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Agent-Based Modeling and Simulation of Depression and Its
Impact on Students’ Success and Academic Retention

Abstract

In the U.S., major depressive disorder affects approximately 14.8 million American adults.
Furthermore, depression can lead to a several other illnesses and disabilities. Economic burden of
depression is estimated to be $53 billion annually in the U.S. alone. Depression can reach high
levels that can lead to suicide, the third leading cause of death among the U.S. college-aged
population.

Studies show a direct relation between mental health and academic success. In particular,
depression is a significant predictor of lower GPA and increased drop out rate. A 15 point
increase on the depression scale correlates with a 0.17 drop in GPA and corresponds to a 4.7
percent increase in probability of dropping out. High dropout rates also adversely impact both
universities and society.

In this work, we construct and exercise an agent-based model (ABM) of the evolution of
depression among a population of roughly 19,000 college students. This model includes
within-agent interactions among depression symptoms and agent-to-agent interactions defined by
a college student social network. We conduct simulation studies to identify (model) parameters
and initial conditions that most influence population outcomes. Connectivity among within-agent
symptoms is demonstrated to have a large effect on population levels of depression.

————————————————————

Introduction

Background

Dropout rates of engineering students are high in the United States1,2. Increased dropout rates
have negative impacts on students, institutions and society. From a student’s perspective, quitting
school can lower self-confidence and self-esteem3. From an institutional perspective, student
dropouts represent a loss of talented students and indicate an institution’s lack of attention to the
needs of students4. Dropout rates effect society. The cost to the nation of these dropouts
amounted to $4.5 billion in lost earnings and taxes to state and federal governments in 20125.
Factors contributing to students’ dropping out include preparation, ability, motivation,



engagement within the institution, college grade point average, financial aid, age, ethnicity and
socioeconomic status6,7,8,9.

Another important factor in withdrawing from school is side effects resulting from social
interactions among students including friends, classmates, and roommates10,11,12,13. Depression is
contagious14,15,16,17,18,19,20,21, meaning that it can spread from person to person through different
types of social contacts, such as face-to-face interactions and online social media. Studies show a
direct relation between mental health and academic success. Students report depression and
anxiety among top impediments to academic performance22. Sixty four (64) percent of young
adults who are no longer in college cite a mental health-related reason for not attending23. In this
work, we use agent-based modeling (ABM) to simulate the evolution of depression within a
synthetic social contact network of undergraduate students at a large university.

Motivation for Agent-based Modeling of Depression

ABM of depression is important for several reasons. First, there has been much data gathered and
analyzed since at least the 1970s regarding factors that affect academic retention and attainment.
These data can be used to develop and inform social behavior models that can be used in
simulations. Second, simulations resolve behaviors in time. This is often critical for
understanding causality and how local agent behaviors give rise to population-level outcomes.
This is fundamentally different from performing statistical analyses using final outcomes24.
Third, simulations on appropriately labeled agents that compromise a population (e.g., in the form
of social networks) can produce disaggregated results. Validated models can also be used in other
settings (e.g. for different academic institutions), and can be exercised to explore counterfactuals.
Finally, results from ABMs can inform experimental studies, including surveys and
human-subjects testing. This is because ABMs can be exercised to identify which variables have
the most impact on outcomes. These are the variables that are most important to characterize
through experiments. Hence, there is a feedback loop between experiments and modeling.

Contributions

A summary of our major contributions follows.

1. A synthetic population of 19,000 college undergraduates. A social network of the state of
Virginia was generated using the procedure in25 and used as the starting point for our work. The
social network contains synthetic individuals whose traits match in distribution the attributes of
the actual population. From this network, we extracted college students (those agents in the age
range 18-22 years that have college activities and are located in the vicinity of a major university).
Edges in the original social network are retained if the incident vertices are both college students.
This produces a social network of 18,866 students (agents) and 119,139 pairwise student daily
interactions.

