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A laboratory study of student usage of worked-example videos to support 

problem solving!
 
 
Abstract 
Despite the commonplace usage of video resources for engineering instruction, an understanding 
of precisely how students use such videos to support their problem solving and learning is 
incomplete. Researchers generally find that both students and faculty like using instructional 
videos (if ‘well constructed’), especially in the format of so-called ‘worked examples’ in which 
an expert records a problem solution for learner consumption. Cognitive load theory (CLT) has 
successfully affirmed instructional worked-example interventions as more effective and efficient 
than problem solving in novice-phase skill acquisition.  However, most worked-example studies 
look at pre/post performance on problem solving in which the worked-example is the 
intervention, rather than studying student use of the worked-example itself in great detail. This 
study begins to address the gap in our understanding of how students use worked-example videos 
to support their problem solving. In this laboratory-based research, we studied problem-solving 
processes of a group of 24 students enrolled in a required mechanical engineering sophomore-
level course. In the experiment, students were presented a dynamics problem to be solved, 
provisioned with an equation sheet, an online calculator, and a video described as ‘potentially 
useful.’  Real-time data about student problem solving process and use of the video was captured 
via a Livescribe smartpen and a Mirametrix eye-gaze capture system (which captured their 
interactions with the video). Pre- and post-surveys about student attitudes about technology, 
perceptions of task difficulty, and academic transcript information are also included in the data 
set. Experimental videos and transcripts were coded for themes, and data about both task 
efficiency and task performance were extracted from the experimental evidence. Taken together, 
the results suggest that student usage of video resources can be broadly described by several 
archetypes, although in this study successful problem solution was possible regardless of 
archetype. These results will continue to inform academic coaching of students in our classes 
about optimal use of video resources. 
 
 
Introduction 
Assessments in sophomore-level mechanical engineering courses such as statics, dynamics, and 
thermodynamics, often emphasize problem solving, and indeed instruction is usually oriented 
around problem solving approaches and examples. In the last 10 years, instructional supports in 
the form of worked-example videos have become quite common, for two reasons. First, 
authoring tools for video creation continue to increase in power and ease of use, while 
simultaneously dropping in price. Second, the research on the worked-example effect[1]–[3] 
continues to support the notion that video-based worked examples can be effective instructional 
supports for novice learners. The coalescence of these two factors has led to the ubiquity of 
instructional videos available online across a huge range of topics. 
 
The research on the effectiveness of worked examples is persuasive. The worked-example effect 
is a learning effect predicted by cognitive load theory (CLT)[4], [5]. Worked-examples are among 
the strongly-guided instructional strategies that reduce cognitive load in novices who learn by 



observing experts solving problems.  When used as part of instruction, worked-examples, 
compared to many other techniques, improve learning during skill acquisition[6]–[8]. The 
cognitive loads within a learners’ working memory are induced by tasks, performance, and the 
mental effort invested[9]. Using well-structured multimedia-oriented instructional designs can 
reduce learners’ extraneous cognitive loads[10]. Furthermore, learners use separate processing 
systems to process either visual (pictures) or auditory (verbal) representations of information. 
Mayer[11] developed a cognitive theory for multimedia learning, and it emphasizes clean design, 
complementary aural and visual information, careful attention to cognitive load of the learner. 
The model also demonstrates the influence that learning motivation and cognitive load, during 
the learning process, have on performance[12].   
 
Right now, there is no widely agreed-upon approach to measuring cognitive load in an 
experimental environment. The four common methods presented in the literature all have their 
affordances and drawbacks. There are a variety of indirect measures related to, for instance, task 
performance[13], although they often suffer from confounding factors such as the experience of 
the learner and are therefore challenging to interpret. There are also secondary task designs in 
which response time to an external stimulus[4] (say, a request to click an on-screen button during 
completion of a load-inducing task), but their experimental design can be complication. There is 
a huge range of physiological indicators as well, including heart rate[14] and neural 
activity/EEG[15], but these approaches suffer from complicated experimental designs and (in 
some cases) prohibitive cost. One other approach, the one we use in this research, is a post-test 
subjective rating scale[16]. In particular, we use a modified version of the NASA-TLX task load 
index[17] that is easy to use, easy for test subjects to complete, and requires very little time. When 
balanced against the already complex experimental design used here (as described later), this 
brief and convenient measurement of workload was the best choice for our work. The NASA-
TLX was initially developed for a broad range of tasks, including physically-intensive tasks. We 
have removed TLX items related to physical exertion, but have otherwise used the entire 
instrument as it was originally developed.  
 
