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Using Solid Modeling to Enhance Learning in Mechanics of Materials and
Machine Component Design

Abstract

This article reports on a classroom research study about the use of solid modeling as a
visualization tool for deep learning of engineering mechanics principles. There is a need for deep
understanding of technical content in courses such as Mechanics of Materials and Machine
Component Design in order to lay the foundation for robust prototypes in Capstone Design. A
typical classroom experience in mid-program engineering science courses involves lecture
followed by assigning problems from the text. Associated lecture notes and explanations along
with assigned problems and their solutions are in a two dimensional form, i.e., presented as
printed output or handwriting on a page. The equations used are also in two dimensional in form,
reducing physical behavior to analytical expressions and cross sectional properties to a single
value. It is not easy for the beginning learner to visually connect the course content and problems
to the three dimensional world. Instead of the desired outcome of interpreting the assigned
problem from the world around them, students look to pattern match the figure in the assigned
problem to figures or location in the chapter. To provide an opportunity to more fully engage in
their learning experience, a series of assignments has been developed where students use skills
from their 3-D solid modeling course to conceptualize and even solve mechanics problems.
These exercises begin by using a fully defined 2-D sketch to graphically solve static problems.
Next, the 2-D sketch is used to determine cross sectional properties, e.g. cross sectional areas,
second moments of area, product of inertia, and principal moments of inertia and centroid
locations. These results are then compared to the results that were calculated manually. Later 3-D
solid modeling is used to model 3-D stress states in support of 3-D Mohr’s circle exercises, stress
distributions of compound stress states, shapes of optimized beams, and frustrom measurements
needed in a bolted connection analysis. The effectiveness of these visualization enhanced
assignments has been assessed through pre-course surveys, quality of homework submissions,
post homework visitations and post-course surveys.

Introduction

To begin taking classes in the junior year, our students need to be certified, meaning that students
need to have substantially finished the first two years earning no more that three grades of D or F
while earning better than a grade of C in five courses. Once certified, students can begin the
junior year with its emphasis on Mechanical Engineering courses. One thread of the junior year,
is a two-semester sequence, taught once a year, on the topics of intermediate mechanics of
materials (fall semester) and machine component design (spring semester).  The text used is a
custom printing of the Shigley and Mischke 5  edition Mechanical Engineering Design[1] (manyth

students find the original online). The first semester covers analytical mechanics while the
second semester covers applied mechanics. A result of teaching a junior level 2-semester
sequence once a year, is that it substantially defines our senior class one year in advance,
allowing for planning of technical electives and recruitment of senior capstone design projects.
The educational setting is 2/3 flipped classroom environment where students prepare by reading
and working problems outside of class and then work on problems during class and 1/3 lecture



for introduction of new subjects and delving into more difficult topics. Class is held twice weekly
(M-W 1 hour 15 minutes) with a homework assignment due on Friday.

Sometime ago when class sizes began increasing, we began to assign students, alphabetically,
numbers starting at 1 to the number of students in the class. This number is placed in the upper
left hand corner of all assignments. This facilitates ordering of papers which are handed in,
graded, and recorded individually. This manner of grade entry, provides for a very large data set
(.8,000 entries per semester) which is useful for assessment. After grading, papers are sorted, for
each student, for return. The return of papers is at the beginning of class, where the instructor
calls out the student numbers, sequentially, with the expectation students will be physically
present for transfer. The goal is to return assignments in under 2 minutes. Approximately 5
minutes are then allotted for students to discuss and compare grading while the solutions are put
up on the overhead.

Historically, assessment of the efficacy of these courses has included student grades, results from
the FE exam, and comparison of a student survey given on the first and last day of class. These
measurements have been positive. However, student questions and responses to questions have
been troubling. For example, during office hours a student would come in with their book and
their question would begin with “ I found this equation.”  Querying students with questions such
as “Why would that equation apply to the problem?”, “Are there any limitations to this
equation?”, and “ Can you sketch on the blackboard the situation this equation applies to?” 
resulted in less than satisfactory responses. These experiences lead to an introspection of  “What
mental image does a student see?” [2,3] Hence, the exploration of using solid modeling to
increase student engagement in mechanics of materials and machine component content.

