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USING CARD GAMES FOR CONDITIONAL PROBABILITY, 
EXPLAINING GAMMA VS. POISSON DISTRIBUTIONS, AND 

WEIGHING CENTRAL LIMIT THEORY 
 

Abstract 
Students taking probability course for the first time are often struggling with conditional 
probability. To help explain the concept better, card games are used to explain especially 
differences of conditional probabilities of sequential and simultaneous card draws. 
Several card game experiments are discussed and typical probability results are shown 
and compared with predictions. These simple experiments can be demonstrated in 
classroom and students can use them to test the predictions. Another concept students 
often struggle is distinguishing gamma from Poisson distribution. An identity connecting 
them, generalizing the connection between exponential and Poisson distribution, will be 
used to discuss their differences and to point out nuances in the wording of some 
probability problems that yield different answers when both distributions are used. Lastly, 
a teaching tool for explaining central limit theorem is discussed based on guessing 
weights of books. This guessing game proves useful to explain sampling distribution. 
 
1. Introduction 
 
Although it has been argued since 1960s [1] that probability and statistics is as important 
as calculus as a mathematical foundation for engineering students who have to cope with 
uncertainty and variability in their professional careers, majority of engineering programs 
in North America have one course for both probability and statistics. In this one course, 
engineering students must learn combinatorics, conditional probability, discrete and 
continuous probability density functions and their parameter estimators, statistical 
inferences from confidence intervals to hypothesis tests, linear regression method, and 
possibly even joint probability density functions [2]. Hogg [3] proposed a list of basic 
statistical concepts, which emphasizes experimental designs and quality control, for a 
second-year engineering course. One main problem for implementing such statistics 
course is most second-year students have not taken their program-specific courses, such 
as machine component design course in mechanical engineering, to appreciate the 
interplay between statistics (e.g., safety factor for mechanical engineers), performance 
(e.g., fatigue strength and tensile strength), and cost (e.g., machining and material 
choice).  
 
With these stringent constraints, a most practical way for an instructor of the course is to 
teach a topic effectively and efficiently using a real-world analog such as card game. This 
paper aims to discuss three effective teaching tools that can be adopted in the course to 
teach concepts of conditional probability, (continuous) gamma vs. (discrete) Poisson 
distribution, and central limit theorem that forms a basis for statistical inferences. 
 
ENGG 319 Probability and Statistics for Engineers course in Schulich School of 
Engineering is offered to second-year engineering students who have taken two calculus 
courses, covering differential calculus to introductory vector calculus, and linear algebra 
course in their first year. After learning complicated calculus and linear transformations, 



students are initially pleased with the simplicity of probability definition, i.e., the ratio 
between the number of ways for the event we're interested in and the number of ways for 
all possible events. But they quickly realize that counting the number of ways for either 
numerator or denumerator of the probability definition is quite often more daunting than 
solving calculus problems because the counting problems do not have clear prescribed 
methods to follow. Counting them is similar to solving linear transformation problems; 
they require visualization, but one can argue that the former can be more challenging 
because different counting problems require different visualization strategies. 
 
The basic counting formula is given by 
 

𝑛!
𝑛!!𝑛!!⋯𝑛!!

  , 

 
where 𝑛 = 𝑛! +⋯+ 𝑛! , which counts the number of ways for dividing 𝑛 labelled 
objects into 𝑘 groups, each with 𝑛!,𝑛!,⋯ ,𝑛! members. If 𝑛 objects are divided into 𝑛 
groups, each with one member, then there are  
 

𝑛!
1! 1!⋯ 1! = 𝑛! 

 
ways. The connection to the 𝑛! ways confirms the need to label each 𝑛 objects. If there is 
only one group with 𝑛 members, then there is 
 

𝑛!
𝑛! 0! = 1 

 
way to do it, which shows that the group label is different from the object label. Students 
use the basic formula in different counting problems by adapting its application to 
different problem types. 
 
