
Paper ID #17130

Freshman Engineering Problem Solving with MATLAB for All Disciplines

Prof. Roche de Guzman, Hofstra University

Dr. Roche de Guzman obtained his Ph.D. in Biomedical Engineering at Wayne State University in De-
troit, MI in 2008. He had postdoctoral trainings at the Wake Forest Institute for Regenerative Medicine
(Winston-Salem, NC) and at Virginia Tech (Blacksburg, MI) prior to becoming an Assistant Professor at
Hofstra University (Hempstead, NY) in 2014. He is currently teaching and has taught ENGG 010 (Com-
puter Programming for Engineers), ENGG 081 (Bioengineering), ENGG 118 (Biomaterials), ENGG 108
(Biomaterials Lab), ENGG 199 (Research), and ENGG 143G (Senior Design). His research interests are:
Biomaterials and Mathematical Modeling. He is an active member of the Biomedical Engineering Society
(BMES) and Society for Biomaterials (SFB).

Dr. John Carmine Vaccaro, Hofstra University

John Vaccaro grew up on Long Island in Levittown, New York. After graduating with a B.S. in mechanical
engineering from Hofstra University (’06), Dr. Vaccaro went on to earn his Ph.D. in aeronautical engineer-
ing in 2011 from Rensselaer Polytechnic Institute. His area of research is in the field of experimental fluid
mechanics and aerodynamics with a focus on wind tunnel testing. Specifically, he has collaborated with
the Northrop Grumman Corporation researching the use of flow control in aggressive engine inlet ducts.
After graduation, Dr. Vaccaro held a lead engineering position with General Electric Aviation in Lynn,
Massachusetts. There, he designed the fan and compressor sections of aircraft engines. He frequently
returns to General Electric Aviation as a consultant. Currently, he is an Assistant Professor of Mechanical
Engineering at Hofstra University in Hempstead, New York where he teaches Fluid Mechanics, Com-
pressible Fluid Mechanics, Heat Transfer, Heat Transfer Laboratory, Aerodynamics, Measurements and
Instrumentation Laboratory, and Senior Design in addition to conducting experimental aerodynamics un-
dergraduate research projects.

Dr. Alexander Hans Pesch, Hofstra University

Alexander H. Pesch was born and raised in northeastern Ohio. After graduating from Ohio University, he
spent time in the jet engine overhaul industry before pursuing graduate studies at Cleveland State Univer-
sity. During his time studying at Cleveland State, he also taught undergraduate classes and participated
in research at the Center for Rotating Machinery Dynamics and Control. Currently, Dr. Pesch is an as-
sistant professor of engineering at Hofstra University. His duties include teaching undergraduate classes,
engaging in scholarly research, and participation in the Hofstra University Robotics and Advanced Man-
ufacturing Laboratory and Hofstra University Center for Innovation which grow the knowledge base of
New York in the area of mechatronics in modern manufacturing and bridge the gap between university
and industry development.

Dr. Kevin C. Craig, Hofstra University

Kevin Craig graduated from the United States Military Academy, West Point, NY, with a B.S. degree
and a commission as an officer in the U.S. Army. He received the M.S., M.Phil., and Ph.D. degrees from
Columbia University, NY. He worked in the mechanical-nuclear design department of a major engineering
firm in NYC and taught and received tenure at both the U.S. Merchant Marine Academy and Hofstra
University. While at Hofstra, he received the 1987 ASEE New Engineering Educator Excellence Award,
a national honor. From 1989-2008, as a tenured full professor of mechanical engineering at Rensselaer
Polytechnic Institute, he developed the mechatronics teaching and research program focusing on human-
centered, model-based design with a balance between theory and industry best practices. He collaborated
extensively with the Xerox Mechanical Engineering Sciences Laboratory (MESL), an offshoot of Xerox
PARC, during this time. At Rensselaer, he graduated 37 M.S. students and 20 Ph.D. students, and authored
over 30 refereed journal articles and over 50 refereed conference papers. In 2006 at RPI, he received the
two highest awards conferred for teaching: the RPI School of Engineering Education Excellence Award
and the RPI Trustees’ Outstanding Teacher Award. Over the past 20 years, he has conducted hands-on,

