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Work-in-Progress: Examining students’ metacognitive awareness 
through analysis of student-generated learning responses 

 
Abstract 

This work-in-progress provides a preliminary exploration of students’ metacognitive monitoring 
abilities by analyzing written self-evaluations of statics problems. Metacognitive approaches to 
learning encourage students to examine their own thinking processes as a means of deepening 
their understanding. We used qualitative coding to analyze students’ level of metacognitive 
awareness regarding both their ability to solve a given problem and their ability to identify 
sources of error. The full data set includes 10 response sequences (homework solution and 
student writing about their solution) from 69 students. In this paper, we present the analysis of 
two of these sequences, one from early and one from later in the semester. The findings show 
that for both assignments, about half the students recognized their inability to solve the problems 
correctly, though in both cases the groups were split between those who could accurately identify 
one or more sources of error and those who could not. This finding points to the need for 
teaching practices that can help students develop the ability both to accurately assess their 
performance and, perhaps more importantly, identify sources of error and confusion that can then 
lead to successful learning. 
 
Introduction 

Metacognition is critical for student learning and is particularly salient in engineering education 
because of its close links to problem-solvinge.g., 1, 2-4.  While significant work on metacognition 
has been done in other learning domains, few researchers have focused on engineering or 
provided strategies that engineering educators can use to help students develop metacognitive 
skills focused on problem-solving practices central to engineering work. To help address this 
gap, we draw on work in both writing-to-learn and reflective practice to explore students’ current 
levels of metacognitive awareness, and to identify fruitful interventions for further investigation. 
 
Metacognition 

Broadly, metacognition is the ability to understand and be aware of one’s own thinking 
processes. Metacognitive approaches to learning encourage students to examine their own 
thinking processes as a means of deepening their understanding2, 5, 6. Cunningham et al.1 
highlight the two broad categories of metacognition explored in the literature: knowledge of 
cognition (including understanding people, tasks, and strategies) and regulation of cognition 
(including planning, monitoring, controlling, and evaluating one’s own practices in learning and 
doing).  In our study, we focus on students’ knowledge of engineering tasks and their 
corresponding ability to effectively monitor their task performance. To do so, we look at writing-
to-learn (WTL) and reflective practice strategies as tools to both support and evaluate students’ 
monitoring capabilities.  
 



Writing-to-Learn 

The Writing-to-Learn (WTL) movement began in the 1980s in the wake of Emig’s seminal 1977 
article, “Writing as a Mode of Learning,” in which she described ways in which the act of 
writing both corresponded to and supported the cognitive processes of learning 7. In the decades 
since, writing-to-learn has become ubiquitous in many fields across all levels of education. 
Hundreds of articles have been written both theorizing and empirically testing writing as a tool 
for learning, and studies have demonstrated that writing can support learning in mathematics, the 
sciences, the social sciences, and the humanitiese.g., 8-15.  Meta-reviews, though limited, generally 
find support for WTL practices. For example, Bangert-Drowns, Hurley, and Wilkinson’s 2004 
meta-analysis of studies on the impact of writing-to-learn on learning16 indicates that WTL 
prompts that are frequent and calibrated to the students’ learning context “produced small, 
positive effects on school achievement” (p. 49).  Most relevant to our work, they found that 
short, frequent prompts that required students to “reflect on their current knowledge, confusions, 
and learning processes” were the most effective writing-to-learn exercises, yielding better 
outcomes than writing assignments that did not focus on these metacognitive practices (p.50).  
 
Reflective Practices 

To look more closely at metacognition in engineering students, we focus on students’ ability to 
both identify current knowledge gaps and ask questions that can address those gaps to support 
learning. Asking students to generate their own questions is a form of metacognition that 
provides a clear window into sources of student confusion e.g., 17, 18. 
 