While the effectiveness of worked examples has been established, we currently do not fully 
understand exactly how students integrate worked examples into their study practices. Prior 
studies have largely viewed the use of worked examples as an intervention to support learning, 
with the metrics of the study related to pre-/post- gains in understanding or ability. We are 
interested in the details of how students use worked examples to solve problems, and there exists 
a gap in our current understanding of this facet of worked-example instruction. This gap in the 
literature inspires the broader research we are conducting, as well as the specific research 
questions considered in this paper: 

• RQ1: what are the necessary components of a laboratory experiment designed to probe 
student usage of worked examples in support of problem solving? Working hypothesis: 
we expect that real-time, video-based data—supplemented with pre- and post-surveys—
will yield the most persuasive evidence about worked example use. 

• RQ2: to what extent do key metrics derived from the experiment predict academic 
performance on the example problem, or in the corresponding class? Working hypothesis: 
student usage of worked examples falls into several archetypes (i.e., usage patterns), but 
success in the experiment or in the corresponding class is possible regardless of worked-
example usage archetype. 



 
This paper describes findings from our first set of experiments designed to answer these two 
research questions. 
 
Methods 
Participants and recruitment 
We recruited 24 subjects from a core mechanical engineering sophomore course, Dynamics, to 
participate in the study (12 from Spring 2015, 12 from Fall 2015). Subjects were recruited via in-
person announcement and email, and no academic or demographic selection criteria were applied 
to the subject pool at the recruitment stage (i.e., no one was selected or disqualified based upon 
GPA, gender, or any other characteristic; to use the eye gaze equipment, there were several 
visual ability disqualifiers as detailed below). The subjects included three women and twenty-
one men, with eight non-Mechanical Engineering majors. Our sample had an average GPA of 
3.15 (the average sophomore student in ME has a GPA of about 3.39). Participants consented to 
engage in one 45-minute laboratory experiment, to complete pre- and post-surveys, and to allow 
the research team access to their academic transcript and admission data (SAT score, high school 
GPA, etc.). Subjects were compensated with a $20 Amazon gift card for their time. Participants 
enrolled in the dynamics class have access, as part of the class, to a large library of instructor-
authored worked-example videos, so all participants had prior experience using such videos as 
part of their dynamics course. Although participants self-selected to participate in this 
experiment, their final course grades in the dynamics course roughly mirror the grade 
distribution for the class as a whole, as shown in Table 1. 
 
Table 1. Comparison of participant performance and whole-class performance in dynamics. 
 

Letter grade Participants in this study Spring 2015 dynamics Fall 2015 dynamics 
A 20.8% 18.6% 17.8% 
B 29.2% 42.7% 34.8% 
C 41.7% 28.1% 29.4% 
D 4.2% 7.5% 8.9% 
F 4.2% 3.0% 5.3% 

Note:  Columns do not add up to 100% due to rounding. 
 
Laboratory experiment 
After due consideration of our RQ1, we concluded that the experiment design required students 
to solve an actual dynamics problem under realistic (i.e., time-constrained) circumstances, and 
that the problem had to be non-trivial. We also decided to make three simultaneous, real-time 
measurements of student actions: 
 

• Problem solving actions: student wrote their solution to the dynamics problem in a 
Livescribe notebook. We used an Echo smartpen system, which employs a small camera 
in the tip of the pen (along with specially printed paper) to record everything the student 
writes in a time-stamped way. 

• Thought process: we asked students to follow a think-aloud protocol and describe their 
thoughts and actions verbally during the experiment. These verbal expressions were 



audio recorded using the Echo smartpen, which automatically synchronizes the audio 
recording with the written work of the student. 

• Worked example usage: students had access to a video-based worked example on a 
computer workstation directly in front of them. That workstation was equipped with 
Mirametrix eye gaze capture technology so that we captured when and where they were 
looking at the worked-example video. This action was captured in real-time via a screen 
recording on the workstation, and this video was synchronized with the Livescribe data. 

