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Application of Micro Computer in optimal 

Linearization of Nonlinear Systems 

 
        

Abstract 

 

This paper presents a computer-assisted method to generate accurate linear models of nonlinear 

systems with reduced biasing errors. The technique, which is based on finite difference methods, 

approximates partial derivatives of a Taylor series expansion of nonlinear state equations about a 

nominal operating point or trajectories. The matrices of the linear state-space representation of the 

nonlinear system can be determined using personal-computer software. It can be shown that 

positive and negative perturbations in the system inputs can result in more accurate linear model. 

The advantages of this approach are illustrated and discussed. The proposed techniques will be 

useful in motivating students to pursue a graduate degree in institutions where the limited budget 

will not allow purchasing costly modeling/simulation packages and software. 

Introduction 

 

Most standard control design techniques have been developed for linear systems. More 

importantly, any derived technique for a nonlinear system may not be applicable to other nonlinear 

systems due to their complicated dynamics. Thus, a good linear representation of these physical 

systems must be derived 
1
.  In practice, it is found that some behavior of nonlinear systems only 

occurs if they are driven into certain operation regions. For these systems, the linear model may 

give relatively accurate results over a wide range of operating conditions. However, there are 

numerous physical systems which have strong nonlinear characteristic. For these systems, a 

linearized model is valid only for a limited range of operation, and often only at the operating point 

at which the linearization is done. A particular method used to linearize a nonlinear system about 

an operating point is the “offset derivative”. This technique makes use of the method of finite 

difference to approximate partial derivatives of a Taylor series expansion of the nonlinear state 

equations about a nominal operating point or trajectories. The difficulty encountered in using the 

method of finite difference is that small numerical errors can appear in partial-derivative 

approximations. These errors can cause large enough errors in the Jacobian matrices‟ elements that 

the eigenvalues of the system can be changed. Since, the trajectories have different slops in 

different directions about the operating points; these errors can be reduced or eliminated through 

positive and negative perturbation about the operating point. Once the full state linear model of the 

system has been determined, it may be possible to reduce the order of the linear models while still 

retaining the important dynamic characteristics of the system. This is desirable for two reasons. 

First, a lower order system is easier to handle mathematically; second, controls developed using 

optimal control techniques require that all specified states of the system be used to derive the 

optimal control. However, some of these states are not measurable and therefore cannot be used for 

control purposes. Furthermore, if all the states of a large-order system were measurable, the control 

derived would be too complex to implement. Once the linear models are generated, they should be 

evaluated as to how well the approximate the dynamics of the nonlinear system about the operating 

points for which they were generated. As an example this evaluation is made for the third order 



Bernnan and Leake Jet Model 
2
 by comparing the full-state linear model and nonlinear engine 

model. 

 

Linearization Mathematics 

Represent a nonlinear system by the following vector-matrix state equations: 

dX(t)/dt =   (t)    f[X(t), U(t),t]              (1) 

Y(t)   g[X(t),U(t),t] 

Where X(t) represents the nx1 state vector, U(t) the px1 input vector, f[X(t),U(t),t] denotes an nx1 

function, g[X(t),U(t),t]  represents 1xk function, and Y(t) is 1xK vector. In general f and g are a 

function of state vector and the input vector. The state variables X(t) cannot change 

instantaneously with time. While output variables Y(t) may. It should be clear that no single linear 

model can accurately represent the system because of generally wide operating range and 

nonlinear characteristics. Thus, linear model must be derived at various conditions particularly, if 

the Jacobian, J, is experiencing a large variation in time and space throughout the operating 

envelope 
3
. 

Let the nominal operating trajectory and the output be Xo, Yo respectively, which correspond to the 

nominal input Uo and some fixed initial conditions. Expanding the nonlinear state equation (1) into 

a Taylor series about X(t) = Xo yields 
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If all the higher order terms (HOT) are negligible then, equation (2) can be written as  
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At an operating point the system is assumed to be time invariant: thus, the above equation may be 

written in vector-matrix form 

                                                                       (3) 

The J and G matrices are Jacobian matrices defined by 
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Or in more compact form: 
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Thus, the nonlinear system has been linearized at a nominal operating point. The output equation 

of (1) may be linearized using the preceding technique by assuming small perturbations about the 

operating point, i.e. 