Many researchers have investigated the steps needed to generate effective question-asking in 
students e.g., 19-21. Historically, studies involving self-generated questions in the STEM fields have 
focused on improving reading comprehension, formulating research questions, and learning new 
content through group discussions20, with limited exploration of improving students’ ability to 
articulate questions to support problem-solving activities. King17 used question prompts such as 
“What is our plan?,” “What do we know about the problem so far?,” and “Do we need a different 
strategy?” to guide elementary school students through the various stages of problem-solving. 
These prompts led guided questioners to outperform their unguided peers and controls on a 
written test of problem-solving as well as on a new task. These students also asked more 
strategic questions during the problem-solving process. King postulated that the question prompt 
taught students how to be more effective problem-solvers. 
 
One of the first steps in framing a useful question, however, is recognizing knowledge deficits21.  
To that end, it is not surprising that good students realize that they do not understand a concept 
more often than poor students19. At the same time, research by Kruger and Dunning suggests that 
the less domain knowledge or competence individuals possess in an area, the less able they are to 
assess their own performance and the more likely they are to overrate their ability; they term this 
phenomenon “unskilled and unaware.”22 Thus students who most need help may be least able to 
identify their need and ask effective questions that support self-regulation. 
 
Given this potential deficit, we are interested in strategies that encourage both accurate self-
monitoring and effective question-asking. Our long-term goal is to develop a heuristic that trains 
students to ask more questions that effectively support their learning and problem-solving. To 



develop such a heuristic, we must first identify the source of college-level engineering students’ 
difficulty in formulating questions: Are students able to recognize when they are confused? Are 
they able to accurately identify what confuses them? Such questions are directly linked to 
students’ metacognitive awareness, and specifically to their ability to monitor their learning. 
 
One way to explore students’ metacognitive awareness is to have them rate their confidence 
regarding homework problems they complete. As noted above, there is evidence that those who 
are poor at assessing their own skill levels are likely to be over-confident e.g., 22, 23. To explore this 
possibility in engineering students, we can both compare students’ level of confidence to their 
performance and assess whether their self-described areas of confusion match the kinds of errors 
they make. By tracking such comparisons across a semester, we can see whether there is change 
over time as students gain domain knowledge in a course. Examining students’ self-reported 
confusion also allows us to assess their understanding with regard to procedural or conceptual 
issues in statics. We can distinguish whether students’ questions focus on deeper conceptual 
issues or on more surface procedural tasks. This distinction is relevant, as recent work suggests 
that conceptual questions are most helpful for improving understanding24. 
 
In this work-in-progress, we provide initial findings with respect to students’ capacity for 
accurate monitoring in statics.  Data are drawn from an ongoing study in which students were 
asked to reflect and write about their problem-solving ability in an engineering statics course3. 
Specifically, they were asked to identify the source(s) of their confusion with reference to select 
homework problems. The students wrote in two distinct phases.  They first described their 
confusion about a homework problem before instructor input. After the question was reviewed in 
class, students wrote again, this time reflecting on the source of their initial confusion.   
 
Although the study originally focused on achieving measurable improvements in conceptual 
understanding, initial findings showed limited effects on students’ performance based on an 
analysis of course grades. At the same time, interview and survey data indicated that many 
students found the writing intervention helpful3, which prompted new research questions 
regarding the links between the in-class writing prompts and students’ metacognitive awareness 
of their statics knowledge. To better understand these links, we examine students’ homework and 
in-class responses to answer the following research questions: 

RQ1. To what extent were students able to accurately assess their performance and their 
understanding? 

RQ2. Did students’ ability to assess their performance and their understanding change over 
time? 

In this paper, we report findings from our initial exploration of the data. 
 
Method 

To address our research questions, we employed qualitative coding to first analyze the errors on 
students’ homework and their in-class self-assessments and then compared their performance to 
their assessment. 
 



Data Source 

As reported in Goldberg et al.3, data were collected from three sections of an introductory statics 
course; one section was taught in the spring and two were taught the following fall, all by the 
same instructor. The three sections included a total of 69 students; however, not all students 
completed all homework assignments, and not all students completing an assignment attended 
class to provide an in-class survey response. 
 