One problem type requires multiplying same basic formula several times with some 
constraint. One example is "4 cards are drawn from a deck of 52 cards. How many ways 
are there to get 2 kings and 1 queen?" The answer is  
 

4
2

4
1

44
1 = 1056, 

 
where 42  is a shorthand notation for 4!/(2! 2!), which counts the number of ways of 
getting 2 kings from 4 available. The constraint is given by 52 = 4+ 4+ 44. In this 
example students also learn to incorporate statistical independence concept which is 
reflected by multiplying the three formulas together to arrive at the answer. The concept 
allows them to understand that picking 2 kings out of 4 is independent of picking 1 queen 
from the available 4. 
 



Another problem type requires students to remove several objects before counting is 
performed. One example is the following: "There are 4 red balls and 3 blue balls in a bin. 
You select 7 balls randomly from the bin without replacement. How many ways are there 
so that the first and the fifth are of the same color?" The first and the fifth can be either 
blue or red, which implies that these two cases are mutually exclusive. Assigning the first 
and the fifth to red balls will give 
 

(2+ 3)!
2! 3! = 10 

 
for the remaining 5 sites, while assigning the first and the fifth to blue balls will give 
 

(1+ 4)!
1! 4! = 5 

 
so that there are total 15 ways. 
 
Probability and statistics for engineers textbooks [2] cover the basic counting formula and 
give many exercise problems. The presentation of combinatorics in such textbooks is not 
yet systematic to allow students to learn it methodically. Probability and statistics for 
engineers course typically spends maximum 1 week on combinatorics at the beginning of 
the course. It is not an easy topic to teach and is at an inconveniently early time in a 
course, when most students are grappling with the concept of probability. Combinatorics 
teaches students the ability to spot "hidden patterns" in numbers and graphs when 
working on other problems, such as those they later find in thermodynamics and 
mechanics. One way to alleviate this minimal exposure and workout is to lengthen the 
combinatorics coverage within the conditional probability and to show to students the 
close connections between combinatorics and other more applied topics in statistics.  
 
2. Conditional Probability Using Card Games 
 
Conditional probability formula 
 

𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)
𝑃(𝐵)   , 

 
where event 𝐵 becomes a condition for event 𝐴, is a difficult formula for students to 
understand. The first hurdle for students is understanding how the condition 𝐵 affects the 
counting of events. This hurdle can be illustrated by two counting problems. The first 
problem is as follows: "5 cards are dealt randomly from a deck of 52. Given that the first 
4 are heart, how many ways are there for the fifth is also heart?" If event 𝐴 corresponds to 
the fifth heart, then event 𝐵 corresponds to the first 4 hearts, so that there are 
 

13
4+ 1 = 1287 

 



ways to have 5 hearts. The probability that the fifth card is a heart given that the first four 
are heart, under the condition that 5 cards are drawn simultaneously, is therefore 
 

𝑃(𝐴|𝐵) =
13
5

39
0 / 52

5
13
5

39
0 + 13

4
39
1 / 52

5

=
13
5

13
5 + 39 13

4

=
3
68  . 

 
The numerator 135  is the number of ways for the event we want (i.e., five hearts), while 

the denumerator 135
39
0 + 3 13

4
39
1  captures the total number of ways that can 

happen when 5 cards are taken simultaneously given that 4 are hearts. 
 
The second problem is related to the first and is as follows: "4 cards are drawn from a 
deck of 52. They are opened and turn out to be hearts. How many ways are there for a 
fifth to be heart if one more card is drawn?" The number of ways for the fifth to be a 
heart is 
 

9
1

39
0 = 9, 

 
so that under the condition that 4 cards drawn first are heart, we obtain different 
conditional probability 
 

𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)
𝑃(𝐵) =

13
5

39
0 / 52

5
13
4

39
0 / 52

4

  =
4! 9!
5! 8!

5! 47!
4! 48! =

9
48  . 

 
An astute student might recognize that there are 9 heart cards left when 4 hearts are 
drawn, which represent the numerator, and that there are 48 cards left when 4 are drawn, 
representing the denumerator. The connection between 9/48 and the basic counting 
formula will be lost if the answer 9/48 is given directly. 
 
