
Paper ID #14868

Exploring Proficiency Testing of Programming Skills in Lower-division Com-
puter Science and Electrical Engineering Courses

Mrs. Karla Steinbrugge Fant, Portland State University

Karla Steinbrugge Fant is a Senior Instructor of Computer Science at Portland State University (1990-
Current) responsible for introductory and advanced courses in C++, Java, and Data Structures. She su-
pervises all 100-level Computer Science courses, teaches three courses a term for the department, and
coordinates programs that provide university credit for high school computer science courses. She was
awarded a grant for the redesign of the CS16x courses. She is the founder of GRAPHIK Dimensions
Northwest responsible for computer graphics standards and high-resolution graphics.

Previously, she worked as Vice President of Engineering and Director of Marketing at Metheus Corpora-
tion where she was responsible for a budget of over $2 million dollars. She managed a team of software,
hardware, and microcode engineers creating 1280x1024 and 2kx2k display controllers.

Prof. Branimir Pejcinovic, Portland State University

Branimir Pejcinovic received his Ph.D. degree from University of Massachusetts, Amherst. He is a Pro-
fessor and former Associate Chair for Undergraduate Education at Portland State University, Electrical
and Computer Engineering department. In this role he has led department-wide changes in curriculum
with emphasis on project- and lab-based instruction and learning. His research interests are in the areas
of engineering education, semiconductor device characterization, design and simulation, signal integrity
and THz sensors. He is a member of IEEE and ASEE.

Mr. Phillip Wong, Portland State University

Phillip Wong received an M.S. degree in electrical engineering from Carnegie Mellon University in 1990.
Since then, he has been with Portland State University, Oregon, USA, where he is currently the ECE Lab
Coordinator and an instructor.

c©American Society for Engineering Education, 2016

Exploring Proficiency Testing of Programming Skills in Lower-

division Computer Science and Electrical Engineering Courses

Motivation

It is generally accepted that all engineering students should be able to perform some

programming tasks. For example, ABET calls for electrical engineering (EE) curricula to include

“engineering topics (including computing science) necessary to analyze and design complex

electrical and electronic devices, software, and systems containing hardware and software

components.”1 In most disciplines, programming plays a supporting role as one of the tools that

future engineers will need to tackle problem solving and design projects. Because it is considered

such a basic tool, programming is typically taught in freshman or sophomore courses. Many

engineering students get their first exposure to programming in a class where a programming

language is used to assist problem solving. In electrical engineering (EE), this may be followed

by another course covering more advanced programming concepts. For example, in our EE

program at Portland State University (PSU), we teach MATLAB as part of a first-year

“introduction to engineering” and problem solving course. This is then followed by an

intermediate level C programming course. Obviously, in computer science (CS) programs there

is much greater emphasis on immediate application of programming and development of

necessary theoretical concepts. Most engineering programs do not have time in their curriculum

to prepare students in their lower-division coursework to a similar level of depth.

Because of the exact and unforgiving nature of programming, many students struggle when

asked to perform what appear to be simple programming tasks2. This problem has persisted to

the present day. At the same time, many students also have difficulty formulating general

problem solving strategies, which makes it even harder to use programming as a tool. These and

other factors contribute to high attrition rates in freshman engineering courses. It was our

observation of students’ struggles that led us to consider the question of what the best practices

in programming in CS may be and to try to transfer them to our courses.

Brief Introduction to Terminology

In order to provide proper context for our work, we need to provide a brief historical note and

explain our terminology. The proficiency or competency based approach to testing of

programming skills is not a new concept, and it was discussed and implemented3 in the 1980s

and even earlier. It was also mixed in with the concept of demonstrating “mastery” of a given

topic, i.e., programming. For example, Carnegie Mellon University instituted a final exam in

which students were supposed to demonstrate that they can accomplish certain tasks in a

controlled environment4,5. This was meant to provide several benefits, one being that “it was

hoped that the Mastery Exam would address a general problem of students successfully passing

programming courses at CMU without also learning the rudiments of programming

methodology”4. Another benefit would be reducing actual or potential cheating on exams. More

recent attempts to test student programming skills and its associated problems have been

published6,7. Various studies utilize different assessment approaches and define their own set of

learning outcomes, competencies or skills that are being assessed. Defining what appropriate

programming skills are is in itself a difficult problem8.