As with many statics courses, students completed weekly out-of-class problem sets focused on 
concepts such as expressing forces and moments as vectors, drawing free-body diagrams, and 
writing and solving equilibrium equations. The course included ten problem sets across the 
fifteen-week semester.  On the day each problem set was due, students were asked in class to rate 
their confidence in their solution to one selected problem from the set, then write about any 
confusion they had about the concepts or computations required to solve the problem. They were 
also asked to write a question to help clarify their confusion. The professor then demonstrated 
the solution to the class as students corrected their own work. Finally, students revisited their 
initial response and wrote out their revised understanding of the problem. The instructor read the 
responses after class, and gave feedback to students on any lingering questions or confusion they 
expressed. To capture student work for subsequent analysis, both the homework assignment and 
the in-class writing were collected and scanned before being returned to students.  
 
To explore students’ capacity for self-assessment, we focus on the first two questions in the in-
class response, shown in Figure 1: 
 

Figure 1: In-class Questions 
1. Circle the letter that best describes your understanding of the starred homework 
problem on this assignment: 

a) I did not understand the problem and didn’t really know how to approach it. 
b) I understood some aspects of the problem, but wasn’t very confident in how to 

solve it. 
c) I was not 100% certain, but for the most part I knew what I was doing. 
d) I felt that I had a complete understanding of the problem. 

 
2. If you answered a, b, or c above: In at least 3 sentences, describe what confused 
you about this problem, or what you were unsure about. When writing, imagine that 
you are talking to another student in the class. 
If you answered d above: In at least 3 sentences, explain to another student how you 
solved the problem. 

 
The present analysis includes two assignments, one from the beginning of the semester (HW2) 
and one from the end of the semester (HW9) to provide a preliminary longitudinal perspective: 

• HW2 asked students to calculate the 3-dimensional moment acting on the base of a traffic 
light due to an applied tension force given the geometry of the system. 

• HW9 asked students to determine the axial force, shear force and bending moment acting 
on a specific point along a 2-dimensional beam given the physical constraints on the 
beam and a distributed load acting along a portion of the beam span. 



Future analyses will include all assignments and consider students’ questions as well as their 
revised understandings, but in this exploratory study, these two in-class responses from these two 
assignments offer provisional answers to our primary research questions. 
 
Data Analysis 

Data analysis followed the general procedures for qualitative coding outlined by Miles et al. 25 
and proceeded in two phases.  
 
In Phase 1, researchers used descriptive coding25 to identify the errors made in students’ 
homework and described in students’ in-class responses to Question 2.  Two researchers 
(Goldberg and Groen) worked together to generate an initial list of error codes that included all 
general types of errors that students could make across all classes of assigned statics homework 
problems. Goldberg applied the codes to students’ homework solutions, while Groen and Lutz 
applied the codes to students’ in-class writing. All three authors met regularly to revise the list of 
codes and the definitions of each code. Appendix A includes the final list of error codes applied 
to both data sources. 
 
In Phase 2, Groen and Lutz compared each student’s homework error codes to his or her in-class 
writing to generate a holistic code25 for that student’s level of metacognitive awareness. The 
initial codes for this metacognition were drawn from Kruger and Dunning’s concept of 
“unskilled and unaware”22, which we extrapolated to include the opposite end of the spectrum: 
skilled and aware. Effectively, students could theoretically fall into one of four groups based on 
their accuracy in solving the problem and their awareness in self-assessment: i.e. students could 
be right or wrong on the homework itself (skilled or unskilled), and be aware or unaware of their 
accuracy. As defined in Figure 2, the matrix of awareness and accuracy is described by four 
groups: Unskilled & Aware, Skilled & Aware, Skilled & Unaware, and Unskilled & Unaware. 
 

Figure 2: Initial metacognitive quadrants  
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Unskilled & Aware: Students 
solved the problem incorrectly, 
and knew that they were 
incorrect. 

Skilled & Aware: 
Students solved the problem 
correctly and knew they were 
correct. 

Unskilled & Unaware: 
Students solved the problem 
incorrectly, but thought they 
were correct. 

Skilled & Unaware: Students 
solved the problem correctly, 
but thought they were incorrect. 

                                  Accuracy  

 
In practice, however, additional categories emerged based on nuances in the relationships 
between students’ performance and their self-assessments; both Unskilled & Aware and Skilled 
& Unaware each include three different subcodes, shown in Table 1.  
 