Solid Modeling Enhanced Assignments

The following assignments, outlined in Table 1, have been developed over the last few years for
inclusion in the first semester. The first column of the table gives the topic and the solid
modeling objective, visualization and/or realization. Visualization is used to communicate the
result of the analysis whereas realization indicates solid modeling is integral to the analytical
solution.  The initial assignments are meant to begin to create a visual link between the
foundational concepts in statics/mechanics of materials to solid modeling. Later assignments use
solid modeling to directly support the completion of a mechanics of materials solution as well as 
visualize/add meaning to the solution.  The second and third columns indicate the student
learning objectives for mechanics of materials and solid modeling respectively. The assignments
were harvested from a number of references. Specific details of the analytical solution are not
included as each reader may have different approaches.

Seven problems are presented, each becoming more difficult, beginning with statics and ending
with unsymmetrical bending and principal stresses and their direction cosines. For each problem
there is a brief problem description and a student solution. This is followed by observations about
the solution route and the solution. 



Table 1
Mechanics of Materials and Solid Modeling Learning Objectives

Topic

Objective

Mechanics of Materials
Learning Objectives:

Students will

Solid Modeling
Learning Objectives:

Students will

1: Statics
 

Realization

draw FBD, use equations of
equilibrium, find unknown

forces

create a fully defined sketch, define a
length to force scale, graphically

create a parallelogram of forces, find
the unknown forces

2:  Area Properties

Realization

determine the location of the
centroid, calculate moments and

product of inertia, principal
moments of inertia and angle to

principal axis system

create a sketch of the cross section,
use the Section Properties Tool to
obtain properties calculated using

MOM, identify variable name
differences and sign conventions 

3: Beam     
optimization

Visualization

write a continuous moment
equation, determine optimum
offset to minimize moment,
design beam cross sections 

use results from MOM analysis to
visualize the design

4:  Combined         
     stress state

 
Visualization

determine the bending moments
about the x and y axes, calculate
the bending stress at the corners

of the beam, and calculate a
combined bending stress 

use results from MOM analysis to
visually realize the design

5:  Curved Beams

Visualization

calculate the bending stress on
the inner and outer surface of a
curved and the location of the

centroid and neutral axis

use results from MOM analysis to
visually realize the design

6:  Unsymmetrical 
     bending

Realization and
visualization

use the cross sectional properties
and distances to calculate stress

at points of interest, define a
stress to length scale for

visualization

find the centroid, moments of inertia,
principal axes, distance from the
principal axes system for use in

MOM analysis,  visually realize the
solution 

7:  Principal           
     stresses  

Realization and
visualization

calculate invariants, find the
roots of the characteristic cubic
equation and direction cosines

use results from MOM analysis to
visually realize the design



Assignment 1:  Concurrent forces in a plane: Graphical Statics [4]

a) A cylinder rests in a right-angled trough, as shown in Figure 1-a. Determine the forces
exerted on the sides of the trough at if all surfaces are perfectly smooth. 

b) Two cylinders rest in a trough, as shown in Figure 1-b. Determine the forces acting at
points P, Q, R, and S.

Solve both problems analytically and graphically (solid modeling), using one method to verify
the other.

a) b)
                                    

      

c)                                                                 d)
Figure 1 Graphical solution. (Upper figures a) and b) present the problem, lower figures c) and d) 
show a students solution )

Observations: The problem depicted in Figure 1 a) was assigned first and there was some student
questioning of the value of solving the problem graphically. When the problem shown in Figure
1 b) was assigned, the questions changed to is the analytical solution necessary? The analytical
solution requires some insightful trigonometry to find the angle of contact between the two
cylinders.



