
Paper ID #16783

Teaching Software Requirements Inspections to Software Engineering Stu-
dents through Practical Training and Reflection

Mr. Anurag Goswami, North Dakota State University

Anurag Goswami is a Ph. D. Candidate in the department of Computer Science at North Dakota State
University. His main research interests include empirical software engineering, human factors in software
engineering, and software quality.

Dr. Gursimran Singh Walia, North Dakota State University

Gursimran S. Walia is an associate professor of Computer Science at North Dakota State University. His
main research interests include empirical software engineering, software engineering education, human
factors in software engineering, and software quality. He is a member of the IEEE Computer Society.
Contact him at gursimran.walia@ndsu.edu

c©American Society for Engineering Education, 2016

Teaching Software Requirements Inspections to Software Engineering
Students through Practical Training and Reflection

1. Introduction
There is a growing demand for software developers that is expected to grow even more in the
coming years1, 2. It is important to ensure that students graduate are prepared for their future
careers in software industry. However, multiple researchers have reported that software
engineering (SE) graduates lack necessary skills or abilities to find employment in software
industry3-5. For example, Simmons et al., reported that students are not familiar with software
development processes when beginning their jobs in industry and that curricula should put more
emphasis on requirement gathering and elicitation techniques6. Additionally, an extensive
systematic literature review empirically evaluated knowledge deficiency of graduating CS/SE
students and revealed “Software Engineering Practices” (e.g., requirements, life cycle, and
quality assurance) as a major category7.
In software industries, requirements development is one of the earliest phases of Software
Development Life Cycle (SDLC). It is a critical phase where software requirements are gathered
from different stakeholders (both technical and non-technical), and written using Natural
Language (NL) in a formal document known as Software Requirements Specification (SRS)8.
Due to the inherent nature of NL (i.e. ambiguity, imprecision, and vagueness)9, faults are
committed during the development of SRS. Therefore, industries are focused of detecting and
fixing faults at early phases of SDLC to avoid any rework effort and costs to fix faults at later
stages of development10. To do so, software inspections11, are used wherein skilled individuals
review a software artifact to find and report faults.
Software industries (e.g., Microsoft) routinely provides inspection training to educate their
developers about the process, importance, and benefits of inspections. Due to the importance of
inspections in software industry (i.e. to save rework cost, effort, and time), academia should also
prioritize training students with early quality assurance skills (i.e. inspections) during SDLC.
Therefore, this research reports the results from a practical training experience to help students
improve their understanding of inspection which in turn, would improve their inspection
performance. This paper presents results of an academic study on the effect of reflection
(training) technique on thirteen graduate and twenty-six undergraduate students on their
inspection performance. The participants individually inspected two different requirement
documents using fault-checklist method and recorded faults pre and post reflection. We analyzed
the impact of reflection by calculating individual pre and post reflection inspection performance
and by taking class average for undergraduate and graduate students. The results show that post
reflection, inspection understanding and performance increases for both undergraduate and
graduate students.
2. Background
This section describes the fault-checklist based inspection technique and its steps along with
various other fault detection techniques that are used to detect and report faults.
Inspection, as described by Fagan12, is a systematic technique to examine a software artifact in
detail. Evidence showed the benefits of inspection on artifacts developed at different phases of

software development (e.g., requirement, design, code, interfaces)13. Inspections takes place in
different steps which involves: a) Selecting skilled individuals/inspectors, b) Individual review to
find faults, c) Team meeting to consolidate faults, d) Follow-up and repair.
There are many variations on Fagan’s original concepts14, 15 that emphasize different parts of the
process (e.g. placing more emphasis on the individual preparation phase and less emphasis
on the team meeting phase). Regardless of whether there is a team meeting, the effectiveness of
the individuals significantly impacts the overall effectiveness of the inspection16. During the use
of inspection technique, inspectors are given a set of checklists and printed form which guides
them on how to perform inspection17. Based on the knowledge from checklist regarding the type
of faults (example in Fig. 1), inspectors read through the software artifact (here requirements
document) to detect and report faults in fault form.
3. Experiment Design
The goal of this study was to investigate whether experiential learning of reviewing software
artifact aided by an individual’s reflection on their inspection results can lead to an improved
understanding of requirements inspection process and an improvement in their abilities to find
real software faults during the inspection. To accomplish this goal, a controlled empirical study
involved undergraduate and graduate students enrolled in SE courses at North Dakota State
University (NDSU). During the course, the subjects performed inspections of two industrial
strength software requirement artifacts that were seeded with real software defects. For first
inspection, students were trained on fault checklist based requirements inspection. The students
then performed an individual inspection of requirements document and reported the faults found
during the inspection. Next, the subjects were provided an actual list of seeded faults and were
asked to read through the fault descriptions and reflect upon the faults found (reported) and
missed during the inspection. For second inspection cycle, each participant performed an
individual inspection using the same fault checklist on a different requirements document and
reported faults. The fault data (e.g., reported and missed faults, true faults and false positives, fault
descriptions) were collected and analyzed pre and post reflection to understand the nature of
improvement in their inspection abilities and their understanding of the inspection process. The

