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Enhancing student understanding of mechanics using  

simulation software 
 

Abstract 

 

The wide availability of commercial codes, such as MAPLE®, has made it possible to 

significantly enhance the teaching of undergraduate courses in mechanics. New problems, 

usually non-linear, can be introduced which previously could not be treated because of the lack 

of analytic solutions. By means of numerical solutions to these problems, students can get a feel 

for finite difference approaches and, perhaps more importantly, their physical understanding can 

be enhanced and new phenomena explored. The following examples are presented with the 

underlying equations cast, as much as possible, into non-dimensional form: 

(i) a finite difference scheme, (ii) a non-linear pendulum subjected to various initial conditions, 

showing how the period depends on the amplitude, (iii) a non-linear softening spring showing 

the existence of instabilities, (iv) the stability of an inverted pendulum restrained by a spiral 

spring, illustrating the existence of multiple equilibrium states and their stability and (v) a 

numerical simulation of a sweep test (forced motion of a single-degree-of-freedom system in 

which the forcing frequency varies with time), showing that if the sweep rate is too fast, no 

resonances will be observed.  

 

Introduction 

 

The use of software as a teaching aid in undergraduate mechanical engineering courses has been 

discussed by several authors. A common type used is mathematics software which allows for a 

wide range of applications from basic to advanced engineering courses. MATLAB®, 

MATHCAD® and MAPLE® 
[1]

 are some common examples. 

 

In a previous paper 
[2]

one of the authors (Mazzei) discussed his experiences on using 

commercially available simulation software for dynamics teaching and improving learning. This 

was done using MSC ADAMS® for rigid body dynamics. Feedback from students showed that 

simulations can help visualize and understanding of mechanical systems dynamic behavior.  

 

There are numerous papers on the use of software in engineering undergraduate courses. For 

example in reference
[3]

 Gharghouri discusses his experiences on using MAPLE® for teaching a 

numerical analysis course. An approach to calculate eigenvalues and eigenvectors for a 

mechanical vibrations course is given and possible advantages of using the software instead of 

programming languages is discussed. It was concluded that the use of the software greatly 

enhanced the delivery of the numerical analysis course. 

 

Another example of a positive use of MAPLE® as a teaching aid can be found in reference
[4]

 

where Gerber discusses how the software aided in teaching circuits and systems. 

 

In this paper several examples developed utilizing MAPLE® are presented. The goal is to 

improve student understanding of mechanical vibrations and dynamics by investigating non-

linear physical phenomena and resonance with the aid of the software. 
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MAPLE® Examples 

 

Finite difference scheme 

 

In the examples that follow the solutions are obtained using a MAPLE® finite difference 

scheme. To give students some sense of the finite difference process a simple example is solved 

using the Euler method. 

  

Consider the problem of a falling solid sphere resisted by a quadratic drag force: 2cv . The 

equation of motion is: 

 

2 ( )
dv c

g v f v
dt m

? / »  

( 1 ) 

If 0v ?  at 0t ? , the exact solution (from integral tables) is: 

 

tanh{( ) }
mg cg

v t
c m

?  

( 2 ) 

In the Euler method, the time range of interest is divided into uniform intervals of magnitude h . 

The solution at time 
1i

t - is approximated by a projection using the slope at 
i

t , and replacing the 

derivative by 
1

( ) /
i i

v v h- / (see FIGURE 1). This leads to: 

 

1
( )

i i i
v v hf v- ? -  

( 3 ) 

Consider an aluminum sphere (density 32700 /Kg m ) of radius 0.1m  falling in an oil (density 
3900 /Kg m ). The coefficient  c  is obtained from the formula: 

2 21

2
D D oil

F c A v cvt? ?
 

( 4 ) 

where 
D

c  is taken to be 0.47. A  is the projected area and equals 2Rr . This gives 6.645c ?  