2. Agent-based model of depression. We extend a model of within-host depression evolution26

to include the effects of social interactions. Consequently, our model accounts for internal,
environmental, and social factors of the evolution of depression, consistent with many research



studies17,18,19. In particular, each agent has an internal network with 14 vertices that represent
depressive symptoms. These symptoms can influence each other and we take these interactions
from the literature. Each agent is connected to peer students in the social network with whom she
comes in contact. Influence is transmitted through the edges. A student becomes depressed if a
sufficient number of symptoms becomes activated through within-host and external interactions.
A student may transition back and forth between depressive and healthy states.

3. Simulation of depression in a college population. We code the agent-based model in a
simulation system and exercise it using various inputs. We show that the number of depressed
students changes with the strength of influence in the symptom interactions and in the social
network. We explore the effect of initial conditions, and illustrate the interesting result that
within-agent symptom connectivity changes the magnitude of the steady state level of depression
within the population.

Related Work

Depression is a primary factor for dropping out, and it can spread from person-to-person through
social interactions, as stated in the Introduction. Several studies also identify peer influence as a
main trigger for dropping out. Peer influence can exist in many forms. Mayer27 found, for high
school students, that the better a student’s peers performed in school, the more likely the student
is to drop out. Gaviria28 also found peer-based effects for dropping out of high school. Crane29

proposes a contagion (i.e., peer influence) approach to understanding social problems (including
school dropping out), using an epidemic-like approach that is similar in spirit to the first
epidemic-inspired social model30. The model is closely related to segregation models31 and
threshold models32,33,34. A relatively recent overview of contagion-like influence is given in35.
Bank36 identified different types of influence on students’ persistence such as peer, faculty, and
parental influences. Parents and peers were found to have stronger influences than were the
faculty on the persistence of students.

Pyari37 investigated the effects of anxiety among medical and engineering students. Results
showed that medical students exhibited low anxiety in comparison to engineering students.
Between 42% and 48% of PhD students in science and engineering at the University of California
are depressed38. Vitasaria39 studied the relationship between anxiety and academic performance.
Results showed a significant correlation of high level anxiety and low academic performance
among engineering students.

Students may find difficulty in keeping up with schoolwork; 36 percent of the students reported
feeling frequently stressed40. No student reported a complete lack of worry about keeping up with
schoolwork. Twenty-five percent of students reported frequent inability to pursue non-academic
activities due to lack of time. Ten percent reported feeling most of time that they did not have a
social life, while another 41 percent reported occasionally feeling this way. These life imbalances
can eventually contribute to development of depression. Another study41 revealed relationships
between mental health and year of study, academic program, and gender. Rizwan42 found factors
that affect the stress level of female engineering students. Results indicate that teachers’
discouraging attitudes have the strongest effect on the stress levels of female engineering



students. A study43 by Cornell’s College of Engineering involving 35.5% of the student
population showed that the main sources of stress for engineering students include heavy
workloads in engineering courses, large amount of time needed to finish assignments, not enough
sleep, competition with classmates, and inflexibility of the Engineering curriculum.

Astin44 in the theory of involvement, proposed that the greater the student’s social involvement in
college, the greater the student’s learning and personal development and the less likely she is to
leave. In the theory of attrition, Bean45 identified three categories of reasons leading to student
attrition: 1) background, 2) organizational and environmental factors, and 3) attitudinal and
behavioral outcome. Spady46 proposed a theory based on the use of Durkheim’s47 theory of
suicides to explain freshman attrition. Spady’s theory was the basis of Tinto’s work48. It states
that when a person shares values with a group, this person is less likely to commit suicide (or by
analogy, drop out of school). Tinto identified in the interactionist theory three reasons for student
departure: 1) academic difficulties, 2) inability of students to achieve their goals, and 3) failure to
adapt to the institution social environment. Tinto’s model focused more on academic and social
integration.