                                               

With     i= 1, 2,……, k 

The output Taylor series expansion is: 
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Since          (     )               



Now, if all the higher order terms (HOT) are small compared with the order terms then, equation 

(5) can be written as 
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At an operating point the system is assumed to be time invariant: thus, the above equation may be 

written in vector-matrix form. 

                                   (6) 

The C and D matrices are input Jacobian matrices defined by 
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Or in more compact form 
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 The approximating of matrix elements of the linearized model, equations (4) and (7) is 

accomplished by a finite difference method using PC-MATLAB. The program only requires the 

desired operating point, inputs, perturbation size, and the nonlinear model state equations. Then, 

the individual states are varied one at a time while the others are held constant. This is done to 

derive the J and C matrices. To generate G and D the inputs are varied one at a time while holding 

the others constant including the states. The biasing errors in the finite-difference calculations of J 

may be reduced by perturbing the state in the positive direction from the operating point to 

generate J+ and C+. The, the states are perturbing in the negative direction from the operating 

point to derive J- and C- matrices. Finally, the J+ and J- matrices and C+ and C- matrices are 

averaged to obtained the J and C matrices. The perturbation size must be within the linear region 

of the operating point, and it must be larger than the iteration tolerance for implicit calculations. 



The larger perturbation size ensures easier calculations of the partial derivative as long as it does 

not exceed the linearity limit about the operating point. 

 Another important potential source of error due the linearization process is inability of the linear 

model to converge to the expected steady-state value. Thus, some modification of the G matrix is 

necessary to eliminate this steady-state error. Note that at steady-state       which results in 

            

then            -1                                                 (8) 

  

   is calculated by making small perturbations in the inputs. Then, the term (  -1   ) can be 

evaluated by       , since J is known, the modified Gm is 

  Gm      (  -1   )                   (9) 

For the matrix D, inserting equation (8) in equation (6) results in  

ΔY -C(  -1    ) = D m                (10) 

Where the modified Dm is calculated by making small changes in inputs while holding all the 

states constant such that equation (10) is satisfied. Once the matrices are properly determined, the 

linearity of these matrices must first be confirmed. This is normally done by generating a J 1matrix 

with one perturbation size and then a J 2 matrix with different perturbation size. If the eigenvalues 

of both J 1 and J 2  are within the frequency range of interest, then both J 1 and J 2  are reasonably 

valid. This indicates that both perturbation sizes are within the linear region about the operating 

point. Second, the linear models should be evaluated to see how well they approximate the 

dynamics of the nonlinear system about the operating point from which they are generated. This is 

accomplished by comparing the simulation results of both linear and nonlinear models using a very 

accurate numerical integration algorithm. For a given input the linear model should maintain the 

dynamics of the nonlinear model, and the difference between the steady-state errors of both model 

responses should be a small as possible. This was done for a nonlinear system given in the next 

section. 

 Nonlinear Jet Engine Model 

 As an example of the linear-model generation procedure, the nonlinear third-order Bernnan and 

Leaks engine model described by the following nonlinear differential equation
2
 is considered. 

   = 0.64212 + 0.35788N
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Where    is Combustor Pressure, Pρ  is Combustor density, N is Rotor Speed,   
  is Compressor 

Discharge Mass Flow,    is Compressor discharge Temperature,    
  is fuel input rate. The system 

is normalized about    
      with initial conditions: 

         ,   Pρ =1.77504, N =0.54589 

States: 

     ,             =    

And input: 

U =    
  

The resulting linear model from the ± 0.3 percent perturbation with            as the operating 

point is: 
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Therefore: 
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The eigenvalues resulting from using different perturbation sizes is tabulated in table (1). Also, 

figure (1) shows the simulation of this linear model compared to the actual nonlinear simulation. 