 
 
 



Table 1: Final Codebook 
Code Subcode Definition Conditions 

Unskilled 
& 
Unaware 

(None) The student got the wrong 
answer on the homework, but 
thought they had the right 
answer. 

HW: Incorrect 
Q1: d 
Q2: Incorrect 

    

Unskilled 
& Aware 
 

Lost The student knows the 
homework is wrong, but has 
no idea why. 

HW: Incorrect 
Q1: a or b 
Q2: Described difficulty knowing 
where to begin, asks a question 
that has no bearing on the problem 

Uninformed The student knows the 
homework is wrong, but 
incorrectly identifies why. 

HW: Incorrect 
Q1: b or c 
Q2: Describes a problem unrelated 
to any of the actual sources of 
error 

Informed The student knows the 
homework is wrong and has 
some general idea why. 

HW: Incorrect 
Q1: b or c 
Q2: Described one or more of the 
errors the student made on the HW 

    

Skilled & 
Unaware 

Lost The homework is correct but 
the student has no idea why. 

HW: Correct 
Q1: b or c 
Q2: Student did not know the HW 
was correct 

Unsure The homework is correct, but 
the student lacked confidence 
in his/her answer. 

HW: Correct 
Q1: c 
Q2: Student described points of 
confusion and potential errors in 
the homework 

Wrong The homework is correct but 
the student explained the 
solution incorrectly. 

HW: Correct 
Q1: d 
Q2: Explanation was incorrect 

    

Skilled &  
Aware 

(None) The homework is correct; the 
student knew it was correct 
and explained it correctly. 

HW: Correct 
Q1: d 
Q2: Correct explanation 

 

Using an iterative analysis procedure, each coder analyzed one homework assignment for one 
class section. The coders then met to compare and discuss initial results. Once coding 
discrepancies were identified, a final codebook was agreed upon by both coders to finish 
analysis. As a result, the coders arrived at eight possible metacognitive levels represented in the 
data based on the homework (HW), the student’s response to the first in-class question rating 
their understanding of the problem (Q1), and their in-class explanation of either their confusion 



or their problem-solving process (Q2). All in-class responses were re-coded accordingly with 
coders randomly checking in with one another to ensure the quality of the codebook. As 
indicated by the conditions listed in Table 1, students’ metacognitive level was determined by 
first rating them as skilled or unskilled based on their homework solution (i.e. right or wrong) 
and then rating their awareness based on both their level of confidence (Q1) and the accuracy of 
their explanation (Q2).  
 
Results and Discussion 

RQ1: Student Assessment of Performance and Understanding 

With respect to metacognitive level, Table 2 summarizes the total number and the percent of 
students in each category for Homeworks 2 and 9 (HW2 and HW9).  
 

Table 2: Levels of Metacognitive Awareness 
Code HW2 

(58 complete+ responses) 
HW9 

(41 complete+ responses) 
 N % N % 
Unskilled & Unaware 6 10% 6 15% 
Unskilled & Aware (Total) 32 55% 18 49% 
 Lost 9 16% 0 0% 
 Uninformed 3 5% 9 22% 
 Informed 20 34% 11 27% 
Skilled & Unaware (Total) 11 19% 8 19% 
 Lost 0 0% 1 2% 
 Unsure 11 19% 7 17% 
 Wrong 0 0% 0 0% 
Skilled & Aware 9 16% 7* 17% 
+ A complete response included a completed homework problem as well answers to Questions 1 and 2 on the in-

class writing. Students who did not complete the homework were excluded even if they completed a survey 
because the written homework solution could not fully capture sources of error, rendering comparison impossible. 

* Includes 3 students who effectively completed the problem correctly but had a minor calculation error that resulted 
in an incorrect final answer. 

 
As the data indicate, students spanned the full spectrum of categories, with one exception: no 
students in either homework were in the Skilled & Unaware-Wrong category.  
 
In both homework assignments, the largest group of students (approximately half in both cases) 
fell into the Unskilled & Aware category. That is, the students recognized their inability to solve 
the problems correctly, though in both cases the groups were split between those who could 
accurately identify one or more sources of error (the Informed group) and those who could not 
(the Lost and Uninformed groups).  
 