c©American Society for Engineering Education, 2016

Paper ID #17130

integrated, customized, mechatronics workshops for practicing engineers nationally and internationally,
e.g., at Xerox, Procter & Gamble, Rockwell Automation, Siemens Healthcare Diagnostics, Fiat, Tetra
Pak, Johnson Controls, and others. He is a Fellow of the ASME and a member of the IEEE and ASEE.
In January 2008, he joined the faculty of the Marquette University College of Engineering as Professor
of Mechanical Engineering and the Robert C. Greenheck Chair in Engineering Design, a $5M endowed
chair. He was given the 2013 ASEE North-Midwest Best Teacher Award and the 2014 ASME Outstanding
Design Educator Award, a society award. In the fall of 2014, he returned to the Hofstra University School
of Engineering and Applied Science as a tenured full professor of mechanical engineering. He is the
Director of the $1M Robotics and Advanced Manufacturing Laboratory, and also the Director of the
Center for Innovation, a new center created to collaborate with business and industry to foster innovation
where all intellectual property (IP) belongs to the sponsor.

c©American Society for Engineering Education, 2016

Freshman Engineering Problem Solving with MATLAB &

Simulink

Abstract

The current freshman engineering computer programming course, which utilizes MATLAB

programming language, is being experimentally redesigned to incorporate and highlight

activities focused on engineering problem solving and system investigation processes. These

methods hope to develop the students’ critical-thinking and analytical skills that are more suited

and applicable in real-world engineering. Course description and sample problems are

presented. Results will be shown in a follow-up study comparing the standard computer

program syntax-based approach to this pilot course which employs Simulink model-based

designs and hardware demonstrations.

1 Introduction

In 1969, one of the authors was a plebe (freshman) at West Point, engineering was the

required course of study, and a slide rule (Figure 1) was standard issue. In his first engineering

class, there was a 10-foot-long working slide rule hanging from the ceiling to aid in instruction.

He never once thought that his slide rule was going to solve an engineering problem he was

facing; it would just make his calculations easier. A decade later, he also never thought that his

hand-held calculator was going to solve his engineering problems, but now he could solve easily

many more types of engineering problems without having to resort to punch cards and

mainframe computers. However, his ability to estimate orders-of-magnitude was diminished.

The early 1980s saw the rise of the personal computer, and now every entering engineering

student at most universities has a laptop computer fully-loaded with the latest technical software.

When confronted with a problem before the desktop/laptop computer era, the engineering

student would develop the problem solution by hand, with pencil, paper, and much thought, and

only then was the slide rule or calculator taken out of its case, or, if needed, a computer program

written and cards punched. Today, entering freshmen have the perception that the solutions to

engineering problems are somewhere in the computer and just have to be found, when in fact the

solutions are where they have always been – in the minds of the engineers!

Figure 1. A slide rule.

Freshman engineering students in all disciplines usually take some computing class (such as

C, Java, or MATLAB programming) – hopefully, learn about pseudo codes and flowcharting,

and then solve simple problems developed primarily to make use of some features of the

programming language just learned. It is certainly extremely valuable for an engineer to be able

to develop an algorithm to implement a solution to an engineering problem and then turn that

algorithm into computer codes (e.g., MATLAB syntax). But it is the process that is most

valuable: the process of thoroughly understanding the problem, making simplifying

assumptions to develop a physical model of the problem, applying the laws of nature to the

physical model to create a mathematical model, and then solving the mathematical equations,

usually by creating an algorithm, and then programming that algorithm on a computer to gain

insight and understanding. But, once that is done, in engineering practice today, most complex

engineering problems are solved using pre-written programs in MATLAB or LabVIEW, for

example, and only in special situations will an engineer write a computer program from scratch