Most of the mentioned studies follow an experimental or clinical approach, and may use
quantitative, qualitative or mixed-method techniques to study student drop out phenomena and
leading causal factors. These studies involve human subjects as well. Other studies take another
approach through the use of agent-based modeling to study depression. Aziz49 proposed a
dynamic agent model of recurrences of depression for an individual. Borkulo26 shows the effect
of interactions among different depression symptoms, which is called the causal interactions
network. Both50 proposed another model that has been used to simulate different scenarios in
which personal characteristics determine the effect of stress on the (long-term) mood of a person.
These agent-based models simulate the evolution of depression within a single agent/person. Our
model goes beyond this point to simulate the evolution of depression both within a single agent
and across agents of a population.

These theories, studies, and experiments indicate that depression is a major contributor to
dropping out of school. Thus as a first step, we model the evolution of depression within agents
and its transmission across agents. The results from simulations will be useful in follow-on work
to forecast the impact on retention.

Data and Methodology

College Social Network

We use a realistic college population over which we study depression dynamics and peer
influence. We model the undergraduate student body of a large university. A modeling process25

was used to construct this population, which creates anonymous students and endows them with
traits such as age, gender, and sets of activities that result in daily face-to-face interactions with
other students. The result of this process is a college social network, where nodes/agents
represent students and undirected edges represent interactions between students.

To produce this network, we start with the social contact network of the state of Virginia. We then



extract from this network all people with age between 18 and 22 (inclusive) years that have at
least one edge (i.e., interaction) with another college-age student, and who are geographically
located in the vicinity of a particular public university. These agents and their interactions in a
normative day form the social network, whose traits are given in Table 1. An agent has roughly 12
interactions a day with other students. There are over 200,000 “friend of friend” relationships
(i.e., triangles) in the network. The diameter of the network is quite large compared to many
social networks. Although there are 105 connected components, the network has a giant
component that contains 98.7% of all nodes (agents).

Table 1: College network structural characteristics.

Network Property Description Value
Number of Nodes Total number of students 18866
Number of Edges Total number of peer-to-peer interactions 119139
Number of Triangles Number of student groups of size three and form

a cycle
202318

Average Degree Average number of edges connected to a node 12.63
Diameter Longest of all the calculated shortest paths in the

network
16

Average Path Length Sum of shortest paths between all pairs of nodes
divided by the total number of pairs

4.785

Density Ratio of the number of edges to the number of
possible edges

0.001

Modularity Fraction of edges that fall within a group, minus
the expected number of edges within group

0.484

Number of Communi-
ties

Number of node groups in the network 151

Average Clustering
Coefficient

Measure of the degree to which the nodes tend to
cluster together

0.348

Number of Connected
Components

Number of node groups that are mutually reach-
able by undirected edges

105

Size of Giant Compo-
nent

The fraction of nodes in the largest connected
component

0.987

Contagion (Behavioral) Model

We propose a model that quantifies the diffusion of activated depression symptoms among
students. The model accounts for the major factors that affect the dynamics of depression. We
study two types of dynamics: (i) internal dynamics within a single agent and (ii) external
dynamics between agents. Internal dynamics describe how depression evolves within a student as
a result of symptom interactions. Symptoms include depressed mood, loss of interest, weight loss,
weight gain, decreased appetite, increased appetite, insomnia, hypersomnia, psychomotor
agitation, psychomotor retardation, fatigue, worthlessness or guilt, concentration problems, and
suicidal thoughts26. It is based on the hypothesis that symptoms of mental disorders have direct



causal relations with one another and is called the causal network perspective51,52,53,26. External
dynamics focus on a student’s peer interactions with her roommates, classmates or friends. The
social contact network edges are the external interactions.

Our modeling approach follows graph dynamical systems (GDSs)54. A GDS is composed of four
elements: (i) a network G(V,E) with edge set E and vertex set V where n = |V | and m = |E|;
(ii) a set K of vertex states (a vertex is in one of these states at each time t in a simulation); (iii) a
set F of vertex functions (one function fi for each vertex/agent i); and (iv) a specification W of
the order in which vertex functions are executed. Figure 1 shows an illustrative example of a
six-agent network, with an internal view of two agents 4 and 6. Within-agent edges represent the
causal relations between symptoms of that agent, while undirected edges across agents are the
peer interactions. In the following discussion, we will refer to the internal symptom network as
G1, and to the across agent network as G2.

