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Predictive data analytic approaches for characterizing design behaviors in 
design-build-fly aerospace and aeronautical capstone design courses 

 

Abstract:  
Predictive data models and interactive visualizations can be highly effective in understanding 
workload and skills assignment issues within design-build-fly teams in the aerospace industry. 
Capturing data that is needed to build predictive models in usable forms and then subsequently 
applying appropriate data mining techniques to derive insights from such data is a significant 
challenge. The ultimate goal of our work is to understand design behaviors among engineers that 
can lead to cost reductions and expediting product development in extremely complex 
engineering environments. The present study, pioneered by a large US aerospace company 
working with educators at 5 major engineering schools in the US, engineering education 
researchers, and practicing engineers, is a first step towards achieving this overall vision. In this 
paper, we characterize how engineering students enrolled in a senior capstone course interact and 
perform on complex engineering tasks commonly seen in the aerospace industry. We describe 
our instrumentation methodology and the data architecture for an associated analytics platform. 
We use course clickstreams, social networking and collaborations as the basis for our 
observations. 

1. Introduction 
“Design is the first step in manufacturing, and it is where most of the important decisions are 
made that affect the final cost [and indeed performance] of a product”1 (p. 505). The entire 
aerospace and aeronautics industry relies heavily on the ability of engineering teams to design, 
test, and execute not only individual components, but also more importantly on their ability to 
translate these components to function effectively within entire systems. “Digital technologies 
are enabling a direct correlation between what can be designed and what can be built, thus 
bringing to the forefront the issue of the significance of information, i.e. the issues of production, 
communication, application and the control of information […]”2 (p. vi).  

Not only is the design of extremely complex systems like aircrafts driven to a great extent by 
digital technologies, but also more importantly these technologies are increasingly used to 
support distributed engineering teams that function in socially cohesive structures. Madhavan 
and Lindsay (2014)3 point out that information technology has ushered in the realization that 
engineering problem solving is an increasingly socially-driven and supported enterprise. They 
state that “for example, the design of the Boeing 777 [aircraft] by engineers who were distributed 
in multiple parts of the world using modeling and simulations as a primary problem-solving 
modality is a watershed transformation in engineering practice” (p. 635)3. Information 
technology is fundamentally changing engineering practice in the workplace4,5,6.  More 
importantly, the instrumentation available within these digital systems is capable of providing 
insights about how professional engineers design, work, manufacture, and support extremely 
complex systems. But most times, such performance and behavioral data derived from industrial 
systems is proprietary by nature.  
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“Engineering organizations are increasingly under pressure to perform more efficiently with 
fewer people. To manage this, organizations need to understand what skills, knowledge and 
behaviors they need from engineers who have to practice in a global information society [minor 
spelling changes to conform with US norms]” (p. 145)7. Understanding how engineers within a 
company design, work, and solve complex problems provides tremendous competitive advantage 
to those possessing those insights. Thus, most major engineering companies are extremely 
reticent to openly publishing such data about the design and execution behaviors of their 
engineering teams. In the absence of these insights, it is extremely difficult to fully characterize 
the behaviors that lead to better product design, increased productivity, and decreased product 
costs. Thus even if there is high quality instrumentation within the digital environments that 
support industrial design and manufacturing, it is difficult to develop characterizations of 
engineering behaviors as manifested in the environmental factors that digital environments can 
now capture. While there are numerous studies that shed light into the nature of engineering 
practice in the workplace8, 27, there are very few studies, if any, that can provide a full and 
thorough analysis of engineering practice as manifested within the digital design environments 
where the work actually occurs.  