Adams-Bashforth two step (AB-2) integration method 
4
 (                 

      
  ) with 

stepsize of h=0.002 sec is used to simulate the linear model and nonlinear model. Also,  

 

 



Table (1) Eigenvalues variation of linearized Brennan and Leake engine 

Eigenvalues Perturbation 

0.3% of operating point 0.3% of operating point 

± 0.3 +0.3 -0.3 ± 0.5 +0.5 -0.5 

   -81.24 -82.03 -80.34 -81.24 -82.17 -80.26 

   -32.33 -31.19 -33.51 -32.33 -31.17 -33.33 

   -3.15 -3.14 -3.17 -3.15 -3.14 -3.16 

 

 

 

 

Figure (1) Simulation of linear and nonlinear engine model using AB-2 with h=0.002 sec. 

Conclusion 

It is critical that computer usage be integrated into problems which involve the application of basic 

concepts in engineering. A method to derive and validate linear models from a nonlinear digital 

simulation discussed in this paper can be viewed as an appropriate use of the computer. To derive 

a good linear model at an operating point, accurate partial derivatives must be obtained. When 

using the finite-difference method to approximate partial derivatives, small errors in the 

calculations can occur. These errors are bias errors, which must be minimized or eliminated if 

possible. This can be accomplished by perturbing the state in both positive and negative directions 

about an operating point and averaging the resulting partials. For simulations in which differential 



equations are solved explicitly, this method results in repeatability of system eigenvalues for 

different perturbation sizes about the operating point. For simulations in which the differential 

equations are solved implicitly, exact repeatability of system eigenvalues for different perturbation 

sizes is difficult to obtain because of the iterative nature of the solutions. Thus, for a given 

perturbation size the linear model predicts the average steady-state value that the nonlinear 

simulation would give for the same perturbation size in the plus and minus direction about the 

operating point. 

The accuracy of the matrices was checked by showing that linearity holds for different 

perturbation sizes. Once the accuracy of the matrices was assured, the ability of the linear models 

to approximate the nonlinear system at an operating point was investigated. This was done by 

comparing a similar transient run with the nonlinear and linear simulations. 

Finally, the methods used in this paper to generate linear models from a nonlinear digital 

simulation are general. The application presented is for the third order Bernnan and Leake engine 

model, but the method is not restricted to that simulation. The problem of bias errors in finite-

difference approximations of partial derivative, again are not limited to Bernnan and Leake engine 

model simulation. They are universal and must be dealt with whenever deriving linear models or 

comparing transients run with the nonlinear and linear simulations. The technique and the 

simulation algorithm is very useful in teaching undergraduate and graduate control systems 

courses. 
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Appendix 

 The following personal computer software is written in MATLAB to linearized nonlinear systems 

about a given nominal operating point using finite differences method. 

 

function [a,b] = linearize (F,x0,u0,pert) 

 %  THIS PROGRAM LINEARIZED THE SYSTEM DESCRIBED IN F ABOUT THE POINT 

 % XXXXX. IT 

 %  RETURNES THE LINEAR  a  AND  b  MATRICES SUCH AS THAT xdot = a*x + b*u IS 

% LINEAR. Pert 

%  IS THE RECENT PERTURBATION ABOUT THE OPERATING POINT.  

%  TIME IS ASSUMED TO BE INVARIENT IN   F. NOTE THAT THE PERTURBATION IS 

 % DONE IN BOTH  

%  POSITIVE AND NEGATIVE DIRECTION. 



%  F  MUST BE OF THE FORM  

% 

 %                  Function Xprime = Function_name (u,x) 

 

%   WITH   F = „function-name‟ IN THE CALL TO BE LINEARIZED. Function_name IS THE 

%  NAME YOU 

 %  ASSIGN TO THE FUNCTION. 

%  THE FUNCTION MUST RETURN THE DERVATIVE AT THE POINT. 