In Figure 1, there is a single edge between agents 4 and 6. This single edge represents the
multiple edges between symptoms of agents 4 and 6. We do not show all of these to reduce
clutter. In general, each symptom of agent 4 can be connected to any number of symptoms of
agent 6. In this work we confined ourselves to between-agent edges that connect the same
symptoms, so there are 14 edges between the symptoms of agents 4 and 6.

In our model, the network is described as G(V,E) where G is a composite graph of G1 and G2.
G1(V 1, E1) is the undirected graph of depressive symptoms within each student, and is fixed for
all students. It represents the causal network of within-host symptom interactions. The set V 1 is
the vertex set of symptoms, n1 = |V 1| = 14. Let v1ki ∈ V 1 be the stress-generating symptom k for
agent i. The edge set E1 represents the direct causal relations between two symptoms where
e1kl,i ∈ E1 is the undirected edge between symptoms k and l for agent i and m1=|E1| = 17 (see
Figure 1). The state x1ki of v1ki is either 0 if symptom k is not activated or 1 if it is. The state set
K1 = {0, 1}.

Graph G2(V 2, E2) is the network describing the student contacts in the population, where V 2 is
the vertex set of (human) agents and E2 is the edge set of their daily interactions, n2 = |V 2| and
m2=|E2|. For this problem, n2 and m2 are given in Table 1. Each element v2i ∈ V 2 is a student i
that can be considered a supernode, that contains a graph G1 describing internal dynamics. Each
edge in E2 represents a set of connections between pairs of symptoms in neighboring agents.
Specifically, ek1i,k2j represents an undirected edge between symptom k1 of agent i and symptom
k2 of agent j. Throughout this study, to simplify simulations and interpret results, we take
k1 = k2. That is, only the same symptoms are connected between two neighboring agents in the
social network. This choice conforms to research findings55,56,57, which show that homophily in
depression symptoms may stem from peer influence.

The set K2 of agent vertex states is defined as K2 = {0, 1}. Student i can be in one of two states,
healthy x2i = 0 or depressed x2i = 1. A student is considered depressed if there are eight or more
developed/activated symptoms. Thus, an agent can transition back and forth between depression
and no depression depending on its number of activated symptoms. The probability for symptom
v1ki to become activated is represented as p1ki.

Two types of vertex functions are presented in the model: The set F 1 of vertex functions f 1
ki

determines the state of each stressing symptom v1ki for student v2i at time step t. The set F 2 of



Figure 1: Illustrative example network, showing local interactions between two students labeled
4 and 6, who are part of a larger student population of six agents; this is network G2. The color
of symptoms in the two large circles determine the symptom state which can be orange (active)
or green (inactive). Each within-agent symptom network is an instance of G1. The total number
of active symptoms determines whether the agent will be in a healthy or a depressed state. For
example, agent 6 has 8 active symptoms, and as a result, the agent color turns to orange (depressed).
The with-in agent network is taken from26.

vertex functions f 2
i determines the state of each student v2i at each time step t. (See Table 2.)

The specification W of the order in which every f 1
ki and f 2

i is executed, is as follows. At each
time t, each agent i computes the state x1ki for symptom k, using f 1

ki. Then each agent i executes
f 2
i to determine the state x2i at time t. An agent i is depressed if x2i = 1 and not depressed if
x2i = 0. As we will see below, because of the forms of f 1

ki and f 2
i , each agent can perform these

computations in parallel. The critical number τcrit of activated symptoms causing a person to
change state is τcrit = bn1/2c. That is, at least one-half of a person’s symptoms must be activated
to cause a person to transition to, or remain in, state 1.