More recently, competency-based education has become popular in many different fields9, and

the driving force seems to be “Transitioning away from seat time, in favor of a structure that

creates flexibility, allows students to progress as they demonstrate mastery of academic content,

regardless of time, place, or pace of learning”10. However, despite its long history, the

competency-based education area is still very much in flux, and there are many different

definitions and labels used. In our case we need to make a distinction between competency and

proficiency. In our present view, demonstrating competency is a binary concept – students can

either complete a given task or not. Proficiency is a more nuanced assessment, and it may also

include assessment of behaviors that students exhibit. In either case, some standard level of

performance needs to be defined. In computer science, students are expected to build on the

programming foundation throughout their four years of study, so it seems appropriate that a more

nuanced approach be taken. In our electrical engineering courses, however, we are more

interested in basic understanding and application of programming to problem solving, for which

a simpler assessment seems sufficient.

In the sections below we will discuss implementation of proficiency-based testing (PT) across

many courses in the computer science program and follow that up with a discussion of

competency-based testing (CT) in one freshman electrical engineering course.

Proficiency-based Testing in CS: Background

The core programming competencies expected of Computer Science (CS) undergraduate

students are cumulative. The first two years of PSU’s CS program builds foundational level

material needed by most courses in the curriculum. In regards to programming, students need to

meet the programming requirements outlined by a prerequisite course in order to be successful in

follow-on courses. For example, one must be proficient using variables in order to progress to

loops and functions. And, one must be proficient using pointers and/or references in order to be

proficient at programming linked data structures. Ensuring proficiency at each level solidifies the

program and enables student success. There is an additional benefit in that students are less

frequently taken by surprise in the programming pre-requisites and are less likely to drop.

Understanding computer science concepts in some theoretical sense is not sufficient if students

cannot apply what they have learned. Allowing students to progress when they do not have

sufficient programming experience creates situations where prerequisite classes have to be taken

multiple times or the course difficulty level is reduced so much that the overall curriculum

quality suffers. The proficiency-based testing model addresses this issue early on, which

minimizes the cost and time impact. A critical part of proficiency testing is determining essential

competencies and the standards by which they are evaluated. Once these are determined they

communicate a clear and powerful message to students in terms of expectations. We have found

that traditional, paper-and-pencil, in-class exams are insufficient on their own. Many students

can collect sufficient partial credit or show memorization of facts but still be lacking in actual

programming and problem solving skills. Students may think that they have mastered the

material but have trouble integrating the concepts together into a finished program. In contrast to

a traditional exam, PT is performed in small groups and in a controlled environment. PT exams

are observed so that faculty can determine how students approach problem solving and

debugging that cannot be observed otherwise. Similarly, once they are in place, PT examinations

can be used to ensure that transfer students have the same abilities as native students.

Based on these arguments we would expect the following benefits to come from using PT:

1. Improved quality of student work

2. Improved courses and curriculum based on direct observational feedback

3. Ensured level of proficiency among native and transfer students

4. Improved formative assessment – students receive immediate and direct feedback

5. Clear communication of expectations to students

6. Triangulation of student performance

7. Established baseline, ensuring that students are prepared for future courses

In addition, we have found out that this approach is scalable to a relatively large number of

students, and we have handled up to 450 students per quarter. However, there are organizational

issues to be resolved and adequate resources should be provided. A discussion of these benefits

and supporting evidence is presented below.

Proficiency-based Testing in CS: History

The Computer Science department at our university officially started administering proficiency-

based testing in winter 2012. Students enrolled in the core programming courses at the freshman

and sophomore level participate in proficiency examinations twice a term. These require students

to demonstrate programming core competencies at the level expected for the given course.

Students currently experience proficiency examinations in CS161 Introduction to Programming,

CS162 Introduction to Computer Science, CS163 Data Structures, and CS202 Advanced Data

structures and OOP. Beginning in summer 2014, transfer students applying to our Computer

Science department for entry into the upper division curriculum also began demonstrating

competencies with proficiency-based testing. Such proficiency examinations ensure that students

from all backgrounds are able to meet the expected core competencies of a computer scientist

prior to entry into the upper division.