1.1. Focus of this paper  
The present study, pioneered by a large US aerospace company working closely with educators 
at 5 major engineering schools in the US, engineering education researchers, and practicing 
engineers, is a first step towards characterizing engineering problem solving behaviors in the 
aerospace industry. In this paper, we characterize how engineering students enrolled in a senior 
capstone course interact and perform on complex engineering tasks commonly seen in the 
aerospace industry. We see the senior capstone course as a microcosm of the engineering 
behaviors we expect to see in the real world. There is significant literature to show that well 
designed capstone courses offer a realistic engineering context for fostering practice relevant 
design behaviors9,10,11. The core purpose of this paper is to describe our instrumentation 
methodology and the data architecture for an associated analytics platform.  Further, we show the 
various types of analytic artifacts that would be needed in describing the engineering behaviors 
of students fully. We intend to transfer these analytic capabilities to training and education 
activities with this large US aerospace company with the express goal of driving on-the-job 
training costs down and increasing productivity. In the next section, we provide the context of 
the study and a description of the capstone design course. 

2. Context of this study 
The ultimate goal of our work is to understand design behaviors among engineers that can lead 
to cost reductions and expediting product development in extremely complex engineering 
environments such as the aerospace industry. The present study describes the first step taken to 
address this overall vision. Going beyond this goal of fully characterizing problem-solving 
behaviors among professional engineers as manifested in digital environments, our research 
vision is to build predictive data models and interactive visualizations that can be highly 
effective in understanding workload and skills assignment issues within design-build-fly teams 
in the aerospace industry. Capturing data that is needed to build predictive models in usable 
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forms and then subsequently applying appropriate data mining techniques to derive insights from 
such data is a significant challenge.  

The above stated goal poses a very high barrier of entry to solving this problem. One of the few 
viable pathways to addressing the above challenge is to establish a test bed that is defined, 
designed, and administered by an industry-led team, wherein learners work hand-in-hand with 
industry experts, academic researchers, and data scientists to elicit the type of design behaviors 
that reflect real world engineering practice in the aerospace industry.  This allows us to develop, 
test, and refine the instrumentation methodology, data architectures, analytics, and visualization 
approaches before interfering with the day-to-day work within an organization. In the context of 
our work, a program called AerosPACE was developed not only as a senior capstone course, but 
also to serve as a test bed. 

AerosPACE is an engineering education program developed by a large US aerospace company. 
The primary goal of this program is to bridge the gap between theory and application, (and to 
help students understand the process of designing, building, and flying an unmanned aerial 
vehicle (UAV) capable of assisting first responders. As students engaged in design activities, a 
second goal was to develop an instrumentation methodology and data architecture needed to 
fully characterize industry relevant engineering design behaviors as manifested in the digital 
environments. Multi-disciplinary, multi-university teams consisting of students from 5 major US 
universities participated in a two semesters, year-long capstone project. These courses have been 
effectively offered starting 2013. The third cohort of student teams is now experiencing this 
capstone course. This enables us to gather a significant amount of data related to design 
behaviors that form the basis for many of our data architecture decisions. 

To illustrate this, the highly distributed nature of the design process and collaboration between 
students at different universities are major themes of the project. It is expected that each design 
will address technical areas of aerodynamics, materials, propulsion, manufacturing, structures, 
and controls among others. Major milestones include a Mission Concept Review, Preliminary 
Design Review, Critical Design Review/Production Readiness Review, Flight Readiness 
Review, and Post Launch Assessment Review in addition to a flight demonstration. The overall 
theme of the UAV’s mission is to help various first responders protecting citizens in this country 
and across the world. First responders fulfill various missions, many of which can benefit from 
the use of small-unmanned aerial vehicles. As a part of this project, students define specific 
missions they will design their vehicle for to support first responders. 

Since AerosPACE would also serve as a test bed for developing predictive models to address 
design behaviors in the aerospace industry, it needed to exhibit some core characteristics in order 
to establish the viability of our methods, data architectures, and analytic approaches. These 
characteristics were agreed upon based on numerous expert conversations and discussions. They 
are described below briefly: 

Flattening organizational learning curves: One of the critical features of AerosPACE* 
must be that - from a business perspective, it allows researchers in understanding the 
aggregate components and implications of organizational learning curves (ability of an 
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entire organization to learn and gain experience about a product or process)12, 13, 14, 
including the impact of knowledge transfer on product performance. The flattening of the 
organizational curve is in effect the true intended effect. Flatter organizational learning 
curves allow companies to reach profitability faster and also increase overall product 
quality and performance. Therefore, the methodology we implement must allow us to 
understand pathways through which knowledge dissemination can be increased 
effectively. 