Assignment 2:  Cross section properties

For the L-shaped cross section shown, determine analytically and
graphically (solid modeling) the location of the centroid, second
moments of area (moments of inertia) about the centroid and the
product of inertia. Determine the angle to the principal axis system
and the principal moments of inertia. 

 
a)

b) c)

Figure 2: Upper figure a) is the geometry of the cross section, lower figures b) and c) are student   
               work.

Observations: This is a very straight forward geometry to sketch and the program will calculate
the section properties. Students need to interpret the variables. For example the solid modeling

xx yy xyprogram uses L , L , and L , for the moments and products of inertia whereas mechanics of

x y xymaterials typically uses I , I , and I . The solid modeling program reports a product of inertia
with a positive sign when it should be a negative. Finally, the solid modeling program reports a -
53.37 E angle between principal axes and sketch axis whereas in mechanics of materials the
angle between x-axis and the principal axis X would be the complement to that angle, 36.63E.    



Assignment 3:  Visualization of Solution (team assignment)

For a uniformly loaded w simply supported beam of length l, where the supports are offset from
the end of the beam by a distance a, find the offset distance a which minimizes the bending
moment. Then with l =10 in, and w =100 lb/in, base of the beam b =.1 in., and a design stress of
12,840 lb/in  design three beams, 2

a) simply supported ( a=0) constant cross section height h along the length, 
b) simply supported (a=0) constant stress, varying height h along the beam, and  
c) simply supported (a= optimum setback) constant stress, varying height h 

Graphically, show the three designs in a manner that allows for a visual comparison.

a)

b)
c)

Figures 3: Upper figure a) is the beam geometry and loading, b) moment diagram for optimum
setback and heights of constant strength beams, and c) visualization of three equal strength
beams

Observations: Using Heaviside step functions the moment equation can be written as: 

 a form convenient for

programming. The Heaviside step function H(x, a) is equal to zero if x < a and one if x  $ a.
Once coded students can explore the magnitude of the moment at the supports and the center of
the beam for various values of a by guess and check, equation solver or by optimization. After
finding the optimum setback a, beam heights can be calculated for the three designs. (Problem
from Shigley and Mischke,[1])



Assignment 4:  Visualization of Combined Stress Distributions (team assignment)[5]

x yFor the rectangular cross section beam loaded with a moment M  about the x-axis and a M  about
the y-axis calculate the maximum bending stresses and their locations for each moment. Sketch
these stress distributions. Write an expression for the combined bending stress, verifying it is
correct at the four corners of the beam, and then use that expression to determine the angle where
the combined bending stresses are zero (the neutral axis).  

a)

    b)

Figure 4: a) Stress distribution hand 
                out and b) students work

Observations: The handout for the class did not include the red and blue lines. These were added
in a class activity/lecture. The cross sectional dimensions, moment arm and load were selected
for ease of sketching the problem statement and bending stress calculations. The bending stress
caused by bending about the y-axis is 10 ksi (scaled as 1in. in the isometric views) and about the
x-axis is 5 ksi (scaled as ½ inch.) The blue (tension) and red (compression) lines were added to
the problem statement in a class activity/lecture. The combined stress distribution is sufficiently
difficult that many students couldn’t quite follow along. This set the state for having students use
their solid modeling skills to visualize the stress distributions. (Popov [5] )



Assignment 5:  Flexure of Curved Beam (team assignment)

A practical application of curved beam bending theory is the chain hook. Below is a sketch of a
eye hook from the MSC catalogue [6]. A numerically friendly cross section is also provided for
determining the location of the centroid and flexural neutral axis.  Calculate the minimum and
maximum bending stress and plot the stress distribution. By way of solid modeling, visualize 
your understanding of your solution. (P=15 tons, A=5.34, B=2.84, D=8.37, G=2.59, H=2.94, K=2.19,
L=14.05, R=10.21 (in))

Figure 5 a): Upper figures show the problem geometry while lower figures show one teams
visualization of the solution.