%   WHERE  u  IS THE INPUT AND  x  IS THE STATE OF THE SYSTEM. SEE THE FILE  

% JETS3.M AS AN 

%   EXAMPLE (THE FUNCTION MUST BE .M FILE). TO RUN AN EXAMPLE USING 

%JET3.M, AT THE  

%  MATLAB PROMPT TYPE: 

%  x0=[1;1;1] 

%  u0= 1 

%  pert=0.003 

%  [a,b]=lineriz(„jet3‟ , x0,u0,pert) 

 

%  CALCUATE PERTURBATIONS AND DERIVATIVE AT OPERATING POINT % 

% 

delx =x0. * pert; 

delx =u0. * pert; 

xd= feval (f,u0,x0); 

%% 

% RETURB  X  IN POSITIVE DIRECTION % 

%% 

for  i=1 : length (x0), 

  for  J=1 : length (x0), 

     x=  x0; 

     for  k=1 : length (x0), 

        if k ==  j, 

           if  delx (k) == 0 

               dx=eps; 

           else 

               dx=delx(k); 

            end 

            x(k)   =  x(k)  +  dx; 

            end 

            xt  =   feval (F,u0,x); 

            if   delx (j)   == 0, 



                  dx=eps; 

            else 

                  dx=delx(j); 

            end 

             xp(I,j)   =   (xt(i)   -   xd(i) )  /  dx; 

          end 

     end 

  %% 

 % PERTURB  X   IN NEGATIVE DIRECTION  % 

%% 

%% 

for  i=1 : length (x0), 

  for  J=1 : length (x0), 

     x=  x0; 

     for  k=1 : length (x0), 

        if k ==  j, 

           if  delx (k) == 0 

               dx=eps; 

           else 

               dx=delx(k); 

            end 

            x(k)   =  x(k)  +  dx; 

            end 

            xt  = feval (F,u0,x); 

            if   delx (j)   == 0, 

                  dx=eps; 

            else 

                  dx=delx(j); 

            end 

           xm (i,j)  =  - (xt(i) -  xd(i) )  /  dx; 

        end  

  end 

%% 

% PERTURB  U  IN POSITIVE DIRECTION % 

for  i=1 : length (x0), 

  for  J=1 : length (u0), 

     u=  u0; 

     for  k=1 : length (u0), 

        if k ==  j, 

           if  delu (k) == 0 



               du=eps; 

           else 

               du=delu(k); 

            end 

            u(k)   =  u(k)  +  du; 

            end 

            end 

 

            ut  =   feval (F,u,x0); 

            if   delu(j)   == 0, 

                  du=eps; 

            else 

                  du=delu(j); 

            end 

            up(i,j)   =   (ut(i)   -   xd(i) )  /  du; 

          end 

     end 

  %% 

 %  PERTURB  U  IN NEGATIVE DIRECTION  % 

for  i=1 : length (x0), 

  for  J=1 : length (u0), 

     u=  u0; 

     for  k=1 : length (u0), 

        if k ==  j, 

           if  delu (k) == 0 

               du=eps; 

           else 

               du=delu(k); 

            end 

            u(k)   =  u(k)  +  du; 

            end 

end 

            ut  =   feval (F,u,x0); 

            if   delu(j)   === 0, 

                  du=eps; 

            else 

                  du=delu(j); 

            end 

            um(i,j)   =   (ut(i)   -   xd(i) )  /  delu (j); 

          end 



     end 

%  CALCULATE  LINEARIZED SYSTEM (JACOBIAN )  % 

a= (xp+xm) / 2; 

b= (up+um) / 2; 

function  yprime   =  jet3(u,y) 

%  NONLINEAR 3
RD

 ORDER NORMALIZED BERNNAN AND LEAK TURBOFAN JET 

ENGINE MODEL 

%  yprime  IS THE DERIVATIVE OF STATE VARIABLE.  FUNCTIONS IN THIS FORM ARE 

VERY 

 % USEFUL IN FUNCTION EVALUATION USING MATLAB. 

wf=u; 

T3=0.64212 + 0.35788*y(3, : )^2; 

w3 = 1.3009*y(3, : ) – 0.139825*y (1, : ) 

w3= w3 – 0.13982*sqrt(y(1,: )^2 + 0.41688*(3, : )^2 -0.899*y(1,: ) *y(3,: ) 

yp1=  (0.93586* y(1,: ) /y(2,: ) + 31.486) *wf+ 21.435*w3*t3  - 53.86* (y(1,: ) 

yp2=  37.78*w3 – 38.488*y(1,: )  + 0.66849*wf; 

yp3 = 1.258* (y(1,: )^2/y(2,: ) – w3*y (3,: )^2)/y(3,: ); 

yprime = [yp1;yp2;yp3];   