specifically tailored to solve a complex problem. Even in real-time computer applications, auto-

code generation programs (e.g., Simulink and LabVIEW) are widely available and are quite

reliable. It would be most valuable if freshman engineering students were first exposed to the

types of engineering problems real engineers in any discipline face 90% of the time and

appreciate this process. It certainly would put their laptop computer, computer software, and

computer programming in the proper context. All engineers today, and in the future, must be

able to model multidisciplinary engineering physical systems, predict how they will behave

when built, optimize their design, validate their predictions and designs with engineering

measurements, and see a design through to prototyping and manufacturing, with sustainability

considerations paramount throughout.

Let’s fast forward four years. The engineering student is now graduating and interviewing

for a job. How many piano tuners are there in the city of Chicago? Estimation of rough but

quantitative answers to unexpected questions about many aspects of the natural world was

frequently used by Enrico Fermi, the legendary physicist, to gage one’s power over his/her

theoretical and experimental studies. These types of questions draw upon a deep understanding

of the real world and upon everyday experience. Many companies use problem-solving

questions in job interviews to judge the intelligence and flexibility of their applicants.

Examples of “Fermi Questions” used are: What does it really cost to drive a car? How many

golf balls does it take to fill a 747 airplane? Anyone can make up a Fermi question. These

types of questions serve as a test of applicants’ abilities to think on their feet and to apply their

mathematical skills to real-world problems. There is no single correct way to analyze these

types of questions; there are many paths to the answer. All you need to answer these questions

is a willingness to think! Here is another example: Your chance of winning the Mega Millions

lottery is one in 100 million. If you stacked up all the possible different lottery tickets, the

height of the stack would be greater than Mt. Everest. True? This ability is directly related to

the modeling and analysis of engineering systems. The very crux of engineering analysis and

the hallmark of every successful engineer is the ability to make shrewd and viable

approximations which greatly simplify the system and still lead to a rapid, reasonably accurate

prediction of its behavior.

Engineers are problem solvers and the only way to learn problem solving is to do it!

Only a human can solve problems; the computer is a tool. Design problems are the heart of

engineering and to solve them requires creativity, teamwork, and broad knowledge. The

approach to solving an engineering problem should proceed in an orderly, stepwise fashion,

but often problem solving is an iterative procedure. To become a good problem solver, an

engineer must have – knowledge, experience, learning skills, motivation, and communication

skills. The ability to logically break a problem into pieces is most important.

It is the mindset these Fermi questions engender and the challenges engineers face in

modern practice that motivates the reinventing of the standard Engineering Programming

course found in some form at every engineering school in the country. With all this in mind, a

pilot course is now being taught that attempts to instill excitement and relevance into a course

that, desperately needs revision. This approach to engineering programming is not new

and has been proposed previously1-3.

2 Course Description

ENGG 010: Computer Programming for Engineers is a three-credit (3-hour per week)

freshman engineering course offered at 5-6 sections per year (or 2-3 sections per semester).

There are approximately 25-30 students in a class taught in a computer lab equipped with various

softwares including MATLAB and LabVIEW. The main programming language of choice is

MATLAB. A typical syllabus include topics in assigning values to variables, creating scalars,

vectors and matrices, writing scripts and functions, utilizing mathematical, relational and logical

operators, matrix indexing and manipulation, plotting, solving linear systems, programming

constructs: if statement, for loop and while loop, animation, and building GUI programs. A pilot

course is now being taught to two ENGG 010 sections at the present time.

This pilot freshman engineering course (Figure 2) emphasizes the engineering problem

solving process and the engineering system investigation process, and applies both to the

physics of everyday life as experienced by the students. Fundamentals of feedback control are

introduced due to its pervasiveness in the human body, nature, and all engineering systems. The

differences between the analog and digital world, including sampling, aliasing, and quantization,

are fundamental and emphasized. The course applies various computer tools, essential in all

subsequent engineering courses and professional practice, in sufficient detail for the students to

be able to begin to apply them in real-world problem solving and model-based design.