The conditions, whether 5 or 4 cards are drawn, yield different probabilities. Most 
students will readily accept the 9/48 probability but not the 3/68 probability. To show 
their differences, one might use an analogy based on the answers above. If 5 cards are 
drawn simultaneously, the number of ways to have them is 1287, while for the 
simultaneously 4 hearts drawn followed by a fifth heart 
 

13
4

9
1 = 6435. 

 
The increased number of ways when the cards are drawn sequentially thus results in a 
higher probability. "How could the number increase?", students might ask. It has to do 
with the ordering of the cards drawn. When 5 cards are drawn simultaneously, and they 
are then opened to reveal their ranks, the information on the rank order of appearance is 



erased. Sequential draw, however, is more preserved for the 4 simultaneous draw. For 
instance, the sequential draw distinguishes between having a queen heart in the first 4 and 
having a queen heart in the fifth. So, whichever the heart rank to appear in the first 4 and 
the fifth, there is a factor of 
 

5!
1! 4! = 5, 

 
which is equal to 6435/1287, between the two conditions. 
 
Ultimately, their probability difference must be settled by card experiments. Randomly 
obtaining 4 hearts in a simultaneous draw of 5 cards would be exceedingly rare, so this 
card experiment is ideal for a class assignment. A group of 3 students can run one card 
experiment and having 30 such groups for a 90-student class will increase the number of 
times the event will occur. Such card experiments, when done first before theoretical 
prediction is revealed, will remove instructor's reluctance to explore more subtle counting 
problems out of embarrasment of incorrectly predicting an answer. There are several 
good combinatorics books [4], which can be used as references, but a course instructor of 
probability and statistics for engineers course has to be willing to go beyond textbook 
problems with ready solution manuals in order to make the course practical.  
 
In one card experiment I picked 2 cards simultaneously and opened the 2 cards. This 
process is repeated 100 times and I looked for having 2 clubs given that the first is a club. 
During this experiment, I was able to see a possibility that the second card is not a club 
and the first one is; there were 27 times such event occured, and within the 27 there were 
4 that resulted in two clubs. The 27/4 ratio is approaching the theoretical prediction 
 

13
2 + 13

1
39
1

13
2

=
15
2   . 

 
This ratio could be compared with sequential draws of 2 cards, increasing the number of 
card experiments to be performed, which is ideal if done as a class experiment. 
 
This card game can be expanded to include 𝑛 simultaneous draws and to open 𝑚 cards, 
where 𝑚 doesn't have to be equal to 𝑛 − 1. Theoretical predictions and card experiments 
from the simultaneous draws can then be compared against 𝑛 sequential draws' 
predictions and card experiments. 
 
Such card game and other variants involving sports and other games [5] provide real-
world applications of conditional probability concept. Students can also easily compare 
theoretical predictions using combinatorics against experiments using a deck of cards. 
The game approach to explaining conditional probability also provides practice for 
students to improve their combinatoric (counting) skills. This game approach is more 
practical than another approach using Bayes' box [6] to explain conditional probability. 
 



3. Poisson vs. Gamma Distribution 
 
Poisson probability mass function 
 

𝑓(𝑟) =
𝜆!𝑒!!

𝑟!  
 
describes the probability of having 𝑟 number of events within a fixed time interval whose 
average number of events is 𝜆. Poisson distribution can be used to model naturally 
occuring, periodic processes. Gamma probability density function  
 

𝑓(𝑥) =
𝜆!𝑥!!!𝑒!!"

Γ(𝑟)   , 

 
where Γ(𝑟) = (𝑟 − 1)! is gamma function with an integer argument, treats the integral 
number 𝑟 of events as a parameter unlike in Poisson. The random variable for gamma 
distribution is 𝑥, which is either distance or time duration. The two functions look similar 
and students often confuse their respective underlying assumptions and thus their 
applicability. 
 
One problem that illustrates their overlap is the following. "Calls to a call center have a 
mean of 6 calls per hour. What's the probability that 4 calls occur within one hour?" 
According to Poisson distribution, the answer is 
 

6!𝑒!!