 
To our knowledge, this is the first time such simultaneous measurements of student actions 
during problem solving have been made. These three actions capture the full range of observable 
student problem solving actions in one real-time experiment. 
 
Participants completed a pre-survey of 7 items allowing them to self-report their level of comfort 
with and usage of the dynamics worked examples available as part of the dynamics course. 
Immediately after the problem-solving part of the experiment, but before taking the post-survey, 
students were asked 4 interview questions focusing on their experience of solving the problem 
with the support of the worked example. Participants then completed a 9-item post-survey 
allowing them to self-report perceived difficulty and level of effort required to solve the 
problem—a modified 5-item NASA TLX scale[17] that omitted the ‘physical demand’ dimension 
of task performance (7-point Likert scale), two items about perceived mental effort and problem 
difficulty (5-point Likert scale), one item about their perception of the usefulness of the worked-
example video provided as part of the experiment, and one item to collect feedback about their 
perceptions of the video (too long, too short, too detailed, not detailed enough, etc.). The TLX 
results were calculated with a fixed weight scheme across the five dimensions, so the total TLX 
score for each participant was the average of their responses across the 5 dimensions on the 7-
point scale. The five TLX questions were: 

• How successful were you in solving this problem? 
• How stressed, frustrated, annoyed, or discouraged were you while solving this problem? 
• How hard did you have to work to solve this problem? 
• You were allotted 25 minutes to solve this problem. Was this enough time to complete 

your solution? 
• How mentally demanding was this problem? 

For each question, a higher value of response on the 7-point scale indicates a more mentally 
demanding or stressful experience. 
 
Experimental protocol 
A total of 45 minutes was allocated to conduct the experiment from initial pre-screening through 
the signing of compensation forms. We asked subjects to solve a single, non-trivial dynamics 
problem that was congruent with their current progress in the course. In this case, the multi-part 
problem focused largely on proper usage of work-energy formulations to analyze particle 
kinetics. In both fall and spring semesters, participants completed the experiment within three 
weeks after covering the material in the dynamics class.  A worked-example video, a single sheet 
of formulas, a Livescribe pen and booklet, and an onscreen calculator were provided.   
 
Prior to the experiment, each subject was asked to declare their dominant writing hand (a setting 
for the Livescribe smartpen), whether they had bi -or trifocals or any of the following eye 



conditions:  glaucoma, cataracts, eye implants, or permanently dilated pupils.  Best practices for 
using eye gaze technologies recommend discounting subjects with any of these conditions, as it 
may potentially corrupt the measurements. None of the subjects were disqualified during the pre-
screen questions and all subjects were 18 years or older. 
 
Upon signing the IRB consent form, the subjects completed the online pre-survey, which took 
less than three minutes to complete by each subject.  Next, the subjects were asked to sit facing 
the 27-inch monitor and the eye-tracking device was positioned using a nine-point calibration 
test (generally 2-3 minutes for calibration).  Overhead lighting was constant and each experiment 
occurred between 9 a.m. and 12-noon facing west.  The subjects’ backs faced the laboratory door 
to minimize distractions from the adjoining hallway.   
 
Participants were given 25 minutes to solve a single (multi-part) dynamics problem, and the 
video available to them on the computer workstation was described as ‘potentially helpful’. 
Participants then completed the problem to the extent they could in the 25-minute time limit, and 
used the video in whatever way they wanted to during the experiment (including not using the 
video at all). They were then asked 4 questions by the researcher, followed by the 9-item online 
post-survey. Participants were then thanked and compensated for their time, and the experiment 
ended. In all cases, the total time for this experiment was less than 45 minutes.    
 
We used two different problems in this research with identical underlying mathematics, but the 
problem contexts were different. Because the experiment was conducted across two semesters, 
and because we provided participants a graded copy of their work (almost all participants asked 
for their grade), we were somewhat concerned about potential contamination of the applicant 
pool in the Fall 2015 semester. So we developed a new problem context that required identical 
equations, thought processes, and procedures to solve. To the participants, who are novices, the 
two problems looked entirely different. However, experts understand that the problems were 
actually identical. This difference in problem between the two semesters over which data was 
collected is a potential confounding factor when comparing absolute performance on the 
experimental task. However, in extracting information about how students solve problems, and 
how they integrate worked-example videos into their problem solving process, we expect this 
difference in problem to have a negligible effect. 
 