MATLAB, Simulink, and MuPAD are used for – engineering computation, matrix algebra,

numerical integration and differentiation, equation solving, plotting, interpolation and curve-

fitting, and m-file programming; graphical programming using Simulink to predict dynamic

system behavior; symbolic mathematical analysis using MuPAD; and real-time microcontroller

programming using auto-code generation. Measurement with LabVIEW is also introduced.

The importance of the process of engineering problem solving (Figure 3) is highlighted to the

students at the beginning of the course. Every engineering problem must be properly assembled

and analyzed, then solutions are calculated and presented. Specifically, the process involves

subdividing into: Given, Find, Diagram, Basic Laws, Assumptions, Analysis, Numbers, Check,

and Label. Every assignment given must be completed following this process. This is continued

throughout all the courses in the engineering curricula.

Figure 2. Pilot course topics centered on engineering problem

solving.

Figure 3. Engineering problem solving process.

The engineering system investigation process, shown in Figure 4, is a procedure an engineer

follows to thoroughly investigate, i.e., understand, predict, and experimentally verify, how a

dynamic engineering system or device performs, no matter how simple or complex the system

may be. It is an iterative process, as understanding how the system performs requires

simplifying assumptions initially. These initial simplifying assumptions may later be relaxed or

changed as understanding develops through comparison of analytical predictions with

experimental observations. Comparing the predicted with the actual measured dynamic behavior

is the key step in the investigation process. It is important to note that the steps in this process

should be applied not only when an actual physical system exists and one desires to understand

and predict its behavior, but also when the physical system is a concept in the design process that

needs to be analyzed and evaluated. After recognizing a need for a new product or service, one

uses past experience (personal and vicarious), awareness of existing hardware, understanding of

physical laws, and creativity to generate design concepts. Modeling and analysis in the design

process has never been more important. These design concepts can no longer be evaluated by

the build-and-test approach because it is too costly and time consuming. Validating the

predicted dynamic behavior in this case, when no actual physical system exists, then becomes

even more dependent on one's past hardware and experimental experience.

Figure 4. Engineering system investigation process.

3 Sample Course Exercises

Several exercises are taught in the class to demonstrate and stress the importance of

engineering problem solving and system investigation processes integrated with contemporary

computer programming tools. Some of them are:

a) Projectile motion problem solved by MATLAB m-file script using for/while loops

then modeled using interactive GUI.

b) Projectile motion problem solved using Simulink. Nonlinear equations can be solved

with Simulink or by assuming constant acceleration over small increments of motion

and writing a complex m-file. Both approaches are presented.

c) A feedback control system (the plant is a basic spring-mass-damper rotational

system) where the control is proportional, proportional + derivative, and proportional

+ derivative + integral. Students see how the control modes effect rise time,

overshoot, and steady-state error.

d) A studio exercise using the Arduino microcontroller with Simulink auto-code

generation to demonstrate aliasing and pulse width modulation.

e) A studio exercise using the Arduino microcontroller with Simulink auto-code

generation to control in real time the speed of a brushed dc motor.

f) A writing exercise to explain to a lay person the laws of nature involved in a physical

observation.

3.1 a & b - Projectile motion and effect of air resistance

This problem requires the student to apply basic high school physics principles (uniform

motion, uniformly accelerated motion, free-body diagrams, Newton’s 2nd Law) to a projectile

(baseball in this case) and solve the problem first without air resistance, by writing a MATLAB

script with loops (for/while), and then with air resistance, by solving the nonlinear equations

numerically using Simulink.