( /Kg m ). Then equation ( 3 ) may be written: 

 

2

1
(9.81 0.5875 )

i i i
v v h v- ? - /  

( 5 ) 
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FIGURE 1 – FINITE DIFFERENCE SCHEME 

 

The values of 
1i

v -  given by equation ( 5 ) for 0.5h ?  are plotted in FIGURE 2 together with the 

exact solution. Excellent agreement between the two solutions is seen, the maximum error being 

of the order of 10%.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 – FINITE DIFFERENCE AND EXACT SOLUTION 
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Non-linear Pendulum 
 

The equation of motion for a simple pendulum is (see FIGURE 3): 

 
2

2
sin( ) 0

d g

dt l

s s- ?  

( 6 ) 

where g  is the gravitational constant, l  is the length of the pendulum and s  is an angular 

coordinate. Noting that g l  has dimensions of frequency, one can introduce the dimensionless 

time: ( )g l tv ? , so that ( )( ) ( )( )d dt d d d dt g l d dv v v? ? . 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 – SIMPLE PENDULUM 

 

Then equation ( 6 ) becomes:  

 
2

2
sin( ) 0

d

d

s s
v

- ?  

( 7 ) 

For small motions sin( )s s…  and the equation is linear. The dimensionless period is, regardless 

of initial amplitude, 2
L

T r? .  

 

For large motions equation ( 7 ) is non-linear and is solved numerically for various initial 

conditions using MAPLE® (initial position is varied, initial velocity is set to zero in all cases; 

see appendix for code worksheet). 

 

The initial angular displacement is increased in steps of 0.1 rad and the responses are shown in 

FIGURE 4. For reference purposes the first curve (the smallest initial angle) is highlighted in the 

plot; this response coincides with the one obtained from a linear approach for the interval 

studied. As can be seen the period increases as the initial angle grows. 
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FIGURE 4 – PENDULUM RESPONSES TO DIFFERENT INITIAL CONDITIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 – RESPONSES FOR SMALL AND LARGE INITIAL ANGLES 
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A difference of about 10% between the “linear” period and the non-linear period occurs when 

the initial angle reaches a value of about 1.2 rad (approximately 70 degrees). When the initial 

angle reaches a value around 1.55 rad (approximately 89 degrees) the difference is about 17%. 

FIGURE 5 shows a comparison between the pendulum responses for both a small and large 

initial angle. For this case the large angle is about ten times larger than the small one. It can be 

seen in the figure that the period for “large” response is distinctly different from the “small” one 

showing the dependence of the period on the initial condition. Students should note that for a 

non-linear system the period is not a system characteristic. It depends on the initial amplitude.  

 

These results can be explained intuitively as follows. In the range 0 2s r~ ~ , s  is greater than 

sin( )s . Hence the effective restoring force in the non-linear case is less than that in the linear 

case. The motion slows down; the period is larger.  

 

Stability of a mass-non-linear-spring oscillator 

 

The next example illustrates the phenomenon of instability. Consider a mass restrained by a non-

linear softening spring sliding along a straight line on a smooth horizontal surface. The spring 

force is given by:  

 
3

1xKKxFs /? ,     0, 1 @KK  

( 8 ) 

 The non-linear differential equation of motion is: 

 

03

1 ?/- xKKxxm %%  

( 9 ) 

The question at hand is how does the system behave subjected to various initial conditions?  

 

Introducing the dimensionless time tmK )(?v , equation ( 9 ) becomes: 

 

031

2

2

?/- x
K

K
x

d

xd

v  

( 10 ) 

For 1.01 ?KK , the dimensionless spring force is shown in FIGURE 6. 
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FIGURE 6 – DIMENSIONLESS SPRING FORCE FOR NON-LINEAR OSCILLATOR 

 

First, equation ( 10 ) is solved subjected to the initial conditions: 01.0)0( ?x , 0)0( ?vddx . For 

this small initial displacement, the spring force is positive and the response of the system should 

be stable. The results shown in FIGURE 7 verify this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7 – RESPONSE FOR SMALL INITIAL DISPLACEMENT 
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FIGURE 8 – RESPONSE FOR LARGE INITIAL DISPLACEMENT 

 

Consider now the case where the initial displacement is large, for instance, 20.3)0( ?x  (and 

0)0( ?vddx ). Now the spring force is negative and one would anticipate unstable response, as 

indeed seen in FIGURE 8. This further illustrates that for non-linear systems, the response can 

change radically for different initial conditions.  
 