Definitions of each variable and constant are provided in Table 2. The values for a1ki and b1ki are
based on the VATSPUD data used in58,59. The variable A1

ki is the total amount of stress on
symptom v1ki. It consists of (i) the individual stress level z1ki, (ii) the amount of external activation
c2i (the amount of stress on the symptom network for student v2i ), (iii) the influence of the
activation of neighbors of symptom v1ki, which is denoted by q1ki, and (iv) the student’s peer
influence on symptom v1ki denoted is by r2ki. The variable q1ki depends on whether or not the



Table 2: List of model variables and user input parameters. rnd denotes a random number in [0, 1].

Name Definition Type Range Equation
p1ki Activation probability for symptom v1ki

in G1.
R [0, 1] 1

1+e
a1
ki

(b1
ki
−A1

ki
)

A1
ki Total amount of stress on symptom v1ki

in G1.
R [−∞,+∞] z1ki + c2i + q1ki + r2i

r2ki Student’s peer influence in G2. N2(v2i )
is the set of peers (distant-1 neighbors)
for student v2i . w2

ij is edge weight be-
tween student v2i and student v2j whose
state is x2j .

R [0,+∞]
∑

v2j∈N2(v2i )
(w2

ijx
1
kj)

q1ki Symptom’s distant-1 neighbors influ-
ence in G1. N1(v1ki) is the set of neigh-
bors for symptom v1ki. w1

kici is edge
weight between symptoms v1ki and v1ci
whose state is x1ci.

R [0,+∞]
∑

v1ci∈N1(v1ki)
(w1

kicix
1
ci)

τ 2i Number of activated symptoms for stu-
dent v2i .

N [0, 14]
∑n1−1

k=0 f 1
ki

c2i Amount of stress on symptoms net-
work in student v2i .

R [−8, 8] Model Parameter

z1ki Individual stress level of symptom v1ki. N [−5, 5] Model Parameter
a1ki Symptom-specific parameter controls

steepness of p1ki.
R [−∞,+∞] Model Parameter

b1ki Symptom-specific parameter for the
threshold of symptom v1ki.

R [−∞,+∞] Model Parameter

w1
kici Edge weight between symptom v1ki and

symptom v1ci within same agent i in G1.
R [0, 1] Model Parameter

w2
ij Edge weight between student v2i and

student v2j in G2 (i 6= j). This is
the weight between all corresponding
symptoms of two agents.

R [0, 1] Model Parameter

f 1
ki Symptom k of agent i state transition

function in G1.
N {0, 1} f 1

ki =

{
1 if p1ki − rnd > 0

0 otherwise

f 2
i Student’s i state transition function in

G2.
N {0, 1} f 2

i =

{
1 if τ 2i > τcrit

0 otherwise



symptom’s neighbors are activated and on the strength of the connection between the activated
neighbor and symptom v1ki. The variable r2ki quantifies peer influence in G2 and depends on
whether or not the symptom vki of student i’s direct contacts (e.g., roommates, classmates or
friends) are activated and on the strength of the relation between the depressed student and her/his
peer v2j .

We relate particular equations in Table 2 to the GDS model and networks of Figure 1. First, the
equation for q1ki captures the interactions among symptoms of the within-agent network G1. For
symptom k of agent i, N1(v1ki) denotes the neighbors v1ci for symptoms c. The states x1ci of these
distance-1 neighboring symptoms, along with the edge weights w1

kici between symptoms k and c,
contribute to the next state of symptom v1ki through q1ki.

Second, r2ki captures social influence on agent i in G2. For each of the neighbors vj of vi in G2,
the symptom vkj influences the symptom vki of vi. Here, we take the strength w2

ij of the
interaction between corresponding symptoms of two agents i and j as the same for all
symptoms k. We further assume that only corresponding symptoms interact. Neither of these
assumptions is limiting and can be relaxed. In this case, then, the general interaction term r2ki
would be r2ki =

∑
v2j∈N2(v2i )

(∑n1−1
k′=0 (w

2
k′jkix

1
k′j)
)

. In this case, w2
k′jki is the weight of an edge in

G2, the social network, between symptom k′ in v2j and symptom k in v2i . If no such edge exists,
the weight is zero. The outer sum in the last equation is over all neighbors of v2i .