Background – We have discussed the motion of projectiles (e.g., baseballs, golf balls, tennis

balls, etc.) in air, first neglecting air resistance, and then including air resistance. We know from

practical experience that air resistance has a great effect on the trajectory, range, and speed of a

projectile in air. In analyzing the motion of a projectile in air, we assume that the acceleration

due to gravity, g, is constant and equal to 9.81 m/s2. We also assume that the mass of the

projectile is constant and that the motion is planar (x-y plane). Then we either neglect air

resistance or include air resistance in our analysis. In the absence of air resistance, the only force

acting on a projectile is the gravitational force, its weight, m·g. The projectile motion equations

neglecting air resistance for the horizontal (x) and vertical (y) motion of the projectile are:

2

2
1

00

0

00

0

)(

)(

)(

)(

0

gttvyy

gtvv

ga

tvxx

vv

a

y

yy

y

x

xx

x

 (1)

Here, a is acceleration and v is velocity with the subscripts denoting directions as illustrated in

Figure 5a. The variable t is, as usual, time in s.

y

x

θ

O

v0

(vx)0

(vy)0

Downfield

component

of velocity

Upward

component

of velocity

 Figure 5a. Projectile problem components, global (left) and local (right).

The initial position of the projectile is x0 and y0. The launch angle of the projectile with the

horizontal is given by the angle, θ, and the initial projectile velocity is v0 (with (vx)0 and (vy)0

components). The air drag vector force acts opposite to the projectile velocity vector and is

proportional to the square of the projectile speed.

2

,drag

2

,drag

)(

)(

yy

xx

vDF

vDF
 (2)

Therefore, the projectile acceleration vector has the following components:

2

2

)(

)(

ym
D

y

xm
D

x

vga

va
 (3)

The constant, D, depends on the density of air, ρ, the silhouette area of the body, A, and the

drag coefficient constant, C, that depends on the shape of the body. Typical values of C for

baseballs and tennis balls are in the range 0.2 to 1.0.

 2

CA
D

 (4)

Requirements – The radius of a baseball is r = 0.0366 m and its mass is m = 0.145 kg. The

drag coefficient C = 0.5, appropriate for a batted ball or a pitched fastball. The density of air is ρ

= 1.2 kg/m3, appropriate for a ballpark at sea level. The initial velocity of the baseball v0 = 50

m/s at an angle of θ = 35° above the horizontal. Answer the following questions by following

the engineering problem solving process (Figure 3), documenting all steps.

Tasks –

1) Analyze the motion of the baseball without air resistance by writing an m-file

program, using an explicit for loop, to plot the range (x) vs. time (t), the height (y) vs.

t, x vs. y, and velocity (v) vs. t from time t = 0 until the ball hits the ground. Include

the MATLAB script with the generated figure plots well-labeled.

2) Analyze the motion of the baseball with air resistance using Simulink to solve the

equations of motion. Show plots of x vs. t, y vs. t, x vs. y, and v vs. t from t = 0 until

the ball hits the ground. Include with the plots, well-labeled, a hand drawing of the

Simulink block diagram, along with the actual Simulink block diagram file well-

annotated.

3) Compare the flight of the baseball, x vs. y and v vs. t, across level ground, both

without air resistance and with air resistance. What are your observations?

Example deliverables are shown in Figure 5b which includes a Simulink block diagram for

performing the analysis and a GUI for multiple user inputs and plotting the resulting animation.

Figure 5b. Projectile motion problem and sample solutions. Simulink block diagram (top), simulation

animation with axes to scale (middle), and interactive GUI with animation and user inputs (bottom).

3.2 c - Satellite antenna tracking problem

You wish to control the elevation of the satellite-tracking antenna such as the kind shown in

Figure 6a.

Figure 6a. Example of a satellite tracking antenna.

The antenna and moving parts have a combined moment of inertia J (60,000 kg-m2) and an

angular viscous damping coefficient B (20,000 N-m-s). The viscous damping term captures the

energy-dissipation contributions from bearing and aerodynamic friction. For this exercise, we

will neglect actuator and sensor dynamics, and any parasitic effects, e.g., time delay, backlash,

and saturation. However, there is a compliance, a “springiness”, in the mechanism that affects

the performance. It can be quantified as a torsional spring with a stiffness K (N-m/rad) equal to

3000.