Data Analysis 
Quantitative data were collected from multiple sources, including the pre- and post-surveys, 
academic transcripts, admission data, and problem performance. Each problem solution was 
graded according to a rubric and based entirely upon the written contents of the solution. As 
such, the experimental problem was graded precisely as a written homework submission or exam 
would be graded. The problem contained three parts, and the grade for each part was recorded as 
part of the master data set. Various metrics extracted from the experimental videos themselves, 
as described below, were also included as quantitative data in the master data set. Quantitative 
data were analyzed using and R[18]. 
 
Qualitative data analysis proceeded as follows.  The videos (Livescribe and eye gaze) were 
temporally synchronized with the experimental audio from the Livescribe pen into a composite 
video showing a complete record of student actions during the experiment. A screenshot of such 



a composite video is shown in Figure 1. For each composite video, a special transcript was 
constructed, and this transcript captured four categories of information: 
 

• Verbal information: participant think-aloud transcription 
• Problem solution events: key steps in the solution, and their duration (example: drawing a 

free body diagram, writing a specific equation, or performing algebraic operations) 
• Video events: playing the video, searching through the video, or (most importantly) 

watching the video (as detected using the eye gaze data) 
• Affective events: participants audibly expressing positive affect (“I think this is right”), 

negative affect (a deep, frustrated sigh, or something like “I’m confused and not sure 
what to do here…”), or neutral affect (defined as an audible affect that is neither clearly 
positive nor clearly negative) 

 
The experiment transcript is therefore not simply a transcription of the participant’s verbal 
expressions during the experiment, but instead it is a composite record of verbalized expressions 
and problem solving actions in the same document. 
 
The transcript and video were then imported into nVivo and coded for themes according to a 
‘node’ structure developed prior to data analysis. nVivo is a qualitative data analysis software 
package produced by QSR International. It has been designed for qualitative researchers working 
with very rich text-based and/or multimedia information, where deep levels of analysis on small 
or large volumes of data are required. In nVivo, a ‘node’ is simply a specific category into which 
an observation fits, and we defined a multi-level node structure that has three high-level nodes 
(affect events, solution events, and video events), with many sub-nodes that provide granularity 
to the coding. 
 
The node structure is shown in Table 2, and it enables us to capture the four categories of 
information described above. It is important to note that since this node structure was developed 
and used to analyze the data presented here, we have convened an expert panel of 4 veteran 
dynamics instructors to critique the node structure. Based upon their feedback, we are currently 
preparing a slightly revised node structure for use in all future data analysis. It is also important 
to recognize that the granularity in any node structure seeks to balance the ability to capture the 
salient features of the solution without containing so many nodes as to be overwhelming. We 
consciously made the choice to focus on process-oriented features of problem solving (i.e., 
specific fundamental actions students took) so that our node structure was versatile enough to 
allow analysis of solutions to many different kinds of problems and could be used for continuing 
research. 
 



!
Figure 1. Composite video of one experiment showing the Livescribe video temporally 
synchronized with the eye gaze video. The figure shows the worked-example video window, the 
pupil tracking window, and the fixation location. 

Table 2. Node structure for analysis of composite experimental video and transcript. 
Event Description 
Affect Events  

negative participant expresses doubt, frustration, or confusion 
positive participant expresses confidence or optimism  
neutral audible event that is identifiably neither positive nor negative 

Solution Events  
breakthrough participant pauses, seems stuck, needs to work hard, and then 

eventually unlocks how to move the solution forward 
calculation participant is actively using the calculator 

decision participant makes a decision; examples: choosing a coordinate 
system and orientation, a datum for energy calculations, or an 
analysis method 

draw FBD participant draws a free body diagram 
forward reasoning participant is actively moving the solution forward; includes: 

thinking through next steps, performing algebraic 
manipulations to isolate quantities of interest, drawing diagrams 

metacognitive participant is engaging in a self-check of their progress by 
questioning approach, process, or result 

mis-step participant makes an error in their solution 
mis-step correction participant corrects a previous mis-step 

read problem statement participant is reading the problem to understand the nature of 