Figure 5 b) Student team’s visualization of the solution. (Note the observation of the location of   
       the neutral axes)

Observation: Calculating the bending stress distribution follows the solution given in Shigley and
Mischke [1] which was originally developed by E. Winkler. To calculate the location of the
neutral axis R, the integral *dA/r as well as the cross sectional area A were determined
numerically using Simpson’s integration method. The simplified cross section dimensions could
be put into a List function in TKSolver. For pure bending, the neutral axis is moved from the
centroid inward towards the center of curvature. However, when the axial stress was combined
with the bending stress, the neutral axis shifted back to the centroid.  This interesting observation
was made by multiple student groups. The author had never made that observation before.   



Assignment 6:  Unsymmetrical Bending (team assignment) [7]

A cantilever beam with a of Z-shaped cross section is loaded at the end by a vertical load P= 724
lb. Determine bending stress distribution on a cross section. Compare hand calculations for the
moments and product of inertia, principal moments of inertia, angle to the principal moments of
inertia, and decomposition of the applied moment into moments along principal axes.  Create
images showing distances from the principal axes system to the points of interest, stress
distributions about individual X, Y principal axes and a combined stress distribution. 

  

Figure 6 a) Upper figure is the problem while the lower figures are student work to find the cross  
                   sectional properties and visually show the moment components acting along principal 
                   axes. 



                                                         

         
         

Figure 6 b)  Top figures show distance from principal axes, middle figures visualize cross
section  stress distribution, and the bottom figure shows the combined stress
distribution.



Figure 6 c): Another visualization of the stress distributions.

Observations: Using only an analytical approach (graduate level) to find the normal stress
distribution results in a relationship:

which does not lend itself to visualization of the bending behavior [8]. This relationship could be
made numerically straightforward to use by using solid modeling to find the moments and

x y xyproduct of inertia (I ,I , I ) Figure 6 a) followed by the x ,y coordinates of the point of interest
from a dimensioned sketch. Visualizing how the bending about two principal axes would still be
difficult. By solving the problem with respect to the principal axes, a student can stay visually
connected to the solution, visualizing the solution along the way. One final point is that the
approach outlined here makes all cross sections equal in terms of difficulty.



Assignment 7:  Principal Stresses and Direction Cosines (team assignment) [1, 9]

x y z xy yz xzGiven the following stress state, (ó =10, ó =10, ó =15, ô =5, ô =4, ô =3 ksi) determine the
principal stresses and direction cosines of the angles between the original axes system and the
principal stress axes system. Late in the design, it was determined that an oil galley needed to be
added. After studying the stress state, select the path least disruptive to the component’s strength.
Using your solid modeling skills and full artistic freedom show this path in the original stress
element and the principal axis system .

a) b)

Figure 7 a) and b): a) Sketch of 3-D state of stress and b) classical manner of reporting the             
                   solution. 

c) d)
Figure 7 c) and d): An example student visualizing a state of stress in the original and the              

                  principal coordinate systems.

1 2 3         ó =19.96       ó =10.09       ó =4.93

            Direction Cosines

x y z

X .48 .52 .71

Y -.57 -.43 .70

Z .67 -.73 .09



Figure 7 e): Student submission of principal stresses.

Observation: In our curriculum, students will have taken or be enrolled in a junior level linear
algebra class and have been introduced to eigenvalues and eigenvectors when this problem is
assigned. Theoretical explanations are reviewed but only briefly. The analytical portion of the
assignment is to create a program that calculates the three invariants for the characteristic
equation and then solve for the roots and their directions. The programming exercise begins by
studying the logic of a legacy TK-Solver program from Bhonsle and Weinmann [9]  ( Appendix
A). Students then freshen up this code by including the use of Greek characters and the use of
functions for organization. Heavy program commenting is expected. After the solution is
obtained, students are asked to verify by way of cross product that the three sets of direction
cosines do form a right-hand coordinate system. As indicated in the problem statement, students
are free (actually asked) to use their full artistic expression to show the original state of stress as
well as the principal state of stress. Adding an oil galley has the goal of helping students tie the
two visual expressions of the stress state together.  