Tasks –

1) A picture and sketch of the physical system are shown. Draw a picture of the

physical model along with a list of all simplifying assumptions.

2) Draw a free-body diagram of the physical model. How many degrees-of-freedom

does the model have? Apply Newton’s 2nd Law to the free-body diagram to obtain

the mathematical model, i.e., the equation of motion.

3) A feedback control system must be designed. Draw the block diagram of the

feedback control system showing the plant and controller blocks. Sensor and actuator

dynamics are being neglected in this initial investigation.

4) A PID controller is proposed. Draw a Simulink diagram of the feedback control

system. Use Simulink simulations to show how each of the PID control gains, Kp, Kd,

and Ki (proportional, derivative, and integral, respectively), contribute to: rise time,

overshoot, and steady-state error.

5) Pick values for Kp, Kd, and Ki to give a rise time less than 5 s, an overshoot less than

10%, and zero steady-state error.

Example deliverables are shown in Figure 6b which includes a Simulink block diagram for

performing the analysis and several time responses for different prospective derivative gains.

3.3 d - Studio exercise to demonstrate aliasing and PWM

A coding exercise which includes a tangible, hands-on, component is to observe the aliasing

effect in PWM signals. The student is given a micro-controller and tasked with tracking an

analog signal with a PWM equivalent. Through programming of the micro-controller and

observation of the resulting behavior on an oscilloscope, the student can observe the aliasing

effect when the sampling rate is too low and experience the consequences of proper or improper

coding on the physical world. Figure 7 shows example hardware and the graphical coding

scheme which has been used in this studio exercise. The following is a discussion for the

students of the significance of the theoretical significance of the sampling rate and an

introduction to the Nyquist Sampling Theorem.

Figure 6b. Satellite antenna tracking problem Simulink block diagram (top) and sample time response

solutions (bottom).

One of the most powerful mathematical results of the digital era is the Nyquist Sampling

Theorem. A sampled signal can be converted back to its original analog signal without any error

if the sampling rate is more than twice as large as the highest frequency of the signal. The

Nyquist Frequency = ½ fs and it is a discrete-time system property. Restated in mathematical

form, if Ts is the spacing between samples and fs = 1/Ts is the sampling frequency, then

theoretically we can convert the samples of an analog signal back into the original signal if fs >

2fhighest, where fhighest is the highest frequency contained in the analog signal. The value 2fhighest is

called the Nyquist rate. fhighest is the highest frequency contained in a signal. The Nyquist rate is

the lower bound of the sampling frequency that satisfies the Nyquist sampling criterion. It is a

continuous-time signal property.

Mathematicians and engineers added to Nyquist’s original sampling result by discovering

precisely how to recreate the original signal from only its samples. They showed that if an

analog signal is sampled at a rate greater than two times the bandwidth, then it can be exactly

reconstructed from its samples. In fact, there is a mathematical formula for reconstructing the

Figure 7. Simulink-Arduino application 1, hardware (top) and

programming scheme (bottom).

signal and it can be implemented in a very practical way. The reconstruction of the original

signal from samples of the signal is done with a digital-to-analog (D/A) converter.

The implications of the Nyquist sampling theorem are nothing short of remarkable! The

process of sampling a signal, manipulating a sequence of numbers that results from sampling to

remove noise or emphasize certain features, for example, and producing an analog output signal

after the manipulations is called Digital Signal Processing (DSP). Band-limited signals (signals

whose highest frequency falls below some finite value) can be reconstructed perfectly from their

samples, as long as the sampling rate is greater than twice the bandwidth of the signal that was

sampled.

What happens if we unfortunately sample a signal too slowly and fail to meet the

requirement of the Nyquist sampling theorem? Aliasing refers to one signal “pretending to be”

another signal when their samples are the same. It is an undesired effect due to undersampling

whereby one signal can masquerade as another. Aliasing is an inevitable, irreversible process

which shifts frequencies. It cannot be completely eliminated, only reduced.