Livescribe videoscreen capture from computer

the worked-example video
pupil tracking window

fixation area

as time evolves and the solution is written, 
text turns from gray to green



the problem, the givens and unknowns, etc. 
solution, part (a) participant is solving part (a) of the problem 
solution, part (b) participant is solving part (b) of the problem 
solution, part (c) participant is solving part (c) of the problem 

write F = ma participant writes and works through the kinetic equation 
write work-energy participant writes and works through the W-E equation 

task set-up participant is defining variables, writing down given 
information, and otherwise preparing to begin the solution 

unnecessary step participant makes an unnecessary step in the solution and writes 
an equation or solves for a quantity that is not needed for the 
solution; unnecessary steps are not always mis-steps 

Video Events  
video play video is playing 

video watch (fixation) participant is actively watching the video 
video search participant is searching through the video 

video re-watch participant is watching a part of the video that he/she has 
already watched at least once before 

 
Using nVivo to analyze the data allows us to perform the crucial step of extracting quantitative 
information from the experimental composite video, and this quantitative data can be used in 
further statistical analysis. This is most clearly illustrated using the concept of ‘coding stripes’, 
which are time-stamped visualizations of the coding of experimental information onto the node 
structure. Figure 2 shows an example set of coding stripes from one of our experiments, and it 
clearly illustrates the time-based parameters that can now be extracted from the experimental 
composite videos. From this information, nVivo allows us, via its query tools, to easily report out 
time parameters such as: video play frequency and time (in Figure 2, 9 play events totaling 09:50 
min.), fixation frequency and time (13 events, 06:09 min.), and frequency and time of forward 
reasoning events (28 events, 08:10 min.).We also see that this participant spent 19:37 min. on the 
solution to part (a) of the problem, which coincides with a large amount of reasoning, video 
playing and fixation, and finally a breakthrough that enables the final calculation for part (a). 
This participant received full credit for part (a) of the problem, but failed to complete either part 
(b) or (c). In particular, a mis-step in part (b) [which amounted to using the energy expression 
1/2 kx2 to represent spring force on the free body diagram] prevented this subject from 
completing part (b) correctly. 
 
[An interesting aside for this participant is that there was an attempt to troubleshoot the solution 
to part (b) by examining the units present in the kinetic equation. The participant realized that the 
units were inconsistent (a mixture of force and energy), but was unable to fully understand and 
repair this mis-step in the time allotted.] 
 
The nVivo-derived quantitative metrics were then inserted into the master data set and used for 
various statistical analyses. In the remainder of the paper, we review several of our findings so 
far, focusing on ways we can link pre-survey, post-survey, grade, and experimental data. 
 
 
 



Results 
We have developed a laboratory experiment to explore how students solve problems with the 
support of worked-example videos, but to evaluate whether the experiment meets our original 
goals (our RQ1), we need to consider the usefulness of the data we have collected. Therefore, we 
begin the results section by considering a variety of metrics related to RQ2, then follow with a 
discussion of the extent to which the experiment we have developed meets our original goals. 
 
RQ2: to what extent do key metrics derived from the experiment predict academic performance 
on the example problem, or in the corresponding class? 
Participants completed the experiment with aggregate mean score of 14.95 (standard deviation 
4.67) out of a possible 20 points. Students typically lost points for mis-steps in their solution 
around application of the appropriate analyses (work-energy, or Newtonian kinetics) or for the 
kinds of careless errors that often arise in a time-constrained task (algebra or calculation errors). 
Score on the experimental problem shows essentially no correlation to course grade, with 
Spearman correlation coefficients not rising to statistical significance for the total population of 
participants. This is not unexpected, however. In the same way that a single piece of graded work 
in the context of a course does not successfully predict the student’s final course grade, their 
performance on a single problem in our laboratory environment probably will not predict their 
final grade either. There are many reasons why a student might or might not perform well on our 
experimental problem on a particular day in our lab, so a weak correlation between performance 
on the experimental problem and final course grade is expected. 