Determining and Evaluating Student Competencies in CS

Through ABET accreditation, each of the required courses has specific core competencies that

students are evaluated upon. Note that during PT, students are scored on the process of problem

solving, program design, and coding. PT results are used to assess student programming skills

but are not designed to cover all other learning outcomes. Table 1 summarizes the type of

scoring used for four of the core competencies. Proficiency levels are scored as:

 E – Exceeds our expectations. The solution came quickly, and it was obvious from the

student’s approach that they understood the programming platform, editors, debuggers (if

applicable), language, syntax, and data structure (if applicable). There is an obvious

fluency in how they approach the design and programming problem assigned. The code

compiled without syntax errors or warnings.

 P – Proficient meeting our expectations. The process of solving the problem

demonstrated the level of proficiency expected for the course. The student understood

how to design and implement a problem and was capable using the platform, editors,

debuggers (if applicable), language, syntax and data structure (if applicable). They may

have redesigned the solution and re-compiled multiple times. It is clear from our

observations that the student does understand how to solve the problem even if they had

to make multiple passes. Each pass through the problem solving process improved.

 IP – In Progress and does not meet our expectations. The student struggled with the

concepts, either with the platform, syntax and/or data structure (if applicable). They were

unable to complete the problem although they may have demonstrated portions of the

solution that were correct. Overall their syntax should have been close. When asked to

evaluate their design, they were unable to do so in a logical manner. Each pass did not

necessarily improve.

 U – Unsatisfactory and does not meet our expectations. The student showed major issues

with using the platform, editors, language and/or data structure (if applicable). Typically

such students struggle with syntax issues and are performing operations that would not

make sense for the problem at hand. Each pass through the problem does not improve and

we end the proficiency demonstration when it is clear to us that the solution is not

achievable.

Table 1. Scoring rubric for core CS competencies.

Competency Exceeds

expectations

Proficient In progress
(non-passing)

Unsatisfactory

Design Process Design is well

thought out with

minimal revision

necessary

A solid design was

achieved; each pass

improved

The design was close

but flawed; each pass

did not improve

The design was far

from satisfactory;

student was unable

to design

Use of Recursion Clear and

concise

Correct use of

recursion but could

be simplified

Attempted recursion

but with major flaws

Unable to solve a

problem using

recursion
Correct Syntax Perfect syntax Good syntax. Was

able to correct

errors with

minimal assistance

Major syntactic

issues. Most could be

resolved but not all

without assistance

Major syntactic

issues which were

not recoverable

Application of

Data Structure

Algorithms

Perfect use

and/or

implementation

of data structure

algorithms

Fluent with data

structures but may

have required

multiple passes

Not fluent with the

data structures;

multiple passes did

not improve

Major issues with

the data structure

algorithms. Far

from functional

The process of evaluating student competencies has students independently solving randomly

assigned problems while being observed by faculty and staff. Students’ progress is closely

monitored and assistants take notes during the process to evaluate overall performance in

problem solving and syntax. Students have no access to course materials or the internet.

Only students that pass the PT may progress to the next course. Applicants transferring in at the

upper division level must also pass in order to be admitted into the upper division program.

Students that fail to pass are advised to take (or re-take) courses to gain the necessary

competencies.

Preparing Students for Proficiency Testing

Students are prepared for the proficiency examinations by attending weekly labs where they have

hands-on experience with the course concepts in a small group setting with approximately eight

students per technical assistant. By midterm time, students experience the PT as a trial run,

acquainting students with the process. Students that do not demonstrate the necessary

programming competencies can re-demonstrate their competencies after one week of practice.

Such a trial run gives students the confidence to program under observation, which may be a new

process for them. Based on the findings at these trials, we can advise students on how best to be

successful.

Results of Proficiency Tests

For each final proficiency examination processed, we tabulate the number of students that scored

in each of the four categories, and for each of those how many missed the most important core

competencies for the particular course being taken. These numbers are then averaged and

reported to the department. This process is performed only for students that pass the course; our

results do not include data from students that drop or fail the class for other reasons.

Our current results include the performance of over 2,700 students. Our findings show that the

success of our students increased significantly from the first tests. At the start of our proficiency

testing only 22% of students were judged to exceed expectations. Once the tests were fully

established, we have seen this grow to 40-45% even for the most difficult courses. This is in

stark contrast to the transfer students in summer 2015, of which only 5% demonstrated the same

level of proficiency.