4! = 0.134, 
 
while gamma distribution gives 
 

6!𝑥!𝑒!!!

3!

!

!
𝑑𝑥 = 0.849. 

 
The two numbers occupy two probability extremes and thus don't represent consistent 
approximations. Course textbooks often casually use Poisson distribution for problems 
that require gamma distribution. Resolution to this problem is often stated as an exercise 
problem that requires rather involved mathematical treatment for second year students. I'd 
like to bring this connection to our attention to prevent such confusion. 
 
Starting with Poisson distribution 
 

𝑃(𝑟 < 𝑁) =
𝜆!𝑒!!

𝑟!

!!!

!!!

  , 

 
we have 
 



𝑃(𝑟 ≥ 𝑁) = 1−
𝜆𝑥 !𝑒!!"

𝑟!

!!!

!!!

 

 
by rescaling the parameter 𝜆 → 𝜆𝑥 so that we can insert a continuous variable 𝑥 based on 
a constant 𝜆. Because 𝑃(𝑟 ≥ 𝑁) is a (cumulative) distribution function, taking a 
derivative with respect to 𝑥 gives a gamma probability density function 
 

𝑓(𝑥) =
𝑑
𝑑𝑥 𝑃(𝑟 ≥ 𝑁) =

𝜆𝑥 − 𝑟 𝜆𝑥 !𝑒!!"

𝑟! 𝜏

!!!

!!!

=
𝜆!𝑥!!!𝑒!!"

Γ(𝑁)   . 

 
This implies by integrating the derivative that 
 

𝜆!𝑥!!!𝑒!!"

Γ(𝑁)   
!

!

𝑑𝑥 =
𝜆𝜏 !𝑒!!"

𝑟!

!

!!!

  . 

 
This identity clarifies the relationship between Poisson and gamma distribution. 
Probability from gamma distribution for a specified number 𝑁 of events is equal to 
having at least 𝑁 when the probability is assigned to a Poisson process. Gamma 
distribution assumes that the 𝑁th event occurs exactly at the end of the time duration 
0 ≤ 𝑥 ≤ 𝜏; however, Poisson process allows for these 𝑁 events to occur anywhere within 
the interval. It is therefore possible that in Poisson process there are more than 𝑁 events 
within the duration 0 ≤ 𝑥 ≤ 𝜏. 
 
The 0.134 probability for the 4 calls in one hour obtained by Poisson distribution means 
that it is very unlikely that there are only 4 phone calls. The 0.849 probability from 
gamma distribution confirms that it is more likely that there are more than 4 phone calls 
when the phone calls are thought of as a Poisson process. However, the question does 
specify that there are only 4 phone calls, instead of at least phone calls. This implies that 
the fourth phone call should occur exactly at the end of one-hour period. The 0.849 
probability answer should prevail as a result. 
 
4. Central Limit Theorem 
 
One class exercise that helps students understand central limit theorem is to ask them one 
by one to weigh with their hands an unknown book by comparing it with another book of 
known weight. Students are asked not to tell or discuss their weight guess with their class 
mates. Their decisions are then polled by a show of hands. This active learning activity 
might help students remember the tenet of central limit theorem longer than showing 
them its proof [7]. 
 
The weight comparison task mimics a random process with a well-defined average and a 
finite variance required by central limit theorem. The presence of a well-defined average 
is guaranteed when each student is asked to estimate the weight since most of them will 



seriously compare their weights. There was only one student in a class of 70+ students, 
who arbitrarily picked a number for the weight. The weight comparison task also 
removes a possibility of an infinite variance which can occur if each student is simply 
asked to pick a random number. In addition, weighing an item still cannot be performed 
by a smartphone or a laptop so that their predictions will vary considerably. 
 
A class exercise of weighing a 3.75-lb book gave an average guess weight of 4.28 lb and 
a variance of 1.20 lb2 from 73 students. In another class of 71 students, the average guess 
weight was 4.38 lb and the variance was 1.14 lb2.  
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