

Successful Use of Performance Indicators to Assess Student Outcomes

Dr. Daniel K. Jones P.E., SUNY Polytechnic Institute

Dr. Jones is Associate Professor of Mechanical Engineering Technology and Chair of the Engineering Technology Department at SUNYIT in Utica, NY. He coordinates the ETAC/ABET accrediations processes. His technical interests include machine design, mechancial measurements, vibrations, instrumentation, and assistive technology for people with physical disabilities.

Dr. Mohammed Abdallah, SUNY Polytechnic Institute

Successful Use of Performance Indicators to Assess Student Outcomes

Introduction

Well-written Student Outcomes (SOs) are a vital part of a successful improvement process. However, the SOs are relatively broad statements on what students are expected to know. Performance Indicators (PIs) provide more specific actions that may be used for direct measurement of SOs, and they are useful tools for assessing the degree to which students successfully achieve subsets of each SO. During a recent reaccreditation by ETAC/ABET, several engineering technology programs demonstrated successful use of PIs for outcomes assessment and improvement processes.

Rubrics have been developed as tools to provide direct measurement of student performance in each of the SOs. The rubrics were designed to be used primarily in upper-level courses that were well-aligned with the student outcomes. Instructors selected student work representative of a particular SO in their course. The selected work depended on the type of course, and it typically included items such as oral presentations, written lab reports, or problem solutions from exams, quizzes, or homework assignments. It was most effective to complete rubric scores for student work while grading or as soon as possible afterward.

Development of Performance Indicators

Most of the work in this paper builds upon the fundamentals presented at ABET Program Assessment Workshops [1][2]. The general concepts presented here are not new; similar work has been done in multiple programs at other universities [3]. What makes this work unique is that each Performance Indicator (PI) has been written to assess the unique outcomes delivered locally at this institution. Faculty in the program wrote each PI with input from instructors in corresponding courses. There were no specific guidelines for selecting and developing the wording of each PI; they were written over time with knowledge gained from attending ABET workshops and ASEE conferences.

The precise wording of each PI was central to the successful use of the rubrics. Each rubric was limited to one page with three to five concise PIs that captured the vital aspects of the Student Outcome (SO). Proper selection of the verbs in each PI was a very important aspect of defining the expectation of students. The authors developed the PIs and then got feedback from the instructors who used the rubrics. Several examples are presented below.

Consider the SO in computer-aided design: *Generate computer-aided engineering graphics using commercial packages* [4]. The four corresponding PIs are:

PIa. Create two-dimensional drawings

PIb. Construct geometry for components and assemblies

PIc. Dimension and tolerance geometric features

PId. Create solid models and visualize spatial geometry

As another example, consider the SO for communication skills: *Communicate effectively, both orally and in writing*. This has been assessed more effectively by separating the outcomes for oral and written communication [5].

The four PIs for oral communication are:

- PIa. Speak with proper language and effective verbal communication
- PIb. Organize the content in a logical fashion
- PIc. Provide graphical illustrations
- PId. Identify and explain the topic with technical depth

The five PIs for written communication are:

- PIa. Organize the content with appropriate methodology
- PIb. Identify and explain the topic with appropriate technical depth
- PIc. Write with proper language and correct grammar
- PId. Provide graphical illustrations
- PIe. Utilize quality and quantity of external references and resources

The PIs are essentially subsets of each SO, and so they provide more specific detail required to assess student performance. Each PI was evaluated with performance levels on a scale of one to four: 1 - Not acceptable, 2 - Below standards, 3 - Meets standards, 4 - Exemplary. This simplified scale helped to maintain consistency among instructors, and it forced a decision between acceptable (meets standards) and unacceptable (below standards) performance.

Each performance level contained a brief, thorough description of the expectations, clarifying the differences between the levels. The intent was to provide enough detail to distinguish between levels, while giving flexibility for use in evaluating student work in different projects and courses. These descriptions were documented in the rubrics, each of which were intentionally restricted to a single page [4][5]. These references explain the processes used to create and use the rubrics. For the sake of completeness, a sample rubric is included in Appendix A.