Our early test data showed that 2.48% of the students received an unsatisfactory grade even

though they were passing all of the rest of the material, and 5-6% of students who were

categorized as in-progress. In later years student performance significantly improved, so that in

2015 there are only 0.25% in unsatisfactory and 1% in in-progress categories, as shown in Table

2. We interpret this drop as significant improvement in student performance. Anecdotally,

professors teaching upper-division courses have also noticed improved quality of student work in

their courses. We expect these improvements to continue in 2016.

Table 2. Summary of the average student performance on CS proficiency tests since adopting the

procedure.

Introductory Results Exceed Proficient In Progress Unsatisfactory (*)

 Non-passing

Early Averages: 22% 70% 5% 2.48%

2013 Averages: 45% 46% 6% 2.39%

2014 Averages: 39% 58% 3% 0.59%

2015 Averages: 40% 58% 1% 0.25%

(*) Received an Unsatisfactory Score on the Proficiency Demonstration but received

passing scores on all other work. Failing grade in the class was due solely to the

proficiency demonstration score.

Somewhat alarmingly, 48% of transfer students failed the proficiency examination during the

summer 2015 tests. These students theoretically had all of the required prerequisites to

immediately start courses at the upper division level, but could not demonstrate programming

proficiency at our required level. Five percent of those who failed were advised to retake the

freshman level CS162 course, setting them back one to one and a half years. We observed that

they were deficient in the ability to use pointers and dynamic memory. Another 19% of students

who failed were recommended to retake CS163 Data Structures because they did not fully

understand lists and trees. In previous years these students would have been admitted

automatically into the program and would suffer academically due to lack of preparation. Further

comparison between native PSU and transfer students is given in Table 3.

Table 3. Deficiencies observed among CS transfer students relative to native students.

Problems

with:

Basic

programming

Recursion Function calls Data structure

algorithms

Native (our U.) 0% 4% 2% 6%

Transfer 38% 29% 19% 29%

Additional Benefits

Proficiency-based examinations also have a positive impact on the overall curriculum. By

evaluating the results of the students performing the demonstration, we have been able to fine

tune our curriculum. For example, since 8% of our students were not properly using function

returned values, we have modified our lab materials with weekly exercises requiring the use of

returned values.

Overall, we believe that these results demonstrate the effectiveness of our approach to testing

programming skills, and all of the expected benefits can be verified by data.

Competence-based Testing in EE

In our electrical engineering program, we have designed an introductory sequence of three

quarter-long courses11. The second (ECE 102) and the third (ECE 103) deal with MATLAB and

C programming, respectively. In addition, ECE 102 addresses engineering problem solving and

utilizes MATLAB to drive a data-acquisition device as part of a major course project12. Two out

of six course outcomes in ECE 102 deal with MATLAB programming. Course outcomes are

assessed in homeworks, exams, labs and projects. In the rest of the curriculum, students are

primarily using their existing programming skills, for example using C to program DSP chips. It

is, therefore, critical that students get a solid foundation and practice in basic programming

skills. Many students find programming very hard and end up with a piecemeal understanding of

it13,14. They also “optimize” their efforts by devoting less time and effort to certain areas and

compensating for it in others, with programming often being sidelined in such cases.

Our exploration of competency-based testing (CT) was motivated by these objectives:

 Ensuring that students develop a solid programming foundation

 Providing explicit and detailed guidance on what is expected

 Providing useful, timely, and frequent feedback to students

 Using CT results to improve the effectiveness of our teaching

Given that proficiency testing proved successful in attaining these and other goals, we believe

that a somewhat simplified version of it, which we call competency-based testing, will

accomplish the same in our classes. We have been experimenting with the content and format of

our CT exams, and our initial findings are presented below.