Assessment 

The assessment of the efficacy of this course is explored from three aspects. The first, shown in
Figure 8, was to explore how prior educational experiences and their assessments predict the
initial four-week performance in this course.  The second assessment was to compare student
initial four-week averages in the course to the final averages which is shown in Figure 9.  Finally,
an attempt was made to determine how students construct and retain knowledge over time, this is
shown in Figure 10.
 



a)

b)

c)

Figure 8: Initial four week average versus three possible causative variables, high school GPA,     
            Math SAT, and four course GPA

 Prior Educational Experience, Figure 8:  The assessment of the present course (dependant
variable) thought to be most relevant to previous experience was the student grade average for
the first quarter of the semester (4 weeks.)  This portion of the class focuses on review and
assessment of topics from statics and mechanics of materials courses (23 separate problems were
assigned during this time period) as well as a self assessment of these topics by the students. The
only new material was a computer analysis program, TkSolver, as it is used throughout the year. 
Possible causative (independent variables) events considered was high school GPA, SAT math
score, and the GPA of four prerequisite classes, one from each semester of the freshman and
sophomore years, the first calculus course, statics, mechanics of materials, and solid modeling. 
These comparisons are shown in Figures 8 a), b), and c) respectively. There appears to be little if
any dependence between high school GPA or Math SAT and the student average for the initial 4
weeks of the course. There appears to be a trend between the four course average and the initial
four-week average as shown in Figure 8 c).



  
a)

b)

Figure 9: Final class GPA a) and change in GPA b) versus the initial four week average.

Initial four-week versus final average: In Figure 9 a) there appears to be a trend between the class
average at four weeks and the final class average. Students that start well in the course tend to
finish well. Focusing on the students that have a lower initial four-week average indicates that
something else may be in play. Figure 9 b) indicates the change in student average between the
initial four-week and final average. Of the 88 students in the class, the class average decreased
for about 11 students, stayed approximately the same for 12 and increased for the remainder.
Importantly, this occurred while covering the more difficult topics in the course, i.e.,
unsymmetrical bending, bending of curved beams, energy methods, and three-dimensional stress
states.  Additionally, the largest gains in average were for students that had lower initial 4 week
averages. Perhaps this is due to  having more possibility for improvement but even if that is
accepted, they improved their performance while covering more difficult topics. This
improvement in student performance occurred concurrently with the visualization assignments.   



Figure 10: Student performance over the course of a semester on four mechanics of materials        
           topics

Student knowledge construction and retention: The third assessment was to look at how students
construct knowledge over time and how they retain it. During the initial 4 week portion of the
class, the topics of calculating a centroid, Mohr’s circle of plane stress, shear and moment
diagrams, and torsion of circular cross section shafts were reviewed. Additionally, on the first
day of class, students completed an assessment of their knowledge of various topics using a
Likert rating scale.  Subsequently, at about 3- week intervals throughout the semester, these
topics were assessed by way of in class quizzes. The students then performed a self assessment at
the end of the semester. The results of these assessments are shown in Figure 10. Generally, for
all four topics, student performance improved throughout the semester. There does seem to be a
drop off around the second or third attempts but the averages rebound after that.

