum.  

5.3 Level 1 experiments 

The freshman engineering course is usually a project-oriented course to introduce basic 
computer engineering concepts and practices.  It assumes that the students only have high school 
math and science.  The experiments in this level utilize software generated square wave, which is 
obtained by turning on and off an output port at a specific interval.  The Arduino’s built-in 
function, tone( ), can also be used for this purpose.  Following are some basic experiments: 

1. Two-tone police siren.   The British police car siren produces a two-tone sound, in which 
the 440 Hz and 550 Hz tones alternate every second.  We can derive a program to mimic 
the sound of the siren. The siren tone can be considered as frequency modulation 
resembling the BFSK (binary frequency-shift keying) scheme. 

2. Sweep police siren.  The US police car siren produces a sweeping frequency between  
635 Hz and 912 Hz.  We can derive a program to mimic the sound of the siren.  This also 
introduces the basic concept of frequency modulation.  

3. Music note generation.  We can follow the discussion in Section 2 to calculate the 
frequency of a music note and generate the tone.   



4. Melody player (part I).  A music melody contains a sequence of notes. We can derive a 
program to play a music melody.  Initially, we assume that the duration of the notes is 
fixed.   

5. Melody player (part II).  We enhance the previous program to include the duration 
information. 

6. IR (Infrared) remote control.  Remote control uses an IR signal to send commands.  A 
common scheme is to transmit a 38 KHz square wave for the “on” period and 0 for the 
“off” period.  The signal can be generated similar to a music tone.  We can use an IR 
LED and develop a program for IR remote control.    

5.4 Level 2 experiments 

Level 2 corresponds to the basic digital systems topics and involves the digital DDFS system 
and the analog DDFS system.  The former is related to sequential circuits and counters and the 
latter involves several more advanced topics, including the lookup table, the ROM, and the 
digital-to-analog conversion.  Note that the digital DDFS system is essentially the hardware 
implementation of the software tone( ) function in Level 1 and the analog DDFS system further 
enhances the functionality to generate a better analog sinusoidal wave.  

 
The experiments in this level are based on the two DDFS systems.  Following are some 

experiments: 
1. Two-tone police siren.  This repeats Experiment 1 in Level 1 but uses pure hardware 

implementation.  The system can be done with two DDFS circuits and a multiplexer, as 
shown in Figure 4.  One DDFS circuit generates the one-second interval (1 Hz signal) to 
control the multiplexer.  The other DDFS circuit generates the tones.      

2. Sweep police siren.  This repeats the Experiment 2 in Level 1 but uses pure hardware 
implementation.  “Sweeping frequency” implies to update the frequency control word of 
the DDFS circuit gradually.  This can be accomplished with a counter and a decoding 
circuit.     

3. Music note generation.  This repeats Experiment 3 in Level 1 but uses pure hardware 
implementation.  The implementation follows the basic approach discussed in Section 2.  
We first determine the frequency control word values for the 12 notes in the octave 0 and 
then use a barrel shifter (to perform *2n) to obtain the values in the octave n.    

4. Note duration control.  A music note contains duration information, which specifies the 
time interval in which the tone is to be played.  A digital monostable multivibrator, which 
generates a single pulse of a specified width after a trigger, can be used to gate the DDFS 
output via a multiplexer, as shown in Figure 5.  

5. General-purpose wave generator. The analog DDFS system can be expanded to generate 
the triangular wave and the ramp wave.  This can be done with the clever manipulation of 
the phase register output.  

6. IR remote control.  This repeats Experiment 6 in Level 1 but uses pure hardware 
implementation.  The multiplexing configuration similar to that in Figure 5 can be used to 
control the on and off periods of the IR transmitter.       

7. Quadrature phase carrier generation.  In addition to the main carrier signal, some 
communication schemes require an additional 90 degree out-of-phase signal, known as 



the quadrature component.  It implies that sin(2ft) and cos(2ft) waveforms need be 
generated at the same time.  We can configure the phase-to-amplitude lookup table with a 
dual-port memory module to support simultaneous access. 

 

 
 

Figure 4. Block digram of two-tone siren 
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Figure 5. Block digram of tone duration control  
 

Note that the melody player (Experiments 4 and 5) in Level 1 is not included.  While it is 
straightforward for software to play notes with a for loop, this type of sequential execution 
requires substantial work for the hardware implementation.  They are left for the next level.  
 

5.5 Level 3 experiments 

Level 3 corresponds to the advanced digital systems topics and involves the modulated analog 
DDFS system and the music synthesizer.  They are related to more advanced topics, such as 
binary multiplier, fixed-point arithmetic, and FSMD (FSM with a data path)13.   

  
The experiments in this level are based on the music synthesizer.  Following are some 

experiments: 
1. Melody player (part I).  This repeats Experiment 4 in Level 1 but uses pure hardware 

implementation.  A custom RAM based FIFO (first-in-first-out) buffer can be used for 
storage.  The melody data will be stored into the RAM as the initial values.  An FSMD 
will control the overall operation.  It will read the note’s frequency from FIFO’s head, 
write it back to the FIFO’s tail (to have the melody played continuously), send it to the 
DDFS, wait for a fixed amount of time, and then repeat.     

2. Melody player (part II).  This repeats Experiment 5 in Level 1 but uses pure hardware 
implementation.  This extends the previous experiment by augmenting an additional 



duration field in the FIFO entry.  The FSMD will use this duration information to time 
the FIFO retrieval.   

3. Push-button piano player.  This extends Experiment 3 in Level 2.  We can use seven 
pushbuttons for the primary notes. Pressing a button will trigger the ADSR envelope 
generator to produce an envelope.   Additional switches can be used to select octaves and 
pre-defined ADSR envelopes.   