Determining and Evaluating Student Competencies in EE

The programming competencies that we would like our students to exhibit are:

1. Variable usage 3. I/O functions 5. Loops

2. Vector manipulation 4. Branching 6. Function definition & calling

The first three are simple enough that they can be learned during the first two weeks of the

course. Students must be comfortable using them before moving on to other topics. There are

still some difficult concepts that students need to master even for this introductory material, e.g.,

assignment vs. equality and indexing within vectors. While we cannot lose sight of the need for

students to understand these concepts, the ultimate goal is repeated practice and feedback to

build and reinforce programming skills. At this stage, it may be difficult to distinguish various

levels of performance, i.e., proficiency. The second half of the competency list presents a much

higher level of conceptual difficulties, which is compounded by the need to integrate them into

one programming and problem-solving whole. Testing for these competencies is particularly

important before students take a follow-on course in C language programming, since these

concepts are exploited more thoroughly there.

Testing for the first three competencies consists of simple programming tasks that take several

lines of code to accomplish and are largely independent of each other. Students have to produce

correct intermediate steps and final results. For the second half of the competencies list, we need

to embed them in a larger problem which is still doable within 20-30 lines of code. Designing

these problems is obviously more challenging, and we are learning how to scale our expectations

to only the essential parts. In addition, we have to provide some variety to prevent students from

memorizing a discrete set of problems that may come up on tests. We are in the process of

developing a set of template problems to accommodate current and future CT needs. Finally,

student competency is determined by direct observation of their programming performance

during an in-class test.

Preparing Students for Competency Testing

Our approach to teaching programming is one based on active learning and giving students

frequent and timely feedback. To accomplish this, we use a non-traditional e-book15 that has

many interactive problems which we assign as reading and monitor for student compliance. In-

class activities include interaction systems16 for collecting student answers and work. Most

recently, we added Cody Coursework exercises to supplement traditional MATLAB homework

assignments. However, most of these activities deal with a small segment of the required skills or

competencies, so in order to provide students with a chance to put it all together, we have now

included a set of programming exercises that are done in a lab environment. Note that students

also have to produce a much larger program which is part of their final project and is evaluated

separately.

Results of Competency Tests

First ECE CT trial (Winter 2015)

In the winter quarter of 2015, the first implementation of the ECE CT was attempted on two

sections of ECE 102 students. Given that this was our first attempt, we decided to make it

voluntary and count only as extra credit with no make-up test offered. In total, 38 students

volunteered to take the CT. While we cannot guarantee that this sample was representative, we

observed that there was a cross-section of students in terms of their programming abilities

making the analysis somewhat generalizable.

A set of basic test problems was developed by the instructors that could be solved in around

twenty lines of code. The competency test was presented at the end of the academic quarter.

Multiple testing sessions were offered, with each session being attended by both instructors and a

teaching assistant (TA). Students were expected to bring their own laptop computer with

MATLAB installed. Students were assigned a randomly selected test problem and given up to 25

minutes to solve it and demonstrate their work to the instructor. Access to the MATLAB help

system was allowed just once. After completing the test, or when the time limit was reached, the

instructors evaluated the student’s results.

Second ECE CT trial (Spring 2015)

Another section of ECE 102 was taught in spring quarter, and this time all students were required

to take the CT. Students were given two chances to pass the exam. To better prepare them,

optional lab sessions were offered in which students practiced programming under TA and

instructor supervision. Typically, only one quarter to one third of the class participated in the lab,

which was deemed too low. The CT process was very similar to the previous one except the

testing time was extended to one hour.

ECE CT Results for 2015

For the first CT trial, the combined passing percentage was a disappointing 55%. When a

weighted composite grade based only on each student’s MATLAB-specific class work was

constructed, around 69% of the participants’ CT results matched what would be predicted from

their composite results. This means that there were significant number of students who passed

CT but were not passing other MATLAB related coursework and vice-versa. We will need to

collect more data and in a more systematic fashion before we can draw any conclusions from this

observation. For now, it seems to indicate that CT can be useful in triangulating student success

so that we do not rely on traditional assessments alone. The first-time results, however, were

unsatisfactory and indicated that changes needed to be made in the course structure to improve

student outcomes.

From this first attempt, a few observations were made:

 Several students were unable to complete the test within the initial 25-minute limit, so

more time would need to be allocated for future trials.

 It is vital to explain clearly the instructor’s expectations and the P/NP process at the start

of the course.

 Direct observation of students working through the problems gave us indications where

they struggled the most and what needed to be clarified or emphasized.