Third, the state of depression of an agent i is computed in a two-step process. At each time t, f 1
ki

is computed and symptom k of agent i is activated if f 1
ki = 1. Then, f 2

i is evaluated by
determining whether τ 2i —the number of activated symptoms—is more than one-half of symptoms
for agent i. If so, then the agent i is depressed. Note that in these equations, an agent j may not be
depressed, but if it has activated symptoms, then it can contribute to the depression of its
neighbors. Note also that the depressive state x2i of an agent i is not directly used in the
depression evaluation of its neighbors.

Model Behavior

The model has many parameters. Here we focus on the effects of stress level z1ki, edge weight w2
ij ,

and agent’s degree in the social network on the activation probability p1ki of symptoms, since
activated symptoms govern depression of agents. We fix all other factors. Figures 2(a) shows the
effect of varying the symptom individual stress z1ki from -5 up to 5 on symptom activation
probability for all 14 symptoms. Other factors c2i , z

1
ki and w2 are set to 0, 0 and 0.5 respectively.

We use w2 as the value of w2
ij for all i and j, as seen in Table 2. Symptom 0 contributes the most

to the increase in activation probability. Differences in results across symptoms are large for z1ki
between 0 and 3.

In Figure 2(b), we investigate the effect on the activation probability of symptom 0 for each agent
of increases in the numbers of depressed friends and changes in edge weights w2. Other factors c2i
and z1ki are set to 0. As the number of depressed friends increases, the internal symptom’s
activation probability increases. This effect is more pronounced as w2 increases. This leads to an
increase in the number of active symptoms and hence to an increase in the vulnerability to
depression.



We repeated the experiment but now with all of the symptoms. The weights w2 were fixed to 0.05
and factors c2i , z

1
ki are set to 0. The results are shown in Figure 2(c). We find the same effect of

depressed friends on all symptoms, but the magnitude in activation probability changes across
symptoms. These results are expected as symptom 0 is highly connected in the symptom network
of Figure 1.

(a)

(b) (c)

Figure 2: Results for the depression model. (a) The changes in symptom activation probabilities
for all symptoms as a function of stress level for each symptom. (b) The changes in symptom
activation probability for symptom 0 as a function of number of depressed neighbors and the
strength of peer influence. (c) The changes in symptom activation probabilities for all symptoms
as a function of number of depressed neighbors.

Simulation Description

Simulation starts at time t = 0. At each time step, a symptom v1ki within student v2i has a state x1ki,
and its function f 1

ki computes the symptom state change from state x1ki(t) at time t to state
x1ki(t+ 1) at time t+ 1. Similarly at each time step, a student v2i has a state x2i , and its function f 2

i

describes how the student changes her depressive state from state x2i (t) at time t to state x2i (t+ 1)
at time t+ 1 based on the number of activated symptoms at time t+ 1. Healthy students are
susceptible to depression at any time based on their current state and their peer influence.
Students may also develop some symptoms based on external sources, such as experiencing or
watching stressful events.



The main simulation steps are described in Algorithm 1, which is the entry point for the
simulation. It describes how students’ states change over time based on the current number of
activated symptoms. The process of identifying and counting activate symptoms is described in
Algorithms 2 and 3. We take simDuration = 12 (months) and depressionThreshold = 8.

Algorithm 1: depressionDevelopment
Input: Simulation parameters, including simDuration and depressionThreshold
Output: Students’ depressionStatus
simTime = 0;
while simTime < simDuration do

foreach v2i ∈ V 2 do
n←− countActiveSymptoms(i, k, a1ki, b

1
ki, z

1
ki, c

2
i , r

2
ki, v

1
ki, N

1(v1ki), N
2(v2i ), v

2
i );

if n >= depressionThreshold then
depressionStatus←− 1;

else
depressionStatus←− 0;

simTime←− simTime+ 1;