Stability of an inverted pendulum 

 

In the next example, concepts of stability and instability will be further explored and highlighted.  

 

Consider an inverted rod, pinned at its lower end acted upon by gravity and a torsional spring 

which always exerts a restoring torque Gs  ( G - spring stiffness), regardless of how large s  is 

(FIGURE 9). 

 

The equation of motion is: 

 

sin( ) 0
2

l
J mg Gs s s/ - ?%%

 

( 11 ) 

Where J is the mass moment of inertia of the rod about the pin and m and l  are the mass  and 

length of the rod, respectively. 

 

( )x v

 

Non-dimensional time 
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FIGURE 9 – INVERTED PENDULUM 

 

The equilibrium states for this system are given by setting 0s ?%% : 

 

sin( )
2

E E

l
mg Gs s?  

( 12 ) 

which has solutions (i) 0
E

s ?  and (ii) sin( ) (2 )
E E

G mgls s? . The constant G  has dimensions of 

torque and one can set G nmgl? , where n is an arbitrary number. Thus sin( ) 2
E E

ns s? , which for 

0.49n ?  has a root 0.35
E

rads ? ( 20 )… C . 

 

An interesting question is whether the states given by solutions (i) and (ii) are stable. 

 

One can address this by a perturbation approach, i.e., set 
E

s s g? - , 1g >> ; then equation ( 11 ) 

gives: 

sin( ) ( ) 0
2

E E

l
J mg Gg s g s g/ - - - ?%%  

 

Using a trigonometric relation and noting that sin( )g g…  and cos( ) 1g … , one obtains:  

 

sin( ) cos( ) ( ) 0
2 2

E E E

l l
J mg mg Gg s s g s g/ / - - ?%%  

 

Using solution (ii), one finds: 

 

( cos( )) 0
2

E

l
J G mgg s g- / ?%%  

( 13 ) 

Rigid rod – Moment of 

inertia about pin: 

 

2

3

ml
 

Torsional spring – Restoring 

moment: Gs  

s

g
 

l  
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Setting 0.49G mgl? , equation ( 13 ) gives: 

 

1
(0.49 cos( )) 0

2
E

J mglg s g- / ?%%  

( 14 ) 

Case 0
E

s ?   

 

Equation ( 14 ) becomes: 

 

(0.01) 0J mglg g/ ?%%  

 

This has solutions of the form exp( (0.01 / ) )mgl J t‒  which predicts growth with time; 0
E

s ?  is 

unstable. What ultimately happens can not be predicted by equation ( 14 ), since the linearization 

process breaks down. One must address this issue by solving the non-linear equation ( 11 ),which 

has to be done, usually, numerically.  

 

Case 0.35
E

rads ?   

 

Equation ( 14 ) becomes: 

(0.0199) 0J mglg g- ?%%  

 

This has solutions of trigonometric form and the state is stable (bounded).  

 

Introducing the non-dimensional time ( )g l tv ? , setting 0.49G mgl?  and 
2

3

ml
J ? , equation        

( 11 ) becomes:  
2

2

3
sin( ) 1.47 0

2

d

d

s s s
v

/ - ?  

( 15 ) 

A plot of the numerically obtained response for s  as a function of the non-dimensional time is 

given in FIGURE 10. The initial conditions were taken to be 01.0)0( ?s  (which is in the vicinity 

of the unstable state) and 0)0( ?vs dd . It is seen that the motion initially grows but finally 

reaches a bounded oscillatory state about the equilibrium point (solution (ii)). The oscillations 

are not symmetric about the equilibrium state, which can be explained by noting that for angles 

smaller than 0.35rad  the “restoring force” term in equation ( 15 ) is weaker than for large values 

of the angle, leading, consequently, to larger amplitudes (see FIGURE 11 below).  