Discussion

Four years ago, the first experiment (Assignment 3) with using solid modeling to supplement a
mechanics of material solution was piloted. During grading of that assignment, several student
groups turned in visuals that were quite striking. The visuals were such that, grading was
suspended, while ascertaining who did this work. Early in a semester, in a larger class (60
students) a data point an instructor has is the present grade average in the class.  These striking
visuals were turned in by students that were struggling with the theoretical and analytical aspects
of the class. The time spent on that assignment must have been disproportionate to the normal



time spent on an assignment. While this was an anecdotal observation then, it has been
repeatedly made. The time students are willing to spend on these assignments is such that
assignments are spaced out over the semester because other classes need to have access to the
computer lab. For our resources and curriculum about seven assignments as presented here are
possible. 

The data in Figure 9 b) strongly suggests a student’s performance, as measured by class average,
improved during the last 12 weeks of the semester as compared to the first four weeks. The first
four weeks are review of previous materials with little new material, while the following twelve
weeks include the introduction of curved beam theory, energy methods, shear flow, shear centers,
unsymmetrical bending, 3-dimensional stress states and failure theory. It was during the twelve
weeks that the assignments that included solid modeling were completed. Student performance
improved while covering more difficult material.

After completing the fall semester covering intermediate mechanics of materials, the spring
semester covers machine component design. Due to the nature of our curriculum it is the same
student population allowing an assumption that students are comfortable with the solid modeling
-mechanics of materials connection. This connection can be carried forward. For example, Figure
11 shows student work on the bolted connection. The figure shows the assumed geometry of
material that is involved in the analysis. Solid modeling can be used to determine dimension of
the frustroms used in the spring constant analysis [1]. The second figure illustrates the difference
in bolt shapes that can improve the fatigue performance of the bolted connection [10].

Figure 11: Solid models from a bolted connection assignment where the fatigue safety factor is     
                  increased first by shape and then improved materials.

Determining the effectiveness of including visualization into the course content is difficult since
the class room is a dynamic environment. Therefore, holding one variable constant while
changing another to get a clear cause and effect is not straightforward.   The data suggests an
improvement in student performance from beginning to the end, shown in Figure 9, is similar to
the findings shown by a comparison between interactive-engagement versus traditional methods
[11]. In this case the engagement is creative active visualization.



Conclusion

This study began by connecting metrics from prior engineering learning experiences (in pre-
college courses, in college placement exams, and in selected pre-engineering course work) to
initial performance in a mid-level Mechanics class.  Not surprisingly, performance that was
temporally closer to this course (i.e. grades in selected pre-engineering course work) was found
to be the strongest indicator of course preparation.  The paper outlines a sequence of homework
assignments that integrate active, creative visualization with mechanic’s course content.   Seven
diverse examples of progressively greater conceptual difficulty are presented. The impact of this
teaching method was studied using periodic topic-specific quizzes as well as self-reported
confidence in solving different types of mechanics problems.  Quiz performance and problem
solving confidence grew in all areas that were examined.  The overall impact of this intervention 
on students with different academic backgrounds was interrogated using a method suggested by
Hake [11] that traces gain in performance throughout a course versus performance during an
early 4-week trial period within the course. Results showed that students of all academic
backgrounds benefitted from the intervention, with proportionateley great impact on students
who were lower performers. The conclusion is that appropriately framed solidmodeling 
exercises, within a meaningful mechanic’s framework, stimulates engagement of a broad range
of students in a mid-level Mechanics course that has a traditional reputation of heavy and lengthy
homework assignments that primarily challenge just analytical skills.  The assessment data
presented here suggest that a visualization component along with a flipped classroom
environment shows promise to be a powerful tool for knowledge/skill acquisition as well as
student engagement in mid-level mechanical engineering courses. 
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Appendix A

Assignment 7 Principal stress and direction cosines

The following is legacy code from Bhonsle and Weinmann that is provided to students. The
assignment is to study the code and understand the logic of a trigonometric solution to finding
the roots of a cubic equation.

;TK Lead Model By DR. S.R. Bhonsle & DR. K.J. Weinmann
;                   of
;Michigan Technological University Houghton Mi. 49931.