Algorithm 2: countActiveSymptoms
Input: i, k, a1ki, b1ki, z1ki, c2i , r2ki, v1ki, N1(v1ki), N

2(v2i ), v
2
i

Output: count
count = 0;
foreach v1ki ∈ V 1 do

p1ki ←− activationProbability(i, k, a1ki, b
1
ki, z

1
ki, c

2
i , r

2
ki, v

1
ki, N

1(v1ki), N
2(v2i ), v

2
i );

rnd←− uniformRandomNumber();
if p1ki − rnd > 0 then

symptomState←− 1;
count←− count+ 1;

else
symptomState←− 0;

return count;

Simulation Results

Effect of strength of peer influence on the number of depressed students

We start by assuming that all agents are depression symptoms free. We evaluate the impact of
peer influence on the final number of depressed students. We fix the model input parameters c2i ,
z1ki and w1

kici to 0.5, 0 and 0.5 respectively. We systematically increase the edge weights w2

between agents from 0.005 to 0.5. We use w2 as the value of w2
ij for all i and j. Peer influence r2ki



Algorithm 3: activationProbability
Input: i, k, a1ki, b

1
ki, z

1
ki, c

2
i , r

2
ki, v

1
ki, N

1(v1ki), N
2(v2i ), v

2
i

Output: p1ki
r2i ←− 0;
q1ki ←− 0;
foreach v1ci ∈ N1(v1ki) do

q1ki ←− q1ki + w1
kicix

1
ci;

foreach v2j ∈ N2(v2i ) do
r2ki ←− r2ki + w2

ijx
1
kj;

A1
ki ←− c2i + q1ki + r2ki + z1ki;

p1ki ←− 1

1+e
a1
ki

(b1
ki
−A1

ki
)
;

return p1ki;

increases as w2 increases, as seen in Table 2. Each curve in the results of Figure 3(a) represents
the average results from 50 simulation runs. Each curve also corresponds to a single value of w2

for all edges in the social network. As w2 increases, the peer influence increases, and the number
of depressed students increases. When w2 increases by 67%, from 0.03 to 0.05, the number of
depressed students increases by a factor of six, from 400 to 2400. Hence, we see the importance
of modeling between-agent interactions through the social contact network.

Effect of strength of symptom influence on number of depressed students

We study the symptom influence within the same agent. All agents are initially depression
symptom free. We fix other factors, including the peer influence, to isolate this effect. The fixed
values for model parameters c1i , z

1
i and w2 are 0.5, 0 and 0.05 respectively. The results are shown

in Figure 3(b). We take w1
kici = w1, for all symptoms k and c, and all agents i. As w1 increases by

2.5×, from 0.2 to 0.5, the average number of depressed students increases by 16×, from 150 to
2400. The fraction of depressed students increases from 0.8% to 12.7%.

Students predisposed to depression

Students may start their college years with symptoms and signs of depression. In previous
simulations we assumed that the entire population is free of depression symptoms. In this
experiment, we study how pre-existing depression symptoms might affect the speed at which
depression spreads among students. Model parameters c1ki, z

1
ki, w

1 and w2 are set to values 0.5, 0,
0.5 and 0.05, respectively. We used p and n to represent the probability p of having n active
symptoms at time = 0. Figure 4(a) shows that as n and p increase, the speed of depression
contagion increases at early time. The final number of depressed students converges over
time.

As mentioned earlier, the 14 symptoms are connected through an internal causal network shown
in Figure 1 that has 2 connected components, including a giant component of 12 of the 14



(a) (b)

Figure 3: (a) The time evolution of number of depressed students, showing that as peer influ-
ence increases, the number of depressed agents increases. (b) The time evolution of number of
depressed students, showing that as the strength of symptom-to-symptom influence increases, the
number of depressed agents increases. These two plots illustrate the importance of capturing agent
interactions in the social network (in (a)), and capturing within-agent interactions (in (b)).

symptoms. In Figure 4(b), we examine this symptom connectivity and two different (extreme)
cases: all the symptoms are fully connected, and all are disconnected. The partially connected
curve corresponds to the connectivity shown in Figure 1. Results illustrate the impact of having
all symptoms fully connected in speeding the contagion process and having a larger number of
depressed students at steady state. These data suggest the interesting result that internal agent
connectivity dictates population level depression, at least for the conditions of these simulations.
Also, the results for the connectivity of Figure 1 are much closer to those for disconnected
symptoms than those for fully connected symptoms.