4. Push-button piano recorder.  This combines Experiments 1 and 3.  We can record the 
button sequences in the FIFO buffer and then play it back as a melody.  The 
implementation requires a comprehensive FSMD that controls the recording and 
playback operation.    

5. Additive harmonic synthesis.  A harmonic is a signal whose frequency is an integer 
multiple of the fundamental frequency.  We can expand the DDFS core to allow the 
addition of three harmonics to produce more interesting tones.  

6. DAC interface. While one-bit sigma-delta ADC is adequate for an audio signal, an 
external DAC device is needed to produce a high-frequency sinusoidal wave.  These 
DAC devices usually contain an SPI or I2C interface.  We can first design an SPI or I2C 
controller and then create a top-level FSMD that controls the ADC operation and streams 
the DDFS output.  

5.6 Level 4 experiments 

Level 4 includes an embedded processor and involves the music synthesizer I/O core.  The 
emphasis is on hardware-software interface and hardware acceleration.  Following are some 
experiments: 

1. Tone( ) function implementation.  A pre-designed tone( ) function is provided in Arduino 
platform.  We can implement the same function with the hard-core or soft-core processor 
of the FPGA board.  

2. Tone( ) function analysis.  For the tone( ) function of Experiment 1, we can analyze and 
profile the code to obtain the CPU utilization of different frequencies and to determine 
the maximal frequency that can be obtained by this method.  

3. DDFS analysis.  We can analyze the digital DDFS system to determine the maximal 
frequency that can be obtained by this method.   

4. Melody player.  This repeats Experiment 2 in Level 3.  We can develop a software 
program to play a melody using the synthesizer I/O core.  The software essentially 
replaces the FSMD controller and the FIFO buffer.  

5. Push-button piano recorder.  This repeats Experiment 3 in Level 3.  We can use 
processor’s general-purpose I/O core to access the buttons and the switches and develop a 
software program to control and coordinate the I/O operation.  

6. DAC interface. This repeats Experiment 6 in Level 3.  We can use a software program to 
configure the DAC device and to coordinate and control the DDFS output streams. 

5.7 Level 5 experiments 

Level 5 is for the term projects or capstone design projects.  Because the materials in the 
previous levels cover custom hardware, general embedded systems, and hardware-software co-
design, there are plenty opportunities for interesting and challenging projects.  The projects can 



enhance the synthesizer or integrate it with other peripherals, such as a touch screen, a TFT (thin-
film-transistor) display, and sensors.  Following are some examples: 

1. Enhanced DDFS.  DDFS is the main scheme to produce high-frequency sinusoidal wave 
in a communication system.  Advance techniques, such as fast adder, pipeline structure, 
etc., can be used to improve the performance of the DDFS system and to achieve a higher 
operating frequency.     

2. Sound processor.  The early computer or video game console used a sound chip, such as 
Yamaha YM3812, to produce sound.  The music synthesizer core can be extended to 
emulate this type of devices.  

3. Function generator.  A function generator is a piece of equipment that can generate 
simple repetitive waveforms. The frequency and the amplitude can be adjusted.  The 
shape of the waveform is limited to a sinusoidal wave, a square wave, a triangular wave, 
and a ramp wave.   

4. Arbitrary waveform generator.  Arbitrary waveform generator extends the capability of 
the function generator by allowing a user to define the shape of the waveform. This can 
be achieved by incorporating a write interface into the phase-to-amplitude lookup table.  

5. Sample based synthesis.  This scheme creates better sound by recording a sample from a 
real music instrument, digitizing the sample, and storing the data points to the phase-to-
amplitude lookup table. 

6. Innovative music instrument. A variety of input devices and sensors, such as a keyboard, 
a touchpad, a force sensor, a proximity sensor, an accelerometer, etc., can be used as user 
interface to control and adjust the frequency, the amplitude, and the shape of the DDFS 
output.      

7. Special effect circuit.  The DDFS output can be further processed to produce special 
sound effects.  Possible extensions include a tunable low-pass filter, a circuit to generate 
echoes, a circuit to generate reverberations, etc.  

8. Visual GUI.  A GUI (graphic user interface) with a TFT liquid-crystal display or a smart 
phone can be created as the control panel for above projects.   

5.8 Evaluation 

The sound theme is part of the effort to create a “spiral lab framework”20.  Its effectiveness is 
evaluated by an array of assessment instruments, including contents tests, lab works, student 
survey, and student interviews. The data collection is in progress.  After the completion, 
comparisons will be made between gain scores of each class, survey and interview differences, 
as well as any differences in available formative course assessments, such as student homework 
and participation.  If the sample is diverse enough, we will also examine which curriculum is 
more effective for high- vs. low-achieving students, as well as differences in the effectiveness of 
the curriculum based on gender and other demographic factors if available.   

6.  Summary 

We follow the “spiral” model recommended from a recent study and develop a continuous 
and coherent series of sound-theme based experiments and projects for computer engineering 
curriculum.  They connect and integrate the individual courses through a cohesive lab framework.  
The labs spread over all hardware related courses, including freshman engineering, introductory 



digital systems, advanced digital systems, computer organization, embedded systems, and 
hardware-software co-design.  The complexities and abstraction levels of experiments and 
projects gradually grow as students progress through the curriculum.  Key concepts are repeated 
in different courses with increasing sophistication and studied from different aspects and 
contexts.  The experiments and projects can be realized in simple microcontroller and FPGA 
boards and can be easily incorporated into any existing curriculum.   
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