; Characterestic Equations ;
Sp^3-I1*Sp^2+I2*Sp-I3=ERR   

;Following are the equations derived in this chapter
; to solve problems related to 3-d stresses

I2=Sx*Sy+Sx*Sz+Sy*Sz-Txy^2-Tyz^2-Txz^2
I1=Sx+Sy+Sz
I3=Sx*Sy*Sz+2*Txy*Tyz*Txz-Sx*Tyz^2-Sy*Txz^2-Sz*Txy^2
Sa=2*S*((cosd(l/3)))+1/3*I1
Sb=2*S*((cosd((l/3+120))))+1/3*I1
Sc=2*S*(((cosd(l/3+240))))+1/3*I1
S=(1/3*R)^.5
l=acosd(-Q/(2*T))
R=1/3*I1^2-I2
Q=1/3*I1*I2-I3-(2/27)*I1^3
T=((1/27)*R^3)^.5
a=(Sy-Sp)*(Sz-Sp)-Tyz*Tyz
b=-((Sz-Sp)*Txy-Txz*Tyz)
c=Txy*Tyz-Txz*(Sy-Sp)
k=1/(a^2+b^2+c^2)^.5
li=a*k
mi=b*k
ni=c*k
S1=max(Sa,Sb,Sc)
S3=min(Sa,Sb,Sc)
Taumax=(S1-S3)/2
I1=S1+S2+S3

The above code can be reorganized and coded using user defined TK Solver functions in to a
very brief code that shows the logic of the solution.

call invariants(;I1,I2,I3)
call constants(;R,Q,S,T,á)
call roots(;Root_1,Root_2,Root_3)
ó_1=max(Root_1,Root_2,Root_3)
ó_3=min(Root_1,Root_2,Root_3)
ó_1+ó_2+ó_3=I1
call Cosines(ó_1;l_1,m_1,n_1)
call Cosines(ó_2;l_2,m_2,n_2)
call Cosines(ó_3;l_3,m_3,n_3)



This is the solution to Assignment 7 from Bhonsle and Weinmann

Status Input Name Output Unit Comment
19.9664796 Sp Princ. stress (psi, ksi, Pa, or MPa)

I1 35 Matrix Solving Constant
I2 350 Matrix Solving Constant
I3 995 Matrix Solving Constant

10 Sx Stress in x-dir (psi, ksi, Pa, MPa)
10 Sy Stress in y-dir (psi, ksi, Pa, MPa)
15 Sz Stress in z-dir (psi, ksi, Pa, MPa)

5 Txy Shear stress (psi, ksi, Pa, MPa)
4 Tyz Shear stress (psi, ksi, Pa, MPa)
3 Txz Shear stress (psi, ksi, Pa, MPa)

li .47522675 Direction Cosine of Sp (deg, rad)
mi .522525959 Direction Cosine of Sp (deg, rad)
ni .707902647 Direction Cosine of Sp (deg, rad)

Sa 19.9664796 Principal stress (psi, ksi, Pa, MPa)
Sb 4.93448179 Principal stress (psi, ksi, Pa, MPa)
Sc 10.0990386 Principal stress (psi, ksi, Pa, MPa)

S 4.40958552 Constant
l 59.2834019 Constant
R 58.3333333 Constant
Q -87.592593 Constant
T 85.7419406 Constant

ERR Error term

a 33.4983183 Constant
b 36.8323982 Constant
c 49.8994389 Constant
k .014186585 Constant
S1 19.9664796 Max. Prin. stress (psi, ksi, Pa, MPa)
S2 10.0990386 Intermidiate Prin. stress (psi, ksi, Pa, MPa)
S3 4.93448179 Min. Prin. stress (psi, ksi, Pa, MPa)
Taumax 7.51599893 The max. Shear stress (psi, ksi, Pa, MPa)

The students are asked in Assignment 7 to improve on the organization of the output.. 


