
Paper ID #14411

Application of Micro Computer in Optimal Linearization of Nonlinear Sys-
tems

Dr. Alireza Rahrooh, Daytona State College

Alireza Rahrooh received B.S., M.S., and Ph.D. degrees in electrical engineering from University of
Akron, Ohio in 1979, 1986, and 1990, respectively. He worked as an Electronic Engineer from 1979
to 1984. He was involved in conducting research for the Electrical Power Institute and NASA Lewis
Research Center from 1984 to 1998. He was appointed to a faculty position in Electrical Engineering
at Penn State University in 1988. In 1994, he joined the faculty of Engineering Technology at UCF till
August of 2010 when he moved to Daytona State College. He has presented numerous papers at various
conferences, is the author of more than 100 technical articles and recipient of 30 awards. His research
interests include simulation, nonlinear dynamics, system identification and adaptive control. He is a
member of ASEE, IEEE, Eta Kappa Nu, and Tau Beta Pi.

Dr. Walter W. Buchanan P.E., Texas A&M University

Walter W. Buchanan is a Professor at Texas A&M University. He is a Fellow and served on the Board
of Directors of both ASEE and NSPE, is a past president of ASEE and the Massachusetts Society of
Professional Engineers, and is a registered P.E. in six states. He is a past member of the Executive
Committee of ETAC of ABET and is on the editorial board of the Journal of Engineering Technology.

Prof. Robert De La Coromoto Koeneke, Daytona State College

Robert Koeneke is an Associate Professor of Electrical Engineering Technology at Daytona State College.
He received his B.S. in Electronics Engineering from Universidad Simon Bolivar in 1977 and his M.S.
in Computer Science from Santa Clara University in 1982. His 34 years of professional career covers:
teaching at undergraduate and graduate level, planning, developing and managing project in the areas of
Telecommunications and Information Systems. His research interest includes embedded systems, digital
programmable devices and computer communications. He is a member of IEEE, ASEE and ACM.

c©American Society for Engineering Education, 2016

Application of Micro Computer in optimal

Linearization of Nonlinear Systems

Abstract

This paper presents a computer-assisted method to generate accurate linear models of nonlinear

systems with reduced biasing errors. The technique, which is based on finite difference methods,

approximates partial derivatives of a Taylor series expansion of nonlinear state equations about a

nominal operating point or trajectories. The matrices of the linear state-space representation of the

nonlinear system can be determined using personal-computer software. It can be shown that

positive and negative perturbations in the system inputs can result in more accurate linear model.

The advantages of this approach are illustrated and discussed. The proposed techniques will be

useful in motivating students to pursue a graduate degree in institutions where the limited budget

will not allow purchasing costly modeling/simulation packages and software.

Introduction

Most standard control design techniques have been developed for linear systems. More

importantly, any derived technique for a nonlinear system may not be applicable to other nonlinear

systems due to their complicated dynamics. Thus, a good linear representation of these physical

systems must be derived
1
. In practice, it is found that some behavior of nonlinear systems only

occurs if they are driven into certain operation regions. For these systems, the linear model may

give relatively accurate results over a wide range of operating conditions. However, there are

numerous physical systems which have strong nonlinear characteristic. For these systems, a

linearized model is valid only for a limited range of operation, and often only at the operating point

at which the linearization is done. A particular method used to linearize a nonlinear system about

an operating point is the “offset derivative”. This technique makes use of the method of finite

difference to approximate partial derivatives of a Taylor series expansion of the nonlinear state

equations about a nominal operating point or trajectories. The difficulty encountered in using the

method of finite difference is that small numerical errors can appear in partial-derivative

approximations. These errors can cause large enough errors in the Jacobian matrices‟ elements that

the eigenvalues of the system can be changed. Since, the trajectories have different slops in

different directions about the operating points; these errors can be reduced or eliminated through

positive and negative perturbation about the operating point. Once the full state linear model of the

system has been determined, it may be possible to reduce the order of the linear models while still

retaining the important dynamic characteristics of the system. This is desirable for two reasons.

First, a lower order system is easier to handle mathematically; second, controls developed using

optimal control techniques require that all specified states of the system be used to derive the

optimal control. However, some of these states are not measurable and therefore cannot be used for

control purposes. Furthermore, if all the states of a large-order system were measurable, the control

derived would be too complex to implement. Once the linear models are generated, they should be

evaluated as to how well the approximate the dynamics of the nonlinear system about the operating

points for which they were generated. As an example this evaluation is made for the third order

Bernnan and Leake Jet Model
2
 by comparing the full-state linear model and nonlinear engine

model.