Using Performance Indicators to Assess Student Outcomes

Instructors selected student work representative of a particular Student Outcome (SO) in their course. Because instructors were assessing SOs in their own course, it is possible that the instructors were biased in selecting student work. For programs with more faculty resources, it may reduce bias if faculty selected student work in courses taught by others. Ideally, assessment should be done by someone else besides the instructor, but this is not realistic for our program.

The total number of students, as well as the percentage of students, scoring 4, 3, 2, and 1 was used to evaluate aggregate performance of the group. Data from students not passing a course was not included; since they needed to retake the course, assessment data was collected when they passed. An initial benchmark was to have 70% of students scoring 3 or 4, indicating that at least 70% of the students met or exceeded acceptable standards. If less than 70% of students

scored 3 or 4, overall student performance was below the benchmark, indicating potential for improvement in that particular Performance Indicator (PI).

After obtaining baseline data from an initial evaluation, the 70% benchmark may have been changed, if appropriate. As the assessment process evolved, different SOs would then different benchmarks to reflect the level of difficulty in the specific assessment tool. This process was documented in the self-study report with the intention of re-evaluating benchmarks. However, in retrospect, the benchmarks have not yet been changed. Instead, efforts have been concentrated on improving areas below the 70% benchmark.

Appendices B, C, and D provide sample summaries of Performance Indicator (PI) results and interpretations for the examples presented in the previous section. The top of each table lists the SO followed by the PIs designated by letters: PIa, PIb, PIc, etc. Each table lists the course, the semester(s), and the evaluator, who was typically the instructor for the course. The tool used for assessment was the relevant SO rubric. Results are summaries of the rubric scores, assessments of student work using the designated tool.

Results were evaluated against the benchmark. Aggregate student scores above the benchmark were considered strengths to retain. Aggregate scores below the benchmark were evaluated to identify potential areas for improvement. After comparison to benchmarks, evaluators documented ideas for improvement. During a recent ABET accreditation visit, the evaluators found these summary tables to be useful.

Discussion

It was generally easiest and quickest to assess SOs immediately after grading student work, while student performance is fresh in the evaluators mind. However, grades are not used in rating student performance because grades tend to rate students from highest to lowest scores, effectively comparing students to each other. The intent of the rubrics was to rate the performance of each student to the criteria predefined in the rubric. It would have been beneficial to record the number of students being assessed in the tables in Appendices B, C, and D. The sample size may impact interpretation of results. For example, in Appendix D, there were significantly fewer students in the summer than in fall and spring semesters.

Performance levels may be divided into three to six point scales and given labels such as basicproficient-advanced. In this paper, PIs were assessed on a scale of 1-4. Others have effectively assessed PIs on a scale of 1-3, further simplifying the assessment process [6]. Having three levels of performance allows the instructor to easily map the grades to rubrics levels. Proposing a description for each level without any kind of overlapping among the performance levels is a difficult task. Therefore, three level of performance is considered an efficient and a simple approach. The intent of this paper was to focus specifically on the use of PIs to assess SOs, but there were other important processes used for assessment and program improvements. For example, the Industrial Advisory Boards played a routine active role. Their input was particularly helpful for identifying improvements in areas when aggregate student performance was below benchmarks. Student surveys also provided indirect measures in various evaluations of the SOs. However, since most of the assessment was based on newly-developed rubrics, the PIs formed the fundamental basis for the assessment in this accreditation cycle. Further improvements could be identified by having students and advisory board members use the PIs to assess SOs. Their external perspectives would be beneficial since faculty have been so immersed in the process since inception.

Conclusion

It took an initial investment of time to create rubrics with descriptive Performance Indicators (PIs) for each Student Outcome, and some of the PIs were written after initial use in order to provide more effective assessment. However, once the PIs were included in single-page rubrics, they were relatively easy to use by a variety of instructors in different courses. Summarizing results and interpretations in tables provided a concise representation of the assessment which was very successful in maintaining ongoing ABET accreditation.