 
 

 
 
Figure 2. Coding stripes for experimental composite video showing time-stamped events. From this coding, quantitative time-based 
metrics are extracted from each experiment and used in subsequent statistical analysis. 
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So in addition to task performance, we also focused on several interior elements of the 
experimental data, especially patterns of video usage. Our initial hypothesis for RQ2 has, 
embedded in it, the idea that there are many possible ways for students to exhibit successful 
problem solving. We explored relationships among experimental time-based parameters (video 
play time, video watch time), experimental problem performance and overall grade in the 
dynamics course, and pre- and post-survey results. 
 
Observation 1: Video fixation time and video play time were nearly equal 
For all but one participant, video fixation time was nearly identical to video play time. The 
implication is that participants attempted to use the video available during the experiment in 
targeted ways, rather than having it play in the background as they worked the problem. This 
experimental observation is consistent with what participants reported on the pre-survey: 18 out 
of 25 reported that their typical use of the videos available as part of the dynamics course was a 
targeted attempt to understand a specific feature of the solution, rather than watching the video 
from beginning to end. During the experiment, we saw participants engage in a number of 
different video watch and search strategies. Some started their problem solving process by 
watching the video, perhaps in the hope or expectation that the problem solved in the video we 
provided to them would be very reflective of the problem they were asked to solve. Others 
worked the problem on paper and consulted the video only when unsure about a step, or 
sometimes to confirm that their approach was correct. 
 
Observation 2: High-achieving students watched the video during the experiment less 
Figure 3 shows fixation time and dynamics course grade as a function of performance on the 
problem completed during the laboratory experiment. There is a visible cluster of students who 
performed well in the course, performed well on the experimental problem, and had low fixation 
time. This observation is consistent with the notion that high-achieving students need fewer 
instructional supports than other students—this is why they are high achieving. Even for C-
students who scored well on the experimental problem, their fixation time tended to be much 
higher than the A- and B-students, on the order of 1.5-2 times higher (with the exception of one 
student who did not use the video in the experiment at all, earned a perfect score on the 
experimental problem, but earned a C in the course). The observation that video usage peaks 
with students whose grades are in the C range has been suggested before[19], and our pre-survey 
results confirm this as well. On average, the C-students in this study report watching about twice 
as many videos during the semester as the A-students, and about 50% more than B-students. Our 
experimental population contained only one participant who earned a D in dynamics, and one 
who earned an F in dynamics; we therefore cannot say anything conclusive about their video-
using behaviors. 
 



!
Figure 3. Fixation time in laboratory experiment and dynamics course grade as a function of 
score on the experimental problem. 

 
Observation 3: Participants who perceived the problem to be challenging used the video more 
and performed worse 
The post-survey TLX score was examined in light of experimental problem performance and 
fixation time, and in Figure 4 the data are colored by dynamics course grade. The regression line 
on the Figure 4(a) illustrates the inverse relationship between TLX score and problem score 
(meaning that students who perceived the task to be harder earned a worse score on the 
experimental problem; this is a statistically significant model of student performance, with R2 = 
0.49 and p < 0.0001). Figure 4(b) shows an increasing trend of fixation time with TLX score, 
meaning that students who perceived the experimental task to be harder generally used the video 
more (this regression model is not statistically significant). 
 
In Figure 5 the experimental data points are colored by the student’s perception of their 
experimental task success as reported on the post-survey (a 7-point Likert-scale item ranging 
from ‘perfect’ to ‘a failure’); this question was one of the 5 elements of the TLX. Figure 5(a) 
neatly shows that student perceptions about their performance on the experimental task were 
generally correct and trended very closely with their TLX score. Students who perceived the task 
to be more difficult were generally less confident about their performance, and their grade on the 
experimental problem reflects this. The conclusion here is that students are reasonably good at 
assessing their own performance on the single problem they solved during the laboratory 
experiment. Figure 5(b) shows another view of the data that reinforces the notion that 
participants who perceived the task to be harder, and were less confident about their 
performance, used the video more during the experiment. 
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Figure 4. Experimental task performance (a) and fixation time (b) as a function of TLX score. 
Data points are colored according to each participant’s final course grade in dynamics. 

 

!
Figure 5. Experimental task performance (a) and fixation time (b) as a function of TLX score. 
Data points are colored according to each participant’s perceived success in solving the 
experimental problem.  