 

A plot of the “restoring force” is given in FIGURE 11. Note that the term is negative for angles 

smaller than 0.35rad , which could cause unstable response of the system described by equation  

( 15 ). However when the angle grows to larger values the term becomes positive leading to 

bounded oscillations.  
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FIGURE 10 – INVERTED PENDULUM RESPONSE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11 – RESTORING FORCE TERM FOR INVERTED PENDULUM 
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Forced oscillator with time-dependent frequency excitation 

 

In determining resonant frequencies in practice frequently sweep tests are used, that is tests in 

which the applied forcing function has a frequency which continuously changes with time (see 

Lalanne, reference 
[5]

). This shortens the duration of the test, but if the sweep rate is too high 

resonances may be missed. Intuitively this may be seen on looking at the forced motion solution 

exactly at resonance, that is, the solution to: 

 
2

2 0

2
sin( )

Fd x
x t

dt m
y y- ?  

 

MAPLE® gives the following solution: 

 

1 2

1 cos( )
( ) sin( ) cos( )

2

t t
x t C t C t

yy y
y

? - /  

 

Note the term that grows linearly with time (t), at least for the undamped case, showing that 

resonance requires time to build up. For moderate damping one could anticipate similar 

problems. 

 

To illustrate the fact that resonances may be missed, the following model problem is studied.  

 

Consider a single mass-spring-damper system with an excitation that has a time-dependent 

frequency. The non-dimensional equation of motion for the system is given below. 

 
2

12
sin( ( ) )

d x dx
c x

d d
p v v

v v
- - ?  

( 16 ) 

Here tv y?  is a non-dimensional time, where y is the undamped natural frequency, 

1
( )c c my?  ( c ? damping coefficient, m ? system mass) and x is a non-dimensional 

displacement (physical displacement divided by
0

F k ,
0

F = force amplitude, k =spring stiffness). 

The issue pursued is how much time the frequency of the excitation must remain at the resonant 

value for resonance to be observed.  

 

It is seen from equation ( 16 ) that when ( ) 1p v ?  the system is being forced at its undamped 

natural frequency and large, but bounded, response is anticipated. This can be observed in 

FIGURE 12, which shows the response of the system (zero initial conditions) obtained using 

MAPLE®. The following numerical values were used: 10m Kg? , 250 /k N m? , 5 /rad sy ? and 

10 /c Ns m?  (corresponding to a damping ratio of approximately 10% ). Note that in equation ( 

16 ) the amplitude of the non-dimensional forcing function is 1 and it would cause a non-

dimensional deflection of 1 if applied statically (hereafter referred to as the static deflection).  
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FIGURE 12 – RESPONSE AT RESONANCE CONDITION 

Now, a non-constant profile for the excitation frequency is considered. The excitation is taken to 

follow a trapezoidal profile; starting from zero it reaches the resonant value, remains at this value 

for a certain amount of time and then returns to zero. A typical profile is shown in FIGURE 13 

where the time spent at resonance (hereafter called “dwell time”) is approximately 1/3 of the 

period of undamped oscillations ( 2r ).  

 

Shown in FIGURE 14 is the response for a dwell time of approximately 6 times the period of 

undamped oscillations. The peak amplitude is seen to be about four times the static deflection 

and one would say resonance has occurred (as verified by the peak amplitude seen in FIGURE 

12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13 – EXCITATION TRAPEZOIDAL PROFILE 
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The response to an excitation for a dwell time of about 1/3 of the period is shown in FIGURE 15. 