Figure 1. Fault types in the fault checklist form

remainder of the section provides details of the study goals and metrics, requirement artifacts,
students, and study procedure in the following sub sections.
Research Goal: The major goal of this study was to investigate whether students’ understanding of
requirement faults and their inspection performance improve after hands-on practice and reflection.
Our research questions are postulated in the GQ format18 (Fig. 2) and briefly described below.
RQ1 investigates whether the students are able to detect a larger number of faults post reflection
(i.e., during the second inspection)? RQ2 investigates whether students’ find faults faster (i.e.,
increase in fault rate) during the second inspection? Finally, RQ3 evaluates the quality of the
description of the faults reported by the students’ pre and post reflection? RQ4 investigates the
improvement in terms of the percentage of true faults vs. fault positives post reflection?
Participating Subjects: Twenty six undergraduate students enrolled in System Analysis and
Design course along with thirteen graduate students enrolled in Requirements Engineering course
at NDSU participated in this study. System Analysis and Design course covers the requirements
and design development and the required skills for planning, analysis, and design of software
system. Similarly, Requirements Engineering course focuses especially on requirement
development tasks and technique along with requirement inspection technique. Both the courses
required the students to learn about software inspections and their impact on the software quality
improvement. Students in both the courses had an average of two years of software development
experience in past (i.e. classroom projects, assignments, and industry).
Artifact: Two externally developed industrial strength requirement documents (Table I), Loan
Arranger System (LAS) and Parking Garage Control System (PGCS), were inspected by each
participant during two inspection cycles. Both the documents were written in plain English,
developed by Microsoft developers, and have been used in several inspection studies (for

Figure 2. Research questions in Goal-Question (GQ) format

Table I. Artifacts used for inspection
Inspection

Cycle Artifact name Description Number of
seeded faults

Number of
inspectors

1 – Pre-
reflection

Loan Arranger
System (LAS)

Online system for loan bundling
based on user characteristics 30 26 (Undergrad)

13 (Grad)
2- Post-

reflection
Parking Garage
Control System

(PGCS)
Provides automated entry and exit

of vehicles based on card/ticket 34
26 (Undergrad)

13 (Grad)

comparing different inspection techniques) as well as by Microsoft to train their employees on the
inspection process at Microsoft 19, 20. In terms of the length of documents, LAS was 11 pages long
seeded with 30 realistic faults whereas PGCS was 14 pages long seeded with 34 faults. The
seeding of the faults was done by Microsoft researchers to represent realistic faults committed by
Microsoft developers. Both the documents were selected because both came from the same
organization (Microsoft) and were similar in size and fault density (i.e. 2.72 and 2.42 faults per
page for LAS and PGCS respectively).
Experiment Procedure: The experiment steps are described below and shown in Fig.3:
Training 1 - Training on inspecting SRS for faults: During this step, students in both classes were
trained by the same instructor during an in-class session of 70 minutes on how to use fault-
checklist technique to detect and report different types of faults in SRS in a fault list. During the
training, students were provided a small subset of requirements for a Gas Station Control System
(GSCS) and were asked to find faults which were then discussed in class to prepare them for the
first inspection cycle.
Step 1 – First inspection: Inspecting LAS SRS for faults: Next, the subjects individually inspected
the LAS document (that was handed to each participant) using the fault checklist technique and
reported faults along with timestamp when each fault was found. In addition, the fault reporting
form required the subjects to classify the faults identified during the inspection into one of the
following fault types: Omission (O), Ambiguous Information (A), Inconsistent Information (II),
Incorrect Fact (IF), Extraneous (E), and Miscellaneous (M). At the end of the inspections, thrity
nine fault lists (from 26 undergraduate and 13 graduate students) were collected for analysis.
Step 2 – Reflection of LAS inspection results: One of the researcher evaluated the faults reported
by each participant in both the courses and provided them feedback about true faults and false
positives. Students were also informed of the faults that lacked a clear and precise description of
why (and where) it represented a problem in the requirements. Next, post inspection reflection
document (sample in Table II.) was performed in-class wherein, participants were handed list of