Learning mimics true engineering practice in the aerospace industry: The test bed must 
allow engineering educators to take on the significant challenge of incorporating real 
world engineering competencies into their core curriculum. Engineering students have to 
increasingly be trained to work in extremely distributed teams that solve problems as a 
cohesive unit using state-of-the-art digital tools. Therefore, as much as feasible, the 
capstone course needed to utilize tools and services currently used in the aerospace 
industry for training and organizational learning needs. 

Enable cross-pollination of industrial and academic practices: AerosPACE must allow 
the adoption of industrial practices by supporting mechanisms for incorporating industrial 
innovations into its core learning components. Additionally, it must enable the flow of 
educational innovations back into industrial practice. 

In the next section, we describe the instrumentation designed to observe various aspects of this 
capstone course. Further, we also provide an overview of the data architecture that forms the 
basis of our analytics platform. 

3. Methods – Instrumentation and Data Architecture for AerosPACE 
The challenge for this study begins with instrumenting the design environment effectively. When 
engaging in the build-design-fly engineering process, students typically have to interact with a 
number of online learning and design environments (for example, learning management system, 
design environments for the aircrafts, simulation environments to test the design, and 
specification documentation capture systems). Developing an architecture needed to address this 
data pipeline is the first aspect that this paper addresses in significant depth. Figure 1 provides a 
simplified overview of the architecture. 

Just as in the engineering workplace, students enrolled in the AerosPACE capstone design course 
interact with a wide range of online learning and design environments. Step 1 (top left box of 
Figure 1) shows all students initially beginning their interactions with some unified learning 
environment. Although Sharepoint15 is used commonly to launch capstone design projects in the 
aerospace industry, this initial launch point could be any range of environments. Once the 
student is introduced to the course, they routinely interact with course content (step 2) that 
resides in a learning management system such as Blackboard16 or even a MOOC platform (in the 
context of AerosPACE we use edX17 as a content platform).  Since the course contains a 
significant number of complex design components, students on a regular basis use synchronous 
and asynchronous communications to interact with each other (step 3). Throughout the design 
process, students maintain multiple design documents that track their design specifications and 
build requirements (step 4).  
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Figure 1. Simplified data and 
analytics platform architecture for 
AerosPACE 
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One of the core design activities that students engage in throughout the project is the use of 3D 
modeling and simulation environments (step 5) to develop in silico prototypes of the aircrafts 
they eventually will build and test. Essentially steps 1 – 5 show the various types of data and 
environments that students routinely experience during a design, build, test capstone course in 
the aerospace industry. These environments are very similar to the types of environments that 
professional engineers use within the aerospace company. This is one of the primary reasons 
why the course interactions are setup as shown here.  

Students consistently generating a wide range of data types including, 3D models, design 
documents, social interaction data, course content interactions, and performance data. From an 
analytics and predictive modeling perspective, it is incredibly difficult to utilize these data in 
performance models or any type of decision models without transforming them into some unified 
schema. In step 6, we apply a variety of data filters to first sort the data into specific data types 
and then transform all these data to focus on individual learners (or actors in the context of our 
data architecture). At this point – our system is being designed to automatically parse all of the 
individual data and store them into a pre-processed form. The top right box in Figure 1 shows the 
automation. Once this step is complete, our system is designed to allow the addition of data 
points that provide better context for the learner data (step 7) that we already have pre-processed. 
Such contextual data could range from motivations behind taking the course, course profiles, and 
other pre- and post-data related to course performance. 