 Students were still not fully independent when programming and were particularly ill

prepared for debugging.

For the second CT trial, 43 students took the CT, of which 30% failed initially and needed to

take the make-up test. After their second try only 2% of students failed the CT. Recall that the

first CT trial was treated as an optional extra credit assignment. In contrast, the second CT trial

was required, so students could fail the class if they did not pass the CT. This makes the

comparison between the final passing rates given in Table 4 difficult. However, we believe that

improvements were at least in part due to increasing the test time and offering the optional labs.

Based on this observation, our future classes will require programming labs and CT.

Table 4. ECE 102 Competency test results for 2015.

Quarter Total Students Passed (initial) Passed (final)

Winter 2015 38 - 55%

Spring 2015 43 70% 98%

From the second round of CT trials, these lessons were learned:

 Having more assistants would make the process smoother and less time consuming.

 Programming labs with “live” help can help prepare students better, but we need to make

the labs required.

 Two competency tests are needed so that students can get used to the format and ensure

they know basic concepts such as variables and arrays before attempting more advanced

topics like branching and loops.

Third ECE CT trial (Winter 2016)

After analyzing the results from the 2015 CT trials, the 2016 schedule was revised to offer two

CT exams, one (CT-1) at the end of the third week and the other (CT-2) in the sixth week, with a

make-up test offered after each CT. The first test covered variables, math operators, vector

manipulation, basic plots, and calling functions. The second test assesses knowledge of

comparison and logical operators, branching and loop statements, and writing of custom

functions. From the experience with poor attendance in voluntary labs, a weekly lab class

became mandatory. The instructors, teaching assistants (TAs), and undergraduate helpers

attended each lab session to provide assistance during the programming exercises.

The two course sections were again taught by the same instructors. A total of 73 students took

the CT-1 exam. Seven testing blocks of 45 minutes each were offered. This time, students were

tested on department Linux computers running MATLAB. Both course instructors and a TA

performed assessment. Helpers assisted with the check-in and check-out duties. When the

student was done, the instructor or TA looked over the code and output to decide if the student

had passed the test. The TA was only allowed to give a passing score. If the TA believed the

student failed, then an instructor reviewed the student’s work to make the final decision.

At the time of this writing, only CT-1 data are available. Approximately 85% of the class passed

the CT on the first try. After the make-up test results were factored in, 95% of the students were

successful. Hence, the overall CT passing rate was much improved compared to the trial in 2015,

though it needs to be mentioned that simpler material was tested.

Lessons Learned from the CT and Future Plans

After initial experimentation and refinements, we are now starting to approach steady-state in our

efforts to establish competency testing as a viable assessment and teaching tool. Even though we

had an example from CS to follow, we still have to make our own way through many of the

obstacles. At this time, we only have our own observations to draw on, but our conclusion is that

CT was a worthwhile investment that we will continue to refine. CT results do not mean much in

isolation, so they need to be a part of a larger effort to develop student programming skills in an

effective and efficient way. Because of this overall effort, we believe that students have reaped

the benefits and will be much better prepared. Data to back up this claim will be collected over

the coming years. One of our future projects will be a publication of a comprehensive manual

that will cover various components, i.e., labs, Cody exercises and readings, and the CT itself.

Overall Conclusions

Based on our experiences and results of proficiency testing in computer science and competency

testing in electrical engineering, we have reached the following conclusions:

 Proficiency testing has demonstrated improved student programming outcomes in our

computer science program.

 Given the four-year record of implementation and success, proficiency testing is a good

example to follow in electrical engineering in order to improve student programming

skills.

 A simplified version of proficiency testing, labeled competency testing, may be sufficient

for now in EE but may be expanded to full proficiency testing later on.

 Improvements in electrical engineering student learning have yet to be fully

demonstrated, but initial results are encouraging.

 Proficiency and competency testing make expectations clear to students but have to be

supplemented with other improvements in teaching.

 Proficiency and competency testing benefit students by making sure that they actually

mastered the basics and can perform programming tasks before moving on to more

complex concepts and courses.

 Other benefits, such as assessment of transfer students, may be obtained once the system

is in place.

 Implementation does require additional resources in terms of trained TAs and helpers but

has been shown to scale well to large numbers of students.