Both the prevalence of students with low awareness (Unskilled & Unaware, but also Unskilled & 
Aware-Lost or -Uninformed) and, at the other end of the spectrum, the substantial percentage of 



students who were Skilled & Unaware-Unsure (19% and 17% in HW2 and HW9, respectively) 
points to the need to help students more effectively evaluate their own levels of skill and 
understanding. 
 
With respect to the absence of students in the Skilled & Unaware-Wrong category, several 
explanations are possible. This category may occur when students had followed an outside 
source (e.g. online solutions, another student’s work) but had not worked through the problem on 
their own; in that case, the absence may reflect the lack of such behaviors. Similarly, the 
category could include students who possess only procedural knowledge; that is, they are able to 
follow formulas, but lack a clear understanding of the conceptual principles involved in the 
problem. In that case, the absence of students in this category may indicate that purely 
procedural knowledge may be insufficient to correctly complete the types of problems assigned. 
It may be that students in either of these groups simply are not able to provide a meaningful 
explanation and fall into Skilled & Unaware-Lost instead; analysis of the remainder of the 
homework assignments should clarify this issue. 
 
To determine whether students’ level of awareness showed any correlation with the types of 
errors they were describing, we mapped error types described in Q2 against levels, as shown in 
Table 3 (note that the table excludes Skilled & Aware students since they did not make errors 
and Skilled & Unaware-Wrong since that group was empty).  
 

Table 3: Summary of Error Patterns 

 
HW2 HW9 

 
Vectors 

Math. 
Operatio

ns 

Statics-
Specific 

Concepts Vectors 

Math. 
Operatio

ns 

Statics-
Specific 

Concepts 

Unskilled &  
Unaware 12 4 0 2 0 5 

Unskilled &  
Aware (Total) 48 22 0 5 3 40 

   Lost 12 5 0 0 0 0 

   Uninformed 2 2 0 2 1 15 

   Informed 34 15 0 3 2 25 

Skilled &  
Unaware (Total) 12 8 2 3 0 11 

   Lost 0 0 0 1 0 0 

   Unsure 12 8 2 2 0 11 
 
The data set is too small to allow meaningful statistical analysis, but visual inspection shows no 
clear pattern of interaction with the types of errors students made. Instead, the errors appeared 
more closely linked to the problem itself. In HW2, two-thirds of the errors students described 
involved vectors, with another third involving mathematical operations (cross-products and 



trigonometry or geometry); in HW9, more than three-fourths of the errors students described 
were statics-specific concepts. 
 
RQ2: Changes Over Time 

With respect to changes over time, Table 2 suggests no major change in the overall 
metacognitive awareness of the class, with approximately the same percentage of students in 
each of the four major categories in both homework assignments. Within the Unskilled & 
Unaware group, however, no students were Unskilled & Aware-Lost at the end of the semester, 
suggesting that all students who completed the assignment and the survey could at least begin to 
describe where they perceived their confusion. At the same time, the percentage of students in 
the Unskilled & Aware-Uninformed category grew; one possibility here is that while more 
students felt able to describe perceived conceptual errors, their ability to accurately identify those 
errors did not necessarily increase. 
 
For the 38 students who completed the homework problems and surveys for both HW2 and 
HW9, comparisons on a student-by-student basis show a similar lack of pattern. Table 4 
summarizes the number of students moving from a given category in HW2 to a given category in 
HW9. For example, for HW2 a total of 7 students were categorized as Unskilled & Aware – Lost 
(summing across this row). For HW9, 6 of these 7 students were categorized as Unskilled & 
Aware – Informed, while 1 was categorized as Skilled & Aware. 
 