 Figure 3. Experiment Procedure

complete 30 faults in LAS document. Students were asked to read through the actual fault
descriptions and to comment on whether they agree (and explain if they disagree) on the fault?
Whether they were able to find that fault? and if they were able to report them? Reading through
the first row of Table II, each column is described as follows: Defect#: represents the defect ID in seeded fault list. Req.#: indicates the requirement ID(s) where fault is present. Type: denotes students about fault category to which a fault belongs. For example, A in

the first row represents an ambiguity (A) in the requirements. Description: explains the fault in enough detail for readers to understand. Is it a defect?: this column required students to agree or disagree whether the fault
described represents an actual requirement problem. Did you see this?: students reported whether they were able to see this fault (in the form
of ‘yes’ or ‘no’) during the inspection. Did you report this?: students reported (in the form of ‘yes’ or ‘no’) whether they
reported this fault during inspection of LAS document. Explain: this column needs a brief description by the students about their response in the
three columns above.

The goal of the reflection document was to enable participants to gain insights in the inspection
process and to help them reflect on the reasons behind the faults they missed or they saw but not
reported in their fault list. The students were also told to read through the fault descriptions to be
able to improve their fault report quality.
Training 2 – Reflection discussion and recap for re-inspection: The students were asked to
discuss any doubts in the reflection of faults with the trainer and were given a quick recap of
fault-checklist based inspection technique.
Step 3 – Inspecting PGCS requirements: Next, each participant received the second PGCS
document along with the fault form (that they had used during the first inspection) and were asked
to perform an individual inspection to identify and record faults based on the feedback from
reflection. Like the first inspection, participants were required to mention start and end time of
inspection along with the timestamp when they found each fault and to classify the faults into
fault types. At the end of the inspections, thirty nine new fault lists (one per student) were
collected for analysis.
4. Data Collection
This section describes the raw data collected during the study along with the data that was
computed from raw data to calculate inspection performance (shown in Fig. 4) for each

Table II. Sample of reflection form for LAS document

participant for both requirement documents (i.e. LAS and PGCS). The raw data variables are
described below: M1: Total faults (Tsf): denotes the number of total faults seeded in the requirements

document. In this experiment, LAS contained 30 and PGCS had 34 seeded faults. M2: Total number of faults reported (Tf): denotes the total number of faults (i.e. count of
all faults reported) reported by the subjects in their fault reporting form. This is the raw
count prior to any evaluation of the correctness of the faults reported by the subjects. This
was done to compare the true and false positive counts when comparing pre and post
reflection results. M3: Inspection time (It) - is the measure of total time (in minutes) taken by each
participant to perform the inspection of an SRS document. M3 was calculated by
comparing the starting and finish times for each participant and for each inspection cycle.

Below are the calculated variables from raw inspection data described above: M4: Total number of false positives (Tfp): one of the researcher’s read through fault list of
each participant to identify the number of false positives. M5: Inspection effectiveness (Te) - after removing fault positives (Tfp) from the total fault
count (Tf), the number of actual faults for each participant was calculated. This was
computed pre and post reflection to evaluate the improvement in their inspection accuracy
(discussed next). Te = Tf - Tfp M6: Inspection Accuracy (Ia) – is measured as the percentage of inspection effectiveness
(Te) in terms of the total fault count (Tsf). Inspection accuracy was computed pre and post
reflection as; Ia = (Te/Tsf)*100 M7: Inspection efficiency (Ie) - measured as the total number of faults (Te) found per hour.
This was done to evaluate if the subjects were able to find faults faster post reflection and
computed as: Ie = (Te/It)*60 M8: Fault description score (FDs) and M9: Fault description quality (Qfd) -– for each
inspector, it is the summation of binary score of 0 (not well described) or 1 (well
described) for a fault description of each fault out of total faults detected. The idea behind
is that, the author of the document should be able to understand and correct the faults
without discussing with the inspector(s). Using the same criterion, one of the researcher
read through the fault descriptions to understand clearly where fault occurred in SRS and
why it represented a problem without talking to the inspectors. If a fault was well