It is seen that the peak amplitude is close to the static deflection and the result would not be 

interpreted as resonance. The sweep rate (dwell time) can not be too fast!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14 – RESPONSE TO TRAPEZOIDAL EXCITATION PROFILE I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15 – RESPONSE TO TRAPEZOIDAL EXCITATION PROFILE II 
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Conclusions 
 

In many institutions the required introductory courses now expose students to mathematics 

software such as MATLAB®, MAPLE®, etc. Advantage can be taken of this in beginning 

mechanics courses to explore some hitherto intractable problems which shed light on interesting 

and important dynamical phenomena. The examples presented were: (i) a comparison between 

some non-linear systems and their linearized counterparts; (ii) an exploration of the effect of 

time-dependent frequency on resonances; (iii) an illustration of the existence of multiple 

equilibrium states and their stability. 
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Appendix  
 
1) 

> #finite_difference 
> restart:with(linalg):with(plots): 
> h:=.05; 
> v(0):=0.0; 
> for i from 0 to 40 do; 
> v(1+i):=v(i)+h*(9.81-.5875*v(i)^2);c[i+1]:=[i*h,v(i+1)]; 
> end do; 
> ve:=4.0861*tanh(2.4008*t); 
> fig01:=plot(ve,t=0..2): 
> display(fig01); 
> subs(t=10,ve); 
> simplify(%); 
> subs(t=2,ve); 
> simplify(%); 
> fig02:=plot([c[1],c[2],c[3],c[4],c[5],c[6],c[7],c[8],c[9],c[10],c[11], 
> c[12],c[13],c[14],c[15],c[16],c[17],c[18],c[20],c[21],c[22],c[23],c[24 
> ],c[25],c[26],c[27],c[28],c[29],c[30],c[31],c[32],c[33],c[34],c[35],c[ 
> 36],c[37],c[38],c[39],c[40],c[41]],style=point,symbol=box,color=black) 
> : 
> display(%); 
> plots[display]({fig01,fig02}); 
2) 

> #non_linear_pendulum 
> restart: 
> evalf(convert(1.55,degrees)); 
> with(DEtools):with(plots): 
> eq1:=diff(x(t),t,t)+sin(x(t))=0; 
> ic1:=x(0)=.1,D(x)(0)=0; 
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> ic2:=x(0)=1.55,D(x)(0)=0; 
> sol1:=dsolve({eq1,ic1},{x(t)},type=numeric,method=rkf45,output=listpro 
> cedure); 
> odeplot(sol1,[t,x(t)],0..10); 
> plot1:=odeplot(sol1,[t,x(t)],0..30,color=blue,numpoints=100): 
> yproc1:=> rhs(sol1[2]); 
> t1:=fsolve(yproc1(x)=0, x=0..3); 
> t2:=fsolve(yproc1(x)=0, x=3..6); 
> t3:=fsolve(yproc1(x)=0, x=6..9); 
> period1:=(t3-t1); 
> sol2:=dsolve({eq1,ic2},{x(t)},> 
type=numeric,method=rkf45,output=listprocedure); 
> odeplot(sol2,[t,x(t)],0..10); 
> plot2:=odeplot(sol2,[t,x(t)],0..30,color=orange,numpoints=100): 
> yproc2:=rhs(sol2[2]); 
> t1:=fsolve(yproc2(x)=0, x=0..3); 
> t2:=fsolve(yproc2(x)=0, x=5..6); 
> t3:=fsolve(yproc2(x)=0, x=8..10); 
> period2:=(t3-t1); 
> display([plot1,plot2]); 
> difference:=(period2*100)/period1; 
3) 

> #non_linear_oscillator 
> with(DEtools): 
> with(plots): 
> f:=x-.1*x^3; 
> plot(f,x=0..3.5); 
> eq:=diff(x(t),t,t)+x(t)-.1*x(t)^3=0; 
> ic1:=x(0)=.01,D(x)(0)=0; 
> ic2:=x(0)=2,D(x)(0)=0; 
> ic3:=x(0)=3.2,D(x)(0)=0; 
> sol1:=dsolve({eq,ic1},{x(t)},type=numeric); 
> odeplot(sol1,0..9); 
> sol2:=dsolve({eq,ic2},{x(t)},type=numeric); 
> odeplot(sol2,0..35); 
> sol3:=dsolve({eq,ic3},{x(t)},type=numeric); 
> odeplot(sol3,0..9); 
4) 