Linearization Mathematics

Represent a nonlinear system by the following vector-matrix state equations:

dX(t)/dt = (t) f[X(t), U(t),t] (1)

Y(t) g[X(t),U(t),t]

Where X(t) represents the nx1 state vector, U(t) the px1 input vector, f[X(t),U(t),t] denotes an nx1

function, g[X(t),U(t),t] represents 1xk function, and Y(t) is 1xK vector. In general f and g are a

function of state vector and the input vector. The state variables X(t) cannot change

instantaneously with time. While output variables Y(t) may. It should be clear that no single linear

model can accurately represent the system because of generally wide operating range and

nonlinear characteristics. Thus, linear model must be derived at various conditions particularly, if

the Jacobian, J, is experiencing a large variation in time and space throughout the operating

envelope
3
.

Let the nominal operating trajectory and the output be Xo, Yo respectively, which correspond to the

nominal input Uo and some fixed initial conditions. Expanding the nonlinear state equation (1) into

a Taylor series about X(t) = Xo yields

 () () ∑

 ()

 () ∑

 ()

 ()

 (2)

Let

Then since

 ()

If all the higher order terms (HOT) are negligible then, equation (2) can be written as

 () ∑

 ()

 ∑
 ()

At an operating point the system is assumed to be time invariant: thus, the above equation may be

written in vector-matrix form

 (3)

The J and G matrices are Jacobian matrices defined by

[

]

[

]

Or in more compact form:

 (4)

Thus, the nonlinear system has been linearized at a nominal operating point. The output equation

of (1) may be linearized using the preceding technique by assuming small perturbations about the

operating point, i.e.

With i= 1, 2,……, k

The output Taylor series expansion is:

 () () ∑
 ()

 () ∑

 ()

 ()

 (5)

Since ()

Now, if all the higher order terms (HOT) are small compared with the order terms then, equation

(5) can be written as

 ∑
 ()

 ∑
 ()

At an operating point the system is assumed to be time invariant: thus, the above equation may be

written in vector-matrix form.

 (6)

The C and D matrices are input Jacobian matrices defined by

[

]

[

]

Or in more compact form

 (7)

 The approximating of matrix elements of the linearized model, equations (4) and (7) is

accomplished by a finite difference method using PC-MATLAB. The program only requires the

desired operating point, inputs, perturbation size, and the nonlinear model state equations. Then,

the individual states are varied one at a time while the others are held constant. This is done to

derive the J and C matrices. To generate G and D the inputs are varied one at a time while holding

the others constant including the states. The biasing errors in the finite-difference calculations of J

may be reduced by perturbing the state in the positive direction from the operating point to

generate J+ and C+. The, the states are perturbing in the negative direction from the operating

point to derive J- and C- matrices. Finally, the J+ and J- matrices and C+ and C- matrices are

averaged to obtained the J and C matrices. The perturbation size must be within the linear region

of the operating point, and it must be larger than the iteration tolerance for implicit calculations.

The larger perturbation size ensures easier calculations of the partial derivative as long as it does

not exceed the linearity limit about the operating point.

 Another important potential source of error due the linearization process is inability of the linear

model to converge to the expected steady-state value. Thus, some modification of the G matrix is

necessary to eliminate this steady-state error. Note that at steady-state which results in

then -1 (8)

 is calculated by making small perturbations in the inputs. Then, the term (-1) can be

evaluated by , since J is known, the modified Gm is

 Gm (-1) (9)

For the matrix D, inserting equation (8) in equation (6) results in

ΔY -C(-1) = D m (10)

Where the modified Dm is calculated by making small changes in inputs while holding all the

states constant such that equation (10) is satisfied. Once the matrices are properly determined, the

linearity of these matrices must first be confirmed. This is normally done by generating a J 1matrix

with one perturbation size and then a J 2 matrix with different perturbation size. If the eigenvalues

of both J 1 and J 2 are within the frequency range of interest, then both J 1 and J 2 are reasonably

valid. This indicates that both perturbation sizes are within the linear region about the operating

point. Second, the linear models should be evaluated to see how well they approximate the

dynamics of the nonlinear system about the operating point from which they are generated. This is

accomplished by comparing the simulation results of both linear and nonlinear models using a very

accurate numerical integration algorithm. For a given input the linear model should maintain the

dynamics of the nonlinear model, and the difference between the steady-state errors of both model

responses should be a small as possible. This was done for a nonlinear system given in the next

section.

 Nonlinear Jet Engine Model

 As an example of the linear-model generation procedure, the nonlinear third-order Bernnan and

Leaks engine model described by the following nonlinear differential equation
2
 is considered.