Figure 4. Research questions along with various metrics used

described, then it was marked as 1 otherwise 0. For example, if out of total 20 faults, only
10 faults were described in well understood form (i.e. with a score of 1 for 10 faults and a
score of 0 for other 10); then the fault description score will be 10 for that particular
inspector. This was done to calculate M9 of each fault list pre and post reflection.
For each inspector and each inspection cycle, M9 was measured as the percentage of faults
that are described in a well understood form out of total inspection effectiveness (Te). Qfd = (FDs/Te)*100
For example, out of total 20 faults (i.e Te) fault description score is 10 (FDs) then the fault
description quality will be: (10/20)*100 = 50%.

We compared the average score of inspection performance from metrics (described above) during
the first inspection (i.e. pre reflection) vs. during the second inspection (i.e., post reflection) for
participants in both the courses to evaluate the improvement in the students’ inspection
performance. Table III represents a sample pre and post inspection data for one student. The
columns are arranged (from left to right) in the same fashion as metrics are described above.
Based on the data from one student, during the second inspection, he/she reported fewer total
faults (10 vs. 17), spent less time to find those faults (i.e., 25 minutes vs. 70 minutes), yet found
more true faults (4 vs. 2), and reported less fault positives (6 vs. 15). Inspection effectiveness,
accuracy and efficiency and fault descriptions improved visibly after training and reflection.
Section 5 analyzes whether similar patterns were seen across all the subjects.
5. Analysis and Results
This section reports the improvement in the understanding of requirements inspections and fault
detection abilities of the students from first to second inspection cycle. The results are organized
around the four research questions (see Fig. 4):

1) RQ1: Does inspection effectiveness of inspectors improves after using reflection
technique?

To provide an overview of the effectiveness results, students were able to find a larger number of
true faults (Te) during the second inspection (PGCS) as compared to the first inspection (LAS
document). Fig. 5 compares the average inspection effectiveness (solid fill for graduate students
and pattern fill for undergraduate students) pre (using LAS document) and post (PGCS document)
reflection. The results show that, graduate students found an average of 4.85 faults during the
second inspection (vs. 4.23 faults during the first inspection) and undergraduate students found an
average of 5.04 faults (vs. 4.35 faults) during the second inspection. These results show that,
effectiveness (the number of actual faults detected) during inspections increased for both graduate
and undergraduate students. This was consistent across all the subjects. Additionally, the increase

Table III. Sample data of one inspector before and after reflection

was larger for the undergraduate students which could have been due to the size effect (i.e., larger
number of students). The results from paired samples t-test (p=0.49 for graduates and p=0.16 for
undergraduate students) showed that the effectiveness increase was not statistically significant.
Therefore, based on this result, while the experiential learning (and reflection) helped students
detect a larger number of faults, the increase was not significant.

2) RQ2: Does the inspection efficiency is increased after reflection?
This research question compares the rate at which students found faults (i.e. inspection efficiency
– Ie) during the first and second inspection. Fig. 6 shows the average inspection efficiency of
graduate (solid fill) and undergraduate students (pattern fill) pre and post reflection. Results from
Fig. 6 shows that post reflection (i.e. during the second inspection), students found faults faster as
compared to the first inspection. The results from a paired samples t-test showed that inspection
efficiency significantly improved for both graduate (p=0.004) and undergraduate (p<0.001)
students post reflection. This is a significant results and signify that, the students’ learning curve

Figure 5. Comparison of inspection effectiveness before and after reflection

Figure 6. Comparison of inspection efficiency among graduate and undergraduate students

before and after reflection

was significantly enhanced after having performed an inspection and reflecting upon their
mistakes and the fault they should have found.