The AerosPACE test bed collects data on student and faculty interactions from a variety of 
sources. This data represents, in a broad sense, records of actions taken in multiple web-based 
environments, communications shared between individuals, and surveys administered to 
students. We use clickstream data as a core part of our analytics effort. Madhavan and Richey 
(2016) define clickstream “[…] as a proxy for user behavior that not only records that a click 
was made by the user on an electronic object, but also captures the associated metadata, such as 
the system time when the click was made (for standardization), the object on which the click 
event occurred, the dwell time on the clicked entity, and a few other navigational details. Insofar 
as clickstreams embody behaviors, they are also a manifestation of learner intent” (p. 8)18.  

With data coming from several different streams, information must be blended together carefully 
to capture a complete picture of the student design behavior evolution and development over 
time. Secondly, these clickstream data also contain a mapping over time of students’ interactions 
with faculty and industrial partners and time series distribution of skills and collaborative 
messages – essentially data that are ideal for social network analyses19. Additionally, text mining 
and web log mining techniques allows researchers to gain deep insights on the major discussion 
topics. Step 8 shows a key organizational phase required by any analytic systems that may be 
layered on top of the datasets – namely, unifying the data around EPOCH time or UNIX time. 
This essentially enables time-series based analyses. At this point, we also add transcripts and any 
appropriate information about the surveys to the data (step 9). Our data is composed of broadly 
two kinds of data – structured and unstructured data20. Therefore, our system utilizes a database 
type that can maintain structured, semi-structured, and unstructured data types. Furthermore, we 
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are transitioning to a database system (e.g. ArangoDB21) that can maintain graphing relationships 
also. 

At this point in the workflow, we are in the process of writing a series of data access protocols 
and application programming interfaces that use JSON to interact with our visual analytics layer 
(indicated in step 10). The visual analytics layer is critical to our system as this is where many of 
our insights are generated and is discussed in greater detail in the next section. From steps 11 
through 14, various researchers interact with our system to derive insights, build predictive 
models, and provide direct feedback to both instructional designers and students who utilize the 
system.  

4.  Visual Exploration of Learner Behaviors and Implications for Predictive Modeling 
As show in Figure 1, visual exploration of the data in step 10 is a critical stage. Easy exploration 
of learner data emanating from electronic environments as the learners are engaged in a design 
activity has never been easy. In order to enable visual exploration of all design behaviors, we are 
experimenting with multiple methodologies, tools, and platforms for visualizing learner data. 
Our goal is to eventually transition to a close-to-real-time visual analytic capability. In this 
section, we provide details based on the various platforms we have been testing. 

4.1.  Tableau 
Tableau22 is a versatile tool that can link to various different files on different types of servers, 
but in order to create meaningful visualizations, the data usually needs to be manipulated in some 
third-party program before it can be used in Tableau. For some of the visualizations in this 
project, the raw data were manipulated in Excel and brought into Tableau through a SQL Join 
within Tableau, which required no extra coding. Tableau is capable of handling relatively large 
chunks of data. Furthermore, the visualizations can be easily customized with just a few clicks, 
the visualization can be customized with appropriate colors, markers, and legends. However, it is 
critical to note that using Tableau as a visualization platform requires use of other data analytic 
environments to augment Tableau’s capabilities. Tableau is a visual presentation platform, but 
not necessarily visual analytic platform aimed completely at non-experts in data mining. These 
visualizations allowed us to derive insights from time-series data on user interactions with the 
edX platform where all AerosPACE learning content is based.  

Figure 2 shows digital objects accessed by users over time, organized by months with a single 
action. The time resolution can be adjusted into years, months, week number, weeks and days 
with a single action. The graph shows anonymized student IDs sorted on number of times a 
student accesses objects – and further in descending order and course sections broken down by 
Month vs. ID.  Figure 2 shows that students systematically revisit topics when interacting with 
learning materials related to aerospace. These topics that students revisit on a regular basis could 
hold the key to recognizing threshold topics that are critical for students to master certain design 
factors. Figure 3 is a modified form of figure 2 that shows how intensely students use certain 
objects. It also shows that students repeatedly visit certain learning materials with varying 
intensity.  
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Figure 2. Visual patterns of users’ interactions with digital objects in a learning environment 