> #inverted_pendulum 
> with(plots): 
> t1:=-sin(x)+.98*x; 
> plot(t1,x=0..1); 
> fsolve(t1,x=0..1); 
> with(DEtools): 
> eq:=diff(x(t),t,t)-sin(x)/2+.98*x(t)=0; 
> ic1:=y(0)=.01,D(y)(0)=0; 
> ic2:=x(0); 
> t2:=sin(x)-.98*x; 
> plot(t2,x=0..2); 
> fsolve(t2,x=0..1); 
> .347*180/3.14159; 
> eq1:=diff(y(t),t,t)-3*sin(y(t))/2+1.47*y(t)=0; 
> sol5:=dsolve({eq1,ic1},{y(t)},type=numeric); 
> odeplot(sol5,0..200,numpoints=1000); 
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5) 

> #sweep_test 
> restart: 
> with(linalg):with(plots):with(DEtools): 
> eq10:=(diff(x(t), `$`(t, 2)))+c1*(diff(x(t), t))+x(t)-sin(nu(t)*t); 
> k1:=(omega^2)/(omega0^2); 
> c1:=(c0)/(m*omega0); 
> #a1:=a01/(m*omega0^2); 
> m:=10;k:=250;c0:=10;a01:=25; 
> omega:=sqrt(k/m); 
> eq10; 
> eq20:=eq10; 
> # 
> omega0:=omega; 
> # 
> eq30:=(algsubs(sin(nu(t)*t)=0,eq10)); 
> eq40:=algsubs(diff(x(t),t$2)=A^2,eq30);eq40:=algsubs(diff(x(t),t)=A,eq 
> 40);eq40:=algsubs(x(t)=1,eq40); 
> zeta:=coeff(eq40,A,1)/(2*sqrt(coeff(eq40,A,0)/coeff(eq40,A,2))); 
> zeta1:=c0/(m*2*omega); 
> period:=evalf(sqrt(coeff(eq40,A,2)/coeff(eq40,A,0))*(2*Pi)); 
> damp_period:=evalf(period*sqrt(1-zeta^2)); 
> sol000:=dsolve({eq30,x> (0)=0.0873,D(x)(0)=0},{x(t)},type=numeric, 
> method=gear,output=procedurelist); 
> odeplot(sol000,[t,x(t)],0..omega0,numpoints=500,color=black,labels=["t 
> ime","disp"]); 
> odeplot(sol000,[t,x(t)],0..100*omega0,numpoints=500,color=black,labels 
> =["time","disp"]); 
> odeplot(sol000,[t,x(t)],0..10*omega0,numpoints=500,color=black,labels= 
> ["time","disp"]); 
> eq10; 
> nu:=1; 
> sol001:=dsolve({eq10,x(0)=0.0,D(x)(0)=0},{x(t)}, type=numeric, 
> method=gear,output=procedurelist); 
> # 
> odeplot(sol001,[t,x(t)],0..50*omega0,numpoints=500,color=black); 
> # 
> nu:='nu'; 
> duration:=6.28/3; 
> ###################################################################### 
> for i from 1 to 1 do 
> nu(t):='nu(t)'; 
> eq20: 
> a:=1;b:=a+duration;c:=a+b; 
> nu(t):=1/a*t*Heaviside(t)*Heaviside(a-t)+Heaviside(t-a)*Heaviside(b-t) 
> -1/a*(t-c)*Heaviside(t-b)*Heaviside(c-t); 
> plot(nu(t),t=0..c); 
> eq20; 
> sol002:=dsolve({eq20,x(0)=0.0,D(x)(0)=0},{x(t)}, type=numeric, 
> method=gear,output=procedurelist): 
> odeplot(sol002,[t,x(t)],0..10*omega0,numpoints=500,color=black,labels= 
> ["time","disp"]);odeplot(sol002,[t,x(t)],0..50*omega0,numpoints=500,co 
> lor=black,labels=["time","disp"]); 
> duration:=duration+1.884;nu(t):='nu(t)'; 
> end do; 
> ###################################################################### 
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