3) RQ3: Does fault description quality improves after reflection?
This research question investigates whether inspectors described faults more clearly in fault
reporting form during inspection after reading through the clear descriptions in the reflection
document. Table IV is an example of fault description of one of the inspectors before and after
reflection process. As seen in Table IV, the description are structured in more understandable
manner while still being concise post inspection. To quantify the description quality, we
compared the average Fault description score (see Section 4) for both courses pre and post
reflection (Fig. 7).

Fig. 7 compares the fault description quality among graduate (solid fill) and undergraduate
students (pattern fill) as requirements inspectors before and after reflection. The results in Fig. 7
shows that fault description quality of both graduate and undergraduate students increased after
they went through reflection technique. To evaluate the statistical significance, we performed
paired samples t-test which showed that reflection had a strong and significant impact on the fault
description quality for both graduate (p=0.003) and undergraduate (p=0.004) students. Therefore,
the experiential learning help students report more clear and understandable fault descriptions.

4) RQ4: Does inspection accuracy of inspectors improves post reflection?
As mentioned earlier (M6 in Section 4), inspection accuracy (calculated as the percentage
effectiveness out of total number of seeded faults) was compared during the two inspection
cycles. The percentage was computed to normalize the comparison between two documents that
had a different number of seeded faults. A comparison of the inspection accuracy is shown in Fig.
8. The results show that, students reported higher inspection accuracy post reflection as compared

Table IV. Example of fault description quality before and after reflection technique

Figure. 7 Comparison of fault description quality score among graduate and undergraduate

students before and after reflection

to the first inspection. Yet again, the increase was higher for the undergraduates as compared to
the graduate students.
To gain more insights into the accuracy results, we calculated the percentage of inspection false
positive data from pre and post reflection. It was the ratio of false positives (Tfp) to the number
faults seeded (Tsf). It was found that, students reported a large number of false positives during the
second inspection which impacted their results. This could have been biased by a couple of
reasons. First, the students were told that they would be graded on their performance during the
second inspection (since they have already done it once and have had a chance to review their
mistakes). This might have negatively motivated them to report as many faults as possible to
show that their effort during the inspection exercise. Second, the students still tend to think a lot in
terms of the missing design details (which is outside the scope of functional requirements) and
that needs to be talked more in class for them to be able to differentiate between true faults and
false positives.
6. Discussion of Results
The major focus of this study was to investigate whether experiential learning aided by the
reflection technique can lead to a better understanding of requirements inspection which in turn,
leads to an improved inspection performance. Based on the results (section 5), it is evident that
reflection technique helped students understand the inspection process better which leads to an
improved inspection outcome (i.e. effectiveness, efficiency, and description quality).
Inspection accuracy was almost equal for both graduate and undergraduate students which might
be due to the fact that students learn more on how to design and code and not enough time is spent
on helping students to read or write functional requirements. This makes it difficult for students to
differentiate between missing information or ambiguity in the requirements description (a type of
requirements fault) and missing design information (often outside the scope of requirements)
during the review of information contained in the SRS. This was a big reason that the students
still report (even post reflection) a larger frequency of false positive faults. Interestingly,
undergraduate students performed better than the graduate students in terms of their inspection

Figure 8. Comparison of inspection accuracy before and after reflection

performance both before and after reflection. This is in accordance with the studies21, 22 at
Microsoft, wherein level of the technical education (Bachelors vs. Masters vs. Doctorate) did not
had a significant impact on the inspection performance of professional developers. Therefore,
unlike other aspects of software development, inspections may rely more on the inherent abilities
of the students to comprehend and process natural language information contained in
requirements document. We plan to evaluate this aspect in future studies in hopes of further
improving the performance of students learning software inspections in classroom settings.
7. Conclusion and Future Work
Based on the results from our study, reflection technique do help students in better understanding
of fault-checklist based requirements inspection technique and can lead to higher inspection
output. Results also exhibits that, reflection technique can be used by academicians for reducing
skill gap between academia and industry by helping students acquire the required inspection skills
in experiential form. While this paper reports the use of experiential learning in the context of
teaching requirement inspections to the students, it can be used for training other needed software
skills (e.g., writing quality code, developing requirements/design document, etc). These results
motivate us for further investigation. Our immediate future work would include replicating the
study for non-technical inspectors for generalizing our results. Another future work is how
students’ cognitive ability to comprehend information could have an impact on software
development task(s).