Bibliography

- 1. ABET Program Assessment Workshop, ABET Annual Conference, Baltimore MD, October 2011.
- 2. ABET Program Assessment Workshop, ASEE Northeast Section Conference, Norwich University, Northfield VT, March 2013.
- 3. Estell JK, Yoder JS, Morrison BB, and Mak FK, "Improving upon Best Practices: FCAR 2.0," Proceedings of the ASEE Annual Conference, San Antonio TX, June 2012.
- 4. Jones DK, "New Rubrics for Assessment of Skills in Mechanical Design," Proceedings of the ASEE Northeast Section Conference, Norwich University, Northfield VT, March 2013.
- 5. Jones DK and Abdallah M, "Assessment of Communication and Teamwork Skills in Engineering Technology Programs," Proceedings of the ASEE Annual Conference, Atlanta GA, June 2013.
- 6. Abdallah M, Jones DK, and Gherasoiu I, "Student Outcomes Assessment and Evaluation for ETAC/ABET," Proceedings of the ASEE Annual Conference, Seattle WA, June 2015.

Appendix A: Sample Rubric

SO4. Generate computer-aided engineering graphics using commercial packages

Date:

Course: Student Evaluated: Project Evaluated:

Performance Indicators

Student					
demonstrated	1 – Not	2 - Below	3 – Meets	4 - Exemplary	Score
the ability to:	acceptable	standards	standards		
a. Create two-	Lack of critical	Incomplete	Create	Professional	
dimensional	errors, missing	description of	accurate	quality, no	
mechanical	features,	geometry,	depictions of	errors, provides	
drawings	numerous errors	ambiguous	parts with	additional detail	
		shapes, broken	minor errors,	to existing	
		lines or gaps	recreate	drawings	
			existing		
			drawings		
b.Construct	Inadequate or	Broken lines,	Parts and	Very clear	
geometry for	incorrect	gaps in	assemblies are	depiction of	
components	representation of	geometry,	clear, well	components	
and	parts or assembly	unclear how	documented	and how they fit	
assemblies		parts fit into	with minor	into assembly	
		assembly	omissions		
c. Dimension	Many missing	Incomplete	Most	Complete	
and tolerance	linear or angular	specification,	tolerances and	details for size	
geometric	dimensions, units	missing linear or	fits are	and shape, all	
features	not specified, lack	angular	specified using	tolerances and	
	of tolerances	dimensions,	standards,	fits are	
		unclear units,	includes most	specified	
		incorrect or	of the details,	correctly	
		toloropoor	minor		
		toleralles	01115510115		
d Create solid	Model is	Unclear model	Model is clear	Complete	
models and	incomplete or	boundaries	with minor	detail, lifelike	
visualize	unclear, unable	orthographic	details:	high quality	
spatial	to depict spatial	projections are	accurate	visualization.	
geometry	geometry	incorrect or	isometric.	flawless multi-	
800		misaligned. not	section. and	view	
		organized	auxiliary views:	projections.	
			clear depiction	visibility of	
				, hidden features	

Evaluator:

SO4. Generate compute	SO4. Generate computer-aided engineering graphics using commercial packages					
Performance Indicators (Performance Indicators (PI)					
Pla. Create two-dime	ensional drawings					
Plb. Construct geom	etry for components	and assemblies				
Plc. Dimension and t	olerance geometric	features				
PId. Create solid mod	dels and visualize sp	atial geometry				
Course	C/MTC 162, Comp	outer Aided Design				
Semesters	Fall 2012, Spring 2	013, Fall 2013, Sprin	ng 2014			
Evaluators	Krecidlo, Sweeney					
Tool	SO4 Rubric					
Student Work	Overall class perfo	rmance (assignmen	ts, mid-term test, ar	nd final exam)		
Results	Fall 2012	Spring 2013	Fall 2013	Spring 2014		
Pla: % scored 3 or 4	100%	100%	100%	100%		
Plb: % scored 3 or 4	100%	100%	100%	100%		
Plc: % scored 3 or 4	94.4%	100%	100%	100%		
Pld: % scored 3 or 4	94.4%	95.2%	93.3%	88.9%		
Benchmark	70% of students so	coring 3 (meets stan	dards) or 4 (exempl	ary)		
Strengths	Very few student	s were below stan	dards. The current	course deliver y,		
	including activ	e learning and real-	world applications,	was very effective		
	at teaching stu	idents.				
	Similar results wer	e obtained for fall 2	013 and spring 201	4.		
Ideas for Improvement	Fall 2012: Devote r	nore time to 3D. Sind	ce students find dim	ensioning difficult,		
	have them critique each other's dimensioning techniques. Help them					
	realize that dimensions must be easily understood by the person reading					
	the drawing.					
	Fall 2013: Previous semester scores for 3D modeling were lower, so spent					
	additional 2 weeks on 3D modeling. This helped, but created issues with					
	scales. Next semester, spend only 1 week on 3D.					
	Spring 2013: Assign out-of-class group projects to encourage students to					
	work together while learning how to coordinate their efforts using CAD.					
	Expand the lessons on scales. Students were required to evaluate the					
	labs completed by other students.					
	Spring 2014: The class size was smaller, and so more topics were covered					
	with new assignments. Plan to incorporate them into next semester's					
	class.					
	Added two drawing interpretation assignments. Although difficult, students					
	drawings					
	drawings.					