Proficiency testing has worked well, and we continue to develop it in collaboration with other

universities and local high schools where proficiency testing is used for college credit. We hope

that the descriptions and data presented here will encourage other programs to start

experimenting with these testing techniques.

Bibliography

[1] ABET “Criteria for Accrediting Engineering Programs,” http://www.abet.org/wp-

content/uploads/2015/04/E001-14-15-EAC-Criteria.pdf , accessed Jan. 30, 2016

[2] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I.

Utting, and T. Wilusz, “A multi-national, multi-institutional study of assessment of programming skills of

first-year CS students,” ACM SIGCSE Bulletin, vol. 33, no. 4, pp. 125–180, 2001.

[3] R. S. Lemos, “Measuring Programming Language Proficiency,” AEDS Journal, vol. 13, no. 4, pp. 261–273,

Jun. 1980.

[4] M. J. Stehlik and P.L. Miller, “Implementing a mastery examination in computer science,” 1985, downloaded

from http://repository.cmu.edu/cgi/viewcontent.cgi?article=2555&context=compsci , accessed Jan 30, 2016.

[5] J. Carrasquel, “Competency Testing in Introductory Computer Science: The Mastery Examination at

Carnegie-Mellon University,” in Proceedings of the Sixteenth SIGCSE Technical Symposium on Computer

Science Education, New York, NY, USA, 1985, p. 240–.

[6] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. McCartney, J. E. Moström, K.

Sanders, O. Seppälä, B. Simon, and L. Thomas, “A Multi-national Study of Reading and Tracing Skills in

Novice Programmers,” in Working Group Reports from ITiCSE on Innovation and Technology in Computer

Science Education, New York, NY, USA, 2004, pp. 119–150.

[7] M. E. Califf and M. Goodwin, “Testing Skills and Knowledge: Introducing a Laboratory Exam in CS1,” in

Proc. 33rd SIGCSE Technical Symposium on Computer Science Education, New York, NY, USA, 2002, pp.

217–221.

[8] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S. Clair, and L. Thomas, “A Cognitive Approach to

Identifying Measurable Milestones for Programming Skill Acquisition,” in Working Group Reports on

ITiCSE on Innovation and Technology in Computer Science Education, New York, NY, USA, 2006, pp.

182–194.

[9] R. Klein-Collins, “Sharpening our focus on learning: The rise of competency-based approaches to degree

completion,” National Institute for Learning Outcomes Assessment, Occasional Paper, vol. 20, 2013.

[10] Education Department web site: http://www.ed.gov/oii-news/competency-based-learning-or-personalized-

learning , accessed January 29, 2016.

[11] P. Wong, M. Holtzman, B. Pejcinovic, and M. Chrzanowska-Jeske, “Redesign of Freshman Electrical

Engineering Courses for Improved Motivation and Early Introduction of Design,” ASEE Annual Conference

and Exhibition, Vancouver, Canada, 2011, pp. 22.1224.1 – 22.1224.13.

[12] P. Wong and B. Pejcinovic, “Teaching MATLAB and C Programming in First Year Electrical Engineering

Courses Using a Data Acquisition Device,” ASEE Annual Conference and Exhibition, Seattle, WA, 2015, pp.

26.1480.1 – 26.1480.11.

http://repository.cmu.edu/cgi/viewcontent.cgi?article=2555&context=compsci
http://www.ed.gov/oii-news/competency-based-learning-or-personalized-learning
http://www.ed.gov/oii-news/competency-based-learning-or-personalized-learning

[13] T. Jenkins, “On the difficulty of learning to program,” in Proc. of the 3rd Annual Conference of the LTSN

Centre for Information and Computer Sciences, 2002, vol. 4, pp. 53–58.

[14] M. J. Scott and G. Ghinea, “Educating programmers: A reflection on barriers to deliberate practice,” in Proc.

2nd HEA Conf. on Learning and Teaching in STEM Disciplines, 2013, p. 028P.

[15] zyBooks “Programming in MATLAB”, https://zybooks.zyante.com/#/catalog , accessed Jan. 30, 2016.

[16] Learning Catalytics from Pearson, https://learningcatalytics.com/ , accessed Jan. 30, 2016.

https://zybooks.zyante.com/#/catalog
https://learningcatalytics.com/