 
RQ1: what are the necessary components of a laboratory experiment designed to probe student 
usage of worked examples in support of problem solving? 
Now that we have reviewed some of the results related to RQ2, we return to RQ1 and the 
question of a laboratory experiment to explore video usage. The results presented above give us 
confidence that the experiment we developed for this preliminary study contains many of the 
salient elements important for answering questions about how students solve problems with 
access to worked-example videos.  
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Although we have focused on a small subset of the available data collected during the 
experiment, our ability to resolve specific actions students take during problem solving is 
substantially advanced by the real-time, video-based measurements described here. The think-
aloud protocol enables a window into the participant’s mind, and also allows us to collect affect 
information from participants. The pre- and post-survey data also seem to be very important and 
complementary to the measurements made during the experiment. In particular, the TLX task 
workload rating gives us important feedback about the participant’s perception of their mental 
effort and could lead toward useful characterizations of cognitive load during problem solving. 
 
Nonetheless, we plan several improvements to the experiment to remedy specific issues 
encountered during this first round of data collection. The promise of eye gaze technology is that 
we can know, with very high resolution, exactly where the participant is looking on the computer 
screen. So we should be able to tell whether a participant is looking at the figure, the problem 
statement, or a particular equation while fixated on the worked-example video during the 
experiment. However, because the participant frequently moves their head back and forth—
looking at the computer screen, then their written work, and back—we are not confident that the 
eye gaze system calibration or pupil tracking is robust against those kinds of discontinuous use 
patterns. As a result, in the current experiment, we can confidently determine when a participant 
watched the video on screen (by monitoring the pupil tracking window in Figure 1), but we 
cannot confidently say exactly what the participant was looking at (we do not have confidence in 
the location of the fixation window). We continue to examine potential remedies for this 
situation, but for the current set of results we simply cannot say with confidence exactly what the 
participant was looking at in the worked-example video. This prevents us from making any 
statements about the relative value of, say, clear and detailed hand-drawn sketches, very detailed 
equation derivations, or more general expository information. Developing an approach to gain 
further confidence in the specific location of the fixation window would substantially extend this 
research and be of general value to the community. 
 
We also expect to use a stationary mounted camera on the desk near the participant to capture a 
third-person perspective on the experiment. This additional camera view will allow us to capture 
facial expressions and supplement the other video evidence with confirmatory information 
throughout the experiment. 
 
Despite these limitations and the lessons learned through this preliminary data collection, we feel 
confident that the experimental system and protocol proposed here can be used—with some of 
the refinements described above—for detailed analysis of student problem solving in the 
presence of worked-example videos. Our on-going work includes not only experimental 
refinements, but also much more detailed analysis of the data we have already collected. 
 
Conclusions 
In this paper, we describe a novel experimental approach and protocol that uses real-time video 
and audio data collection to examine student problem solving using worked-example videos for 
support. The hardware, experimental protocol, and data analysis approach together define a 
powerful approach to surveillance of student problem solving behaviors, and the 24 subjects who 
participated in this first round of experiments have demonstrated the affordances of the approach, 
as well as some limitations. The time-stamped nature of the measurements allows us to extract a 



huge range of time-based parameters (Figure 2) that characterize the process by which students 
solve problems, including their use of the worked-example video. The data analysis protocol 
alone is a significant step forward in our ability to understand problem-solving processes and 
quantify, in terms of both frequency and total time, how students stitch together a series of 
discrete choices and actions into their overall solution to a dynamics problem. 
 
Our preliminary data analysis illustrates several important trends of video usage during problem 
solving and its relationship to both task performance and perceived task difficulty. Students who 
believe the problem is more difficult used the provided worked-example video more, were less 
confident in their performance, and actually performed worse. While there was not a strong 
relationship between performance on the experimental problem and overall dynamics course 
grade (and none was expected), these relationships on a per-problem basis begin to build 
evidence of successful problem-solving strategies for students. While we cannot, based upon the 
24 participants in the current study and the data analysis we have completed so far, conclusively 
describe problem-solving archetypes, this experimental and data analysis protocol is a significant 
step forward toward that goal. 
 
Acknowledgement 
The authors gratefully acknowledge the financial support of Purdue University for equipment, 
laboratory space, and student research assistantship funds. We also appreciate the willing 
participation of the student subjects who completed the experiment and provided incredibly 
useful feedback about potential refinements to our methods. 
 