Appendix B. Summary of PI Results and Interpretations for CAD.

Appendix C	C. Summary of Pl	Results and	Interpretations	for	Oral	Communication.
------------	------------------	-------------	-----------------	-----	------	----------------

SO6a. Oral communica	SO6a. Oral communication					
Performance Indicat	ors (PI)					
Pla. Speak with p	proper language and effect	ive verbal communication				
Plb. Organize the	e content in a logical fashio	n				
PIc. Provide grap	phical illustrations					
PId. Identify and	explain the topic with tech	nnical depth				
Course	MTC 420, Capstone Expe	rience				
Semesters	Spring 2012, summer 201	12, fall 2012				
Evaluator	Jones					
Tool	SO6a Rubric					
Student Work	Final project presentation	n and report				
Results	Spring 2012	Summer 2012	Fall 2012			
Pla: % scored 3 or 4	100%	60%	88.8%			
Plb: % scored 3 or 4	100%	60%	66.7%			
PIc: % scored 3 or 4	100%	100%	44.4%			
PId: % scored 3 or 4	100% 60% 22.2%					
Benchmark	70% of students scoring 3 (meets standards) or 4 (exemplary)					
Strengths	In spring 2012, all students exceeded the benchmark.					
Ideas for Improvement	Observations: In summer 2012, only 5 students passed the course, and 2 of					
	the 5 students earned a grade of C. Scores in summer and spring					
	declined substantially.					
	Poor oral communication was a reflection of overall performance on the					
	projects. Improved project work may lead to better presentations. This					
	may be accomplished by more frequent and more formal progress					
	reports, including oral presentations throughout the semester.					
	The end of fall semester t	tends to be busier than the	e end of spring semester.			
	In the future, MTC 42	0 will not be offered in the	e fall. See if this improves			
	performance.					

Appendix E). Summary	of PI Resul	ts and Interp	retations for	Written (Communication.
FF · · ·			··· ·· ·· ·· ··			

SO6b. Written communication					
Performance Indicate	ors (PI)				
Pla. Organize the	content with appropriate	methodology			
Plb. Identify and	explain the topic with app	ropriate technical depth			
Plc. Write with p	roper language and correc	t grammar			
PId. Provide grap	hical illustrations				
Ple. Utilize qualit	y and quantity of external	references and resources			
Course	MTC 420, Capstone Expe	rience			
Semesters	Spring 2012, summer 202	12, fall 2012			
Evaluator	Jones				
Tool	SO6b Rubric				
Student Work	Final project presentation	n and report			
Results	Spring 2012 Summer 2012 Fall 2012				
Pla: % scored 3 or 4	100% 60% 0%				
PIb: % scored 3 or 4	100% 100% 22.2%				
PIc: % scored 3 or 4	100% 80% 77.8%				
PId: % scored 3 or 4	100% 80% 55.6%				
Ple: % scored 3 or 4	77.8% 40% 22.2%				
Benchmark	70% of students scoring 3 (meets standards) or 4 (exemplary)				
Strengths	In spring 2012, all students exceeded the benchmark.				
Ideas for Improvement	The above comments for SO6a apply here.				
	Check the performance on the other SOs for capstone projects to see if				
	there's a correlation. Poor communication may be a reflection of poor				
	effort on technical work of the capstone projects.				