 
Figure 3.  Intensity of learning content use and revisiting course content over time  

The power of simple visual exploration cannot be underestimated. For example, figure 4 below is 
a simple line graph that shows that students view content for longer periods of time initially, then 
as the course progresses, over time students change their behavior and settle at a constant – but 
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lower rate of content viewing. The spikes observed in figure 4 are a critical indication that at 
certain points in the semester, depending on the design task that students are engaged in, the 
intensity of content viewing increases in a spike.  

	
Figure 4. Content viewing trends over time showing intense initial use and then settling to a lower constant rate. 

 
Figure 5 (Left). Pause behavior of students when 
viewing course content.  

In figure 5, we demonstrate that visual 
exploration can also show content that may 
require students to invest more time to 
understand. The graph shows, in 
descending order, content components on 
which students paused the most. This graph 
shows a proxy for content difficulty and 
maybe quite useful in structuring materials 
in level-appropriate ways. For example, 
here our visual explorer shows that content 
component 2.4 on Tailored Properties was 
perhaps particularly troublesome for 
students as it registered the most pause 
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events. The point here is that using visual exploration, we are now able to shed completely new 
light into how learning content behaves vis-à-vis learner behavior and cognitive demands.  

While these types of visual explorations are critical, they are by far not sophisticated enough to 
develop deeper insights needed to build predictive models. In order to accomplish more in-depth 
and more comprehensive analyses of behaviors that will eventually feed a predictive model, we 
need to resort to more powerful analytic tools such as the R-Studio/ShinyApps platform. We 
discuss this next. 
4.2.  R-Studio/ShinyApp 
R is an open-source programming language popular in the data science community. R-Studio23 is 
an integrated development environment for R that is also free and open-source. R presents many 
advantages, being a free and open-source software with no license restrictions. It offers robust 
cross-platform compatibility and can be used on GNU/Linux, Mac OS X, and Microsoft 
Windows environments in both 32- and 64-bit configurations. Over 4,800 library packages are 
currently available for use, including many powerful packages for matrix manipulation, statistics, 
and graphical representations. As such, R is the most comprehensive software in this group for 
statistical analysis and visualization of results. R can natively accept input from a variety of 
sources, including those relevant to the AerosPACE project. 

Because R is a command-line environment, it requires more advanced computer programming 
skills than the alternatives, which means there can be a steep learning curve. Analysis in R 
requires a lot of front-loaded effort to establish a workflow for data that is either unstructured, 
inconsistently structured, or poorly structured.  Many critical analytic components of this study 
are implemented in a fully automated framework under R giving access to the analysis via a web 
application. This application allows researchers to interact with the results permitting executives 
and decision makers to go deeper into the training data. Our work also lowers significantly the 
information management barriers in how engineers are trained to participate in production-
oriented teams.  
4.2.1. Social interaction data analytics in AerosPACE: As engineers engage in the design 
process, they constantly interact with each other. It is important to point out that in design, build, 
test teams within the aerospace industry, each team member plays a critical role because they 
bring complementary but varied skillsets needed to complete the design, construction, and testing 
of the aircraft. However, traditionally, most aircraft construction teams are staffed with all 
necessary skillsets needed for completing the projects from day 1. Although there is a phased 
design and construction process, the skills needed within the project are usually pre-assigned. In 
AerosPACE, we were able to incorporate survey data that asked participants to rate themselves 
on specific skill dimensions. Based on learners’ individual rating we were able to classify 
learners as being focused on CAD, Manufacturing, Propulsion, Testing, Controls, and so on. We 
then used our analytics platforms to understand when specific skills were needed based on 
interaction patterns within a given team. Figure 6 shows that for each of the skill areas, the 
workloads vary over time. During some phases of the project, certain skill sets are completely 
not engaged in the design process on any team. This essentially shows that perhaps there is a 
better workload assignment model that could be used on design, build, test teams within the 
aerospace industry. We are continuing further investigations along this direction by collecting 
more validation data. 
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Figure 6a (Top) and 6b (Bottom). Workload distribution for specific skills over various time periods of the project. 
Social interactions show that not all skill sets are equally needed during all stages of the project. 6b (Bottom) shows 
a slightly constrained time period. 