3.4 e - Brushed DC motor / Arduino closed-loop control exercise

Another exercise in which the student can experience hands-on application of the programing

he or she is learning is coding the speed control of a small DC motor. The student uses proper

coding of a micro-controller, already learned, to achieve desired performance of the electro-

mechanical system. The mechanical response to changes in the coding world keeps the student

engaged in mundane task of learning rules of syntax. Figure 8 illustrates a system level

summary of the components utilized in the exercise.

An electric machine is a device that can convert either mechanical energy to electrical energy

or electrical energy to mechanical energy. An example of mechanical to electrical is a generator.

Conversely, an example of electrical to mechanical is a motor. All practical motors and

generators convert energy from one form to another through the action of a magnetic field.

Magnetic field acts as the medium for transferring and converting energy. Motors, Generators,

and Transformers are ubiquitous in modern daily life. Why?

Figure 8. Simulink-Arduino application 2, DC motor system hardware overview.

Electric power is clean, efficient, and easy to control and transmit over long distances. Four

basic principles describe how magnetic fields are used in these devices. A current-carrying wire

produces a magnetic field in the area around it. A time-changing magnetic field induces a

voltage in a coil of wire if it passes through that coil (basis of transformer action). A current-

carrying wire in the presence of a magnetic field has a force induced on it (basis of motor

action). A moving wire in the presence of a magnetic field has a voltage induced in it (basis of

generator action).

3.5 f - Writing assignment example

Drop a magnet down a copper pipe such as is shown in Figure 9. The magnet “floats” down

the copper pipe defying gravity. There are five fundamental laws of nature demonstrated here.

What are they? See Maxwell’s Equations and Newton’s Laws of Motion and Gravity.

Communication of complex technical concepts in simple terms is the hallmark of an

accomplished scientist and engineer. Explain what you observe to a lay person in a 250-word

document. Organization, grammar, and style are just as important as accurate content.

Figure 9. Magnet dropping through a copper

tube, an example of a motivating experiment

for a writing assignment.

4 Rubric and Assessment

Students evaluations for the course, as well as evaluations of how the course impacts

courses in the sophomore year (e.g., Dynamics) and in the junior year (e.g., Modeling, Analysis,

and Control of Dynamic Systems) where problem-solving skills and engineering tools

(MATLAB, Simulink, SimMechanics, LabVIEW) are widely applied, are being conducted and

will be reported in future work.

5 Conclusion and Future Work

A pilot, 3-credit, freshman course, called Engineering Problem Solving, is currently being

evaluated to potentially replace the traditional Computer Programming course. The course

focuses on real-world problems and emphasizes two processes: the Engineering Problem Solving

Process and the Engineering System Investigation Process. MATLAB scripts utilizing iterations

and conditional statements are learned, as well as Simulink graphical programming. The

Arduino microcontroller is used with the MATLAB Simulink real-time code generation to

understand aliasing and pulse-width modulation and perform real-time speed control of a

brushed DC motor. Symbolic mathematics using MATLAB MuPAD is introduced, as is

measurement using LabVIEW with the myDAQ National Instruments device. The pilot course

is now in its second offering to 2 sections and will be expanded to possibly include all freshman

engineers next year. Already students who have taken the course have expressed approval as

they are using what they have learned in their sophomore Statics, Dynamics, and Strength of

Materials courses. Formal evaluations will be conducted as the pilot course becomes a regular

course for freshman engineers.

Bibliography

1. A High-School Level Course in Feedback Control, Jorge Cortes and William Dunbar, IEEE Control Systems

Magazine, June 2007, pages 79-89.

2. Design of an Introductory MATLAB Course for Freshman Engineering Students, Darryl Morrell, ASEE

2007, pages 12.458.1-12.458.7.

3. An Introduction to Technical Problem Solving with MATLAB v.7, Jon Sticklen and M. Taner Eskil, Oxford

University Press, April 2006.