 = 0.64212 + 0.35788N
2

 = 1.3009N -0.13982 [

 – √()]

 =

 (0.93586 /Pρ +31.486) +21.435
 53.864

 /Pρ

 = 37.78

 -38.448
 +0.66849

 = (1.258/N) (

) (11)

Where is Combustor Pressure, Pρ is Combustor density, N is Rotor Speed,
 is Compressor

Discharge Mass Flow, is Compressor discharge Temperature,
 is fuel input rate. The system

is normalized about
 with initial conditions:

 , Pρ =1.77504, N =0.54589

States:

 , =

And input:

U =

The resulting linear model from the ± 0.3 percent perturbation with as the operating

point is:

 [

] = [

] [

] + [

] (12)

Therefore:

 [

], and [

]

The eigenvalues resulting from using different perturbation sizes is tabulated in table (1). Also,

figure (1) shows the simulation of this linear model compared to the actual nonlinear simulation.

Adams-Bashforth two step (AB-2) integration method
4
 (

) with

stepsize of h=0.002 sec is used to simulate the linear model and nonlinear model. Also,

Table (1) Eigenvalues variation of linearized Brennan and Leake engine

Eigenvalues Perturbation

0.3% of operating point 0.3% of operating point

± 0.3 +0.3 -0.3 ± 0.5 +0.5 -0.5

 -81.24 -82.03 -80.34 -81.24 -82.17 -80.26

 -32.33 -31.19 -33.51 -32.33 -31.17 -33.33

 -3.15 -3.14 -3.17 -3.15 -3.14 -3.16

Figure (1) Simulation of linear and nonlinear engine model using AB-2 with h=0.002 sec.

Conclusion

It is critical that computer usage be integrated into problems which involve the application of basic

concepts in engineering. A method to derive and validate linear models from a nonlinear digital

simulation discussed in this paper can be viewed as an appropriate use of the computer. To derive

a good linear model at an operating point, accurate partial derivatives must be obtained. When

using the finite-difference method to approximate partial derivatives, small errors in the

calculations can occur. These errors are bias errors, which must be minimized or eliminated if

possible. This can be accomplished by perturbing the state in both positive and negative directions

about an operating point and averaging the resulting partials. For simulations in which differential

equations are solved explicitly, this method results in repeatability of system eigenvalues for

different perturbation sizes about the operating point. For simulations in which the differential

equations are solved implicitly, exact repeatability of system eigenvalues for different perturbation

sizes is difficult to obtain because of the iterative nature of the solutions. Thus, for a given

perturbation size the linear model predicts the average steady-state value that the nonlinear

simulation would give for the same perturbation size in the plus and minus direction about the

operating point.

The accuracy of the matrices was checked by showing that linearity holds for different

perturbation sizes. Once the accuracy of the matrices was assured, the ability of the linear models

to approximate the nonlinear system at an operating point was investigated. This was done by

comparing a similar transient run with the nonlinear and linear simulations.

Finally, the methods used in this paper to generate linear models from a nonlinear digital

simulation are general. The application presented is for the third order Bernnan and Leake engine

model, but the method is not restricted to that simulation. The problem of bias errors in finite-

difference approximations of partial derivative, again are not limited to Bernnan and Leake engine

model simulation. They are universal and must be dealt with whenever deriving linear models or

comparing transients run with the nonlinear and linear simulations. The technique and the

simulation algorithm is very useful in teaching undergraduate and graduate control systems

courses.

 References

1. Norman S. Nise Control Systems Engineering, Sixth Edition, , Wiley publishing Company, Inc., 2011.

2. Bernnan, T. C. and Leake, Simplified Simulation Models for Control Studies of Turbojet Engines, Technical

Report No. EE-757, Department of Electrical Engineering, University of Notre Dame, 2007.

3. Kuo, B. C., Automatic Control Systems, Prentice Hall, Englewood Cliffs, NJ 2012.

4. Lambert, J. D., Computational Methods in Ordinary, Differential Equations, Wiley, NY, 1973.

Appendix

 The following personal computer software is written in MATLAB to linearized nonlinear systems

about a given nominal operating point using finite differences method.

function [a,b] = linearize (F,x0,u0,pert)

 % THIS PROGRAM LINEARIZED THE SYSTEM DESCRIBED IN F ABOUT THE POINT

 % XXXXX. IT

 % RETURNES THE LINEAR a AND b MATRICES SUCH AS THAT xdot = a*x + b*u IS

% LINEAR. Pert

% IS THE RECENT PERTURBATION ABOUT THE OPERATING POINT.