Another experiment on the symptom causal network aims to determine the effect of the most
important symptoms (those most highly connected) being initially activated. Importance of
symptoms is proportional to their degrees. Highest degree symptoms are (0, 1, 10 and 11) with
degrees (4, 3, 4 and 4), respectively. Lowest degree symptoms are (3, 5, 7 and 13) with degrees
(1, 1, 2 and 1), respectively. The results are shown in Figure 4(c). The results show that activating
the highest degree symptoms accelerates the depression at early times.

Discussion

Clearly our model is focused mainly on modeling and simulation of depression among students.
We are motivated by several studies, which are cited earlier in the Introduction and Related Work.
These studies identify and emphasize the importance of depression on a student’s academic
performance and retention. A 15 point increase on the depression scale correlates with a 0.17
drop in GPA and corresponds to a 4.7 percent increase in probability of dropping out60.
Therefore, we believe that the simulation results on depression can be used as the basis for
evaluating the impact of depression on retention.



(a)

(b) (c)

Figure 4: (a) The time evolution of number of depressed students, showing that as p and n increase,
the contagious speed of depression increases. (b) The time evolution of number of depressed
students, showing the impact of having all symptoms fully connected in speeding the contagion
process and having a larger number of depressed students at steady state. (c) The time evolution of
number of depressed students, showing the impacts of having the highest degree and lowest degree
symptoms initially activated.

Implications

In order to decrease the rate of depressed students, both students and universities must fully
understand the illness, the causes, and its effects. There is a need for developing programs that
improve prevention, identification, and treatment of depression. Collected data reveals that
around three percent of first-year students experiencing depressive symptoms seek help and
counseling services61. Another study showed that living off campus was related to less
knowledge of campus mental health services62. Existing programs focus on within-student
depression symptoms. Considerations should also be given to the contagious aspect of depression
through peer influence. Both students and universities need to be able to identify risk factors,
external stressors, and signs and symptoms of the disease.

Some work63 suggested that university mental health programs can also benefit from adapting
ideas that have already shown promising results in settings outside of college campuses, such as
interventions that have been effective in general populations of adolescents or young adults. Some
of Tinto’s recommendations64 to promote retention can be utilized to control depression through
providing academic, social and personal support, particularly in and before the first year, and



showing students that they are valued. Student led organizations may help lessen major
depression stressors while also providing a secure social network for those who are at high risk of
suffering from depression65.

Conclusions and Future Work

Conclusions

In this work, we construct and exercise a causal agent-based model (ABM) of the evolution of
depression among a population of college students. Like other models66,49,50, we model the
evolution of depression-related traits within each agent (this is where other studies stop, treating
each person of a population as an isolated individual). Our within-agent model makes use of the
model in26. Our approach goes beyond this point, and is novel in several respects, which form our
contributions. First is the generation and use of a synthetic college population over which these
dynamics occur. Second, we extend a model of within-host depression evolution to include the
effects of social interactions. Finally, we code the agent-based model in a simulation system, and
conduct simulations to understand population-level results that are produced from local agent
interactions. We explore the effect of initial conditions, and among other findings, illustrate the
interesting result that within agent connectivity changes the magnitude of steady state depression
within the population.

Future Work

Our future work includes conducting simulation experiments on students populations of different
universities (e.g. teaching vs. research and state vs private). As stated in the Related Work,
several factors can affect the student’s academic retention. Therefore depression data can not be
used solely to inform a student’s future behavior. We will investigate adding agent domain
attributes to the model (e.g. income, marital status and medical history, gender or ethnicity), and
examine how the model will behave.
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