 
 
 
References 
[1] J. Sweller, “The worked example effect and human cognition,” Learn. Instr., vol. 16, no. 2, pp. 165–169, 

Apr. 2006. 
[2] S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller, “The expertise reversal effect,” Educ. Psychol., vol. 38, 

no. 1, pp. 23–31, 2003. 
[3] R. Moreno, M. Reisslein, and G. Ozogul, “Optimizing Worked‐Example Instruction in Electrical 

Engineering: The Role of Fading and Feedback during Problem‐Solving Practice,” J. Eng. Educ., vol. 98, 
no. 1, pp. 83–92, 2009. 

[4] J. Sweller, “Cognitive load during problem solving: effects on learning,” Cogn. Sci., vol. 12, no. 2, pp. 257–
285, 1988. 

[5] J. Sweller and G. A. Cooper, “The use of worked examples as a substitute for problem solving in learning 
algebra,” Cogn. Instr., vol. 2, no. 1, pp. 59–89, 1985. 

[6] T. van Gog, F. Paas, J. J. G. van Merriënboer, and P. Witte, “Uncovering the problem-solving process: cued 
retrospective reporting versus concurrent and retrospective reporting.,” J. Exp. Psychol. Appl., vol. 11, no. 4, 
pp. 237–44, Dec. 2005. 

[7] R. Moreno, M. Reisslein, and G. Delgoda, “Toward a fundamental understanding of worked example 
instruction: Impact of means-ends practice, backward/forward fading, and adaptivity,” Proceedings. Front. 
Educ. 36th Annu. Conf., pp. 5–10, 2006. 

[8] A. Renkl, “Learning from Worked-Out Examples: A Study on Individual Differences,” Cogn. Sci., vol. 21, 
no. 1, pp. 1–29, Jan. 1997. 

[9] F. Paas and T. van Gog, “Optimising worked example instruction: Different ways to increase germane 
cognitive load,” Learn. Instr., vol. 16, no. 2, pp. 87–91, Apr. 2006. 

[10] R. E. Mayer and R. Moreno, “Nine ways to reduce cognitive load in multimedia learning,” Educ. Psychol., 
vol. 38, no. 1, pp. 43–52, 2003. 



[11] R. E. Mayer, “Multimedia learning,” in Psychology of Learning and Motivation, vol. 41, B. H. Ross, Ed. 
Academic Press, 2002, pp. 85–139. 

[12] J. M. Keller, “An Integrative Theory of Motivation, Volition, and Performance,” Technol. Instr. Cogn. 
Learn., vol. 6, no. 2, pp. 79–104, 2008. 

[13] P. Ayres, “Using subjective measures to detect variations of intrinsic cognitive load within problems,” 
Learn. Instr., vol. 16, no. 5, pp. 389–400, 2006. 

[14] F. G. W. C. Paas and J. J. G. Van Merriënboer, “Variability of worked examples and transfer of geometrical 
problem-solving skills: A cognitive-load approach,” J. Educ. Psychol., vol. 86, no. 1, pp. 122–133, 1994. 

[15] P. Antonenko, F. Paas, R. Grabner, and T. van Gog, “Using Electroencephalography to Measure Cognitive 
Load,” Educ. Psychol. Rev., vol. 22, no. 4, pp. 425–438, 2010. 

[16] A. Schmeck, M. Opfermann, T. van Gog, F. Paas, and D. Leutner, “Measuring cognitive load with 
subjective rating scales during problem solving: differences between immediate and delayed ratings,” Instr. 
Sci., vol. 43, no. 1, pp. 93–114, Aug. 2014. 

[17] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load Index): Results and Empirical and 
Theoretical Research,” in Human Mental Workload, P. A. Hancock and N. Meshkati, Eds. Amsterdam: 
North Holland Press, 1988. 

[18] R Core Team, “R: A language and environment for statistical computing.” R Foundation for Statistical 
Computing, Vienna, Austria, 2012. 

[19] E. J. Berger and E. Pan, “Video Resources and Peer Collaboration in Engineering Mechanics!: Impact and 
Usage Across Learning Outcomes Video Resources and Peer Collaboration in Engineering,” in Proceedings 
of the 122nd ASEE Annual Conference and Exposition, 2015, p. Paper ID #12100. 

 