% TIME IS ASSUMED TO BE INVARIENT IN F. NOTE THAT THE PERTURBATION IS

 % DONE IN BOTH

% POSITIVE AND NEGATIVE DIRECTION.

% F MUST BE OF THE FORM

%

 % Function Xprime = Function_name (u,x)

% WITH F = „function-name‟ IN THE CALL TO BE LINEARIZED. Function_name IS THE

% NAME YOU

 % ASSIGN TO THE FUNCTION.

% THE FUNCTION MUST RETURN THE DERVATIVE AT THE POINT.

% WHERE u IS THE INPUT AND x IS THE STATE OF THE SYSTEM. SEE THE FILE

% JETS3.M AS AN

% EXAMPLE (THE FUNCTION MUST BE .M FILE). TO RUN AN EXAMPLE USING

%JET3.M, AT THE

% MATLAB PROMPT TYPE:

% x0=[1;1;1]

% u0= 1

% pert=0.003

% [a,b]=lineriz(„jet3‟ , x0,u0,pert)

% CALCUATE PERTURBATIONS AND DERIVATIVE AT OPERATING POINT %

%

delx =x0. * pert;

delx =u0. * pert;

xd= feval (f,u0,x0);

%%

% RETURB X IN POSITIVE DIRECTION %

%%

for i=1 : length (x0),

 for J=1 : length (x0),

 x= x0;

 for k=1 : length (x0),

 if k == j,

 if delx (k) == 0

 dx=eps;

 else

 dx=delx(k);

 end

 x(k) = x(k) + dx;

 end

 xt = feval (F,u0,x);

 if delx (j) == 0,

 dx=eps;

 else

 dx=delx(j);

 end

 xp(I,j) = (xt(i) - xd(i)) / dx;

 end

 end

 %%

 % PERTURB X IN NEGATIVE DIRECTION %

%%

%%

for i=1 : length (x0),

 for J=1 : length (x0),

 x= x0;

 for k=1 : length (x0),

 if k == j,

 if delx (k) == 0

 dx=eps;

 else

 dx=delx(k);

 end

 x(k) = x(k) + dx;

 end

 xt = feval (F,u0,x);

 if delx (j) == 0,

 dx=eps;

 else

 dx=delx(j);

 end

 xm (i,j) = - (xt(i) - xd(i)) / dx;

 end

 end

%%

% PERTURB U IN POSITIVE DIRECTION %

for i=1 : length (x0),

 for J=1 : length (u0),

 u= u0;

 for k=1 : length (u0),

 if k == j,

 if delu (k) == 0

 du=eps;

 else

 du=delu(k);

 end

 u(k) = u(k) + du;

 end

 end

 ut = feval (F,u,x0);

 if delu(j) == 0,

 du=eps;

 else

 du=delu(j);

 end

 up(i,j) = (ut(i) - xd(i)) / du;

 end

 end

 %%

 % PERTURB U IN NEGATIVE DIRECTION %

for i=1 : length (x0),

 for J=1 : length (u0),

 u= u0;

 for k=1 : length (u0),

 if k == j,

 if delu (k) == 0

 du=eps;

 else

 du=delu(k);

 end

 u(k) = u(k) + du;

 end

end

 ut = feval (F,u,x0);

 if delu(j) === 0,

 du=eps;

 else

 du=delu(j);

 end

 um(i,j) = (ut(i) - xd(i)) / delu (j);

 end

 end

% CALCULATE LINEARIZED SYSTEM (JACOBIAN) %

a= (xp+xm) / 2;

b= (up+um) / 2;

function yprime = jet3(u,y)

% NONLINEAR 3
RD

 ORDER NORMALIZED BERNNAN AND LEAK TURBOFAN JET

ENGINE MODEL

% yprime IS THE DERIVATIVE OF STATE VARIABLE. FUNCTIONS IN THIS FORM ARE

VERY

 % USEFUL IN FUNCTION EVALUATION USING MATLAB.

wf=u;

T3=0.64212 + 0.35788*y(3, :)^2;

w3 = 1.3009*y(3, :) – 0.139825*y (1, :)

w3= w3 – 0.13982*sqrt(y(1,:)^2 + 0.41688*(3, :)^2 -0.899*y(1,:) *y(3,:)

yp1= (0.93586* y(1,:) /y(2,:) + 31.486) *wf+ 21.435*w3*t3 - 53.86* (y(1,:)

yp2= 37.78*w3 – 38.488*y(1,:) + 0.66849*wf;

yp3 = 1.258* (y(1,:)^2/y(2,:) – w3*y (3,:)^2)/y(3,:);

yprime = [yp1;yp2;yp3];