 References
1 Samson, T.: ‘Demand for software engineers keeps climbing -- and so do the salaries’, InfoWorld,2015
2 Sayed, D.: ‘Technology pay rates rising faster than the general labor market’, Applied HR Strategies (AHRS)

Client Alert,2015
3 Begel, A., and Simon, B.: ‘Struggles of new college graduates in their first software development job’. Proc.

ACM SIGCSE Bulletin2008
4 Haddad, H.: ‘Post-graduate assessment of CS students: experience and position paper’, Journal of Computing

Sciences in Colleges, 2002, 18, (2), pp. 189-197
5 Radermacher, A., Walia, G., and Knudson, D.: ‘Missed Expectations: Where CS Students Fall Short in the

Software Industry’, CrossTalk Mag.-J. Def. Softw. Eng., no. Jan/Feb, 2015, pp. 4-8
6 Simmons, C.B., and Simmons, L.L.: ‘Gaps in the computer science curriculum: an exploratory study of industry

professionals’, Journal of Computing Sciences in Colleges, 2010, 25, (5), pp. 60-65
7 Radermacher, A., and Walia, G.: ‘Gaps between industry expectations and the abilities of graduates’.

Proceeding of the 44th ACM technical symposium on Computer science education2013
8 Goswami, A., and Walia, G.: ‘An empirical study of the effect of learning styles on the faults found during the

software requirements inspection’. Proc. Software Reliability Engineering (ISSRE), 2013 IEEE 24th
International Symposium on, Pasadena, CA, 4-7 Nov. 2013

9 Berry, D.M.: ‘Ambiguity in natural language requirements documents’: ‘Innovations for Requirement Analysis.
From Stakeholders’ Needs to Formal Designs’ (Springer, 2008), pp. 1-7

10 Perry, W.E.: ‘Effective Methods for Software Testing: Includes Complete Guidelines, Checklists, and
Templates’ (John Wiley & Sons, 2006)

11 Ackerman, A.F., Buchwald, L.S., and Lewski, F.H.: ‘Software inspections: an effective verification process’,
Software, IEEE, 1989, 6, (3), pp. 31-36

12 Fagan, M.E.: ‘Advances in software inspections’: ‘Pioneers and Their Contributions to Software Engineering’
(Springer, 2001), pp. 335-360

13 Fagan, M.E.: ‘Design and code inspections to reduce errors in program development’: ‘Pioneers and Their
Contributions to Software Engineering’ (Springer, 2001), pp. 301-334

14 Martin, J., and Tsai, W.T.: ‘N-fold inspection: A requirements analysis technique’, Communications of the
ACM, 1990, 33, (2), pp. 225-232

15 Parnas, D.L., and Weiss, D.M.: ‘Active design reviews: principles and practices’, Journal of Systems and
Software, 1987, 7, (4), pp. 259-265

16 Porter, A., Siy, H., Mockus, A., and Votta, L.: ‘Understanding the sources of variation in software inspections’,
ACM Transactions on Software Engineering and Methodology (TOSEM), 1998, 7, (1), pp. 41-79

17 Parnas, D.L., and Lawford, M.: ‘The role of inspection in software quality assurance’, Software Engineering,
IEEE Transactions on, 2003, 29, (8), pp. 674-676

18 Van Solingen, R., Basili, V., Caldiera, G., and Rombach, H.D.: ‘Goal question metric (gqm) approach’,
Encyclopedia of Software Engineering, 2002

19 Shull, F., Carver, J., and Travassos, G.H.: ‘An empirical methodology for introducing software processes’,
ACM SIGSOFT Software Engineering Notes, 2001, 26, (5), pp. 288-296

20 Carver, J., Shull, F., and Basili, V.: ‘Observational studies to accelerate process experience in classroom
studies: an evaluation’. Proc. Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 2003
International Symposium on2003

21 Carver, J.: ‘The impact of background and experience on software inspections’, Empirical Software
Engineering, 2004, 9, (3), pp. 259-262

22 Carver, J.C., Nagappan, N., and Page, A.: ‘The impact of educational background on the effectiveness of
requirements inspections: An empirical study’, Software Engineering, IEEE Transactions on, 2008, 34, (6), pp.
800-812