4.2.2. Clustering for learner behaviors: One of the key components that is needed to build a 
predictive model is the ability to group similar users together into appropriate clusters. The 
reason that clustering is critical is because it allows for personalization of learning and design 
pathways. It is widely known that personalization of learning is a National Academy of 
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Engineering grand challenge24. Identifying patterns of learner behaviors and classifying learners 
into specific clusters essentially allows us to build decision engines that can direct users based on 
the usage cluster to which they belong. To this end, the AerosPACE analytics platform has 
begun to include a two key clustering algorithms – K-Means Clustering25 with the ability to 
dynamically adjust k-values and Hierarchical Clustering (Ward)26. Other additional clustering 
methods are actively being explored and implemented. The goal is to allow a team of data 
scientists to converge on a handful of clusters that are prototypical for engineers engaged in 
design, build, test activities in the aerospace industry. Figure 7 below showcases the clustering 
capabilities of our analytics platform. It clearly shows that engineering students perform a series 
of activities and they can be clustered based on their design behaviors. Furthermore, the bottom 
panel of Figure 7 shows that we can control the clustering based on specific time periods so that 
we can personalize design pathways in much more fine-grained ways using a combination of 
clustering and time series analyses. 

 
Figure 7. Clustering capabilities within AerosPACE analytics platform featuring K-Means with dynamic k-value 
adjustment and Hierarchical Clustering (Ward). 

In this section, we have attempted to provide a brief overview of how visual exploration of 
learner data can provide a new way to understand engineering design practice. We have 
discussed two very different approaches to data mining and have outlined the capabilities of each 
system. In the next section, we will briefly discuss predictive model construction. 

4.3. Predictive Models for Understanding Design Behaviors in the Aerospace Industry 
Thus far in this paper, we have framed the components needed in order to eventually build a set 
of predictive models that will eventually feed a decision engine. With all these components in 
place, we can now begin to identify a set of key factors that would form the core of the predictive 
model. Factor identification and prioritization is necessary to building strong predictive models. 
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At this point in the process, our workflow will split the data into a training dataset and a 
validation dataset. The training dataset will be used to systematically used for feature 
identification and for training a series of machine learning algorithms. A discussion of each of 
these machine-learning algorithms is outside the scope of this paper. However, we will also be 
evaluating these algorithms in ensemble mode, where the output of one algorithm will be used as 
input for the next algorithm. The idea is to be able to develop machine learning techniques that 
will be able to fully recognize (to the extent possible) typical design behaviors and their 
precursor behaviors. Once the models have been trained, we will then use the validation data set 
to ensure that robustness and accuracy of our models. The final stage of this work will be the 
utilization of these predictive models in decision-support mode to enable better efficiencies 
throughout the design, build, test, and fly process. 

5. Conclusions 

AerosPACE  research is completely aligned to the corporate roles and responsibilities of the 
Technical Fellowship within the US aerospace company (blinded) through a) supporting the 
company’s business strategies by ensuring technical excellence across the enterprise in our 
people, technologies, processes, tools, and products; b) Expanding the company’s technical skills 
and performance by improving the acquisition, retention, knowledge, and utilization of our 
technical workforce for business success; and c) Participating in representing the  company’s 
technology interests to the outside world customers, general public, academia and government. 
This research partnership is investigating designs for technology-enhanced teaching, learning 
and assessment that connect opportunities for formal and informal learning and support an 
aeronautics workforce culture that is adaptive to change.  Conceptually, AerosPACE and 
Engineering Education Research offer a completely cohesive approach to understanding and 
characterizing design behaviors within the aerospace industry. 
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