Table 4: Patterns of Change in Metacognitive Level – Number of Student Moving From a 

Given Category in HW2 To a Given Category in HW9 
          HW9 
 
 
HW2 

Unskilled 
&  

Unaware 

Unskilled & Aware Skilled & Unaware Skilled 
&  

Aware Lost Uninformed Informed Unsure Lost 

Unskilled &  
Unaware     1   
Unskilled & 
Aware -  
Lost    6   1 

Unskilled & 
Aware - 
Uninformed   2   1  

Unskilled & 
Aware - 
Informed 

2  2 3 4  2 

Skilled & 
Unaware - 
Unsure 

2  3  1  2 

Skilled &  
Unaware - 
Lost        

Skilled &  
Aware 1  2 1 1  1 

 



As can be seen in Table 4, similar numbers of students grew more aware (e.g. moving from 
Unskilled & Aware-Uninformed to Unskilled & Aware-Informed), grew less aware (e.g. moving 
from Skilled & Aware to Unskilled & Aware-Uninformed), or stayed the same. The small 
number of students in this data set, moreover, limit our ability to identify any meaningful 
patterns; i.e. although all students in the lowest metacognitive levels (Unskilled & Unaware, 
Unskilled & Aware-Lost, or Unskilled & Aware-Uninformed) moved out of those positions, the 
number of students in this group is too small to indicate any trend, particularly since several 
other students moved down into those categories. 
 
Given that, as Kruger and Dunning note, awareness seems to coincide with domain knowledge22, 
one possible explanation for the lack of clear development is that while students are building 
domain knowledge in statics broadly over the course of the semester, the specific concepts 
needed in the two homework assignments are different enough that the broad growth in domain 
knowledge does not support increased awareness overall. This possibility suggests that even if 
students did make gains in their ability to self-monitor within a subset of statics concepts, they 
are not able to transfer those gains to another subset of concepts. Here, too, analysis of the 
remaining homework sets will provide additional data. 
 
Conclusions and Future Work 

Findings from this initial analysis demonstrate that while the available data is usable as a means 
to identify students’ metacognitive awareness levels, this data set shows a high degree of 
variation both within and across assignments. At the same time, the high percentages of students 
with low monitoring skills (Unskilled & Unaware, Unskilled & Aware-Lost, Unskilled & 
Aware-Uninformed, and potentially the Skilled & Unaware-Unsure groups) points to the need 
for teaching practices that can help students develop the ability to both accurately assess their 
performance and, perhaps more importantly, identify sources of error and confusion that can then 
lead to successful learning. 
 
In looking toward such practices, the in-class approach used in this project shows notable 
potential. While this initial analysis showed no change over time, we note that the in-class 
writing was introduced without any form of scaffolding to help students understand 
metacognition broadly or learn to identify errors and ask useful questions. Scaffolding has been 
shown to help students generate questions in the context of improving students’ reading and 
listening comprehension26, as well as improve question-asking in a problem-solving context17. 
We thus anticipate that the complete analysis of the data, including not only all of the assignment 
sets, but also the remaining in-class items (questions posed and revised understandings) will help 
identify fruitful approaches to such scaffolding. Similarly, analyzing students’ written responses 
with respect to conceptual versus procedural knowledge27 can further illuminate the kinds of 
scaffolding needed. Venters et al.27, 28 and Moore29, for example, both suggest that conceptual 
and procedural knowledge are both critical in statics; Venters’ work also suggests that writing 
prompts can play a role in supporting conceptual knowledge in this domain. 
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Appendix A: Error Codes 

The errors students made on their homework and described in their responses were divided into 
three broad categories: vectors, mathematical operations, and statics-specific concepts. Across 
the homework and responses, errors in this categories were as follows: 
 
Vectors 

• Position vector 
• Unit Vector 
• Force vector 
• Moment vector 
• Vector components 

 
Mathematical Operations 

• Cross product 
• Solving systems 
• General math 
• Trig & Geometry 

 
Statics-Specific Concepts 

• Free body diagrams 
• Force-Moment relationships 
• Cutting 
• Load location 
• Distributed load 
• 2-Force member 
• Shear & bending moment diagrams 
• Solving problem as a couple 

 
Note that for Question 2 on the in-class writing, these error codes identify only the topic of the 
error; they do not capture whether the student described the error in procedural or conceptual 
terms. On the homework, of course, they represent procedural errors since the homework 
represents only the student’s process, not his/her thinking. 
 


