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Assessing conceptual mapping based active learning for
advancing engineering diagnostic skills

Introduction

Active learning differs from traditional instructional pedagogy by emphasizing student activities
and engagement in the learning process. The most frequently discussed types of active learning
are collaborative learning, co-operative learning, and problem-based learning. Various studies,
from using interactive, hands-on lessons and activities designed to teach research process to
undergraduate engineering students1, to preparing manufacturing engineering students through
competitions, projects sponsored by industry, capstone projects, laboratory exercises or projects
simulating real-life scenarios2, have shown that active learning increases student performance in
STEM subjects.

Critical thinking, identified by The U. S. Department of Labor as the raw material of a number of
key workplace skills such as problem solving, decision making, organizational planning, and risk
management, is highly coveted by employers of engineering graduates. It not only requires
demonstration of solid domain knowledge, but also the application of knowledge in addressing
real-world problems. According to Chartrand et al. 3, 69% of industry executives admit they
assess critical thinking skills in the selection process. Similarly, a report commissioned by the
Association of American Colleges and Universities (AAC&U) finds that more than 75% of
employers want more focus on five key career preparation areas: critical thinking, complex
problem-solving, written and oral communication, and applied knowledge in real-world settings4.
Meanwhile, these studies indicate that 49% of employers rate their employees’ critical thinking
skills as only average or below average, and only 28% of employers rated four-year graduates as
having “Excellent” critical thinking skill. Obviously, a more concerted effort must be made in
curricula and educational practices to achieve a more measurable outcome to close the skill gap in
fresh college graduates.

Active learning, with its strategy especially in the computer-based classroom5, is ideal to blend
pertinent curriculum elements to help students develop the highly-sought abilities. The issues
now become: a) identifying the proper problem to provide context and motivation; and b) finding
the technical vehicle for student engagement and assessment.

For the first issue, Kahlen et al. 6 and Benner et al. 7 show that providing accurate and timely
diagnosis for system failures or malfunctions embodies the culmination of the aforementioned



skills and is a common theme in many STEM in particular engineering and medical disciplines.
And for the second issue where students’ mastery of the skills is to be demonstrated and
evaluated, we find concept maps to be fitting because of their use of both content and process
knowledge to create visual maps of a diagnostic strategy to identify technical problems8,9.

We have found the needed platform to assess concept map based active learning in a National
Science Foundation funded project, “Advancing Diagnostic Skills Training in the Undergraduate
Technology and Engineering Curriculum”. On one hand, the project uses concept map to both
solicit input from domain experts and assess student outcomes. On the other hand, the project
deliverable helps novice troubleshooters (i.e., students) learn important principles about
diagnostics and become competent in troubleshooting system malfunctions, a critical thinking
and problem solving skill desired by employers. The self-paced, computer-based training engages
students in a way that is consistent with active learning practice.

Two training modules have been fully developed and tested at five institutions and by about one
hundred students in engineering technology programs. In this paper we present student feedback,
both qualitative and quantitative, from these trials. The results represent preliminary assessment
of concept map based approach in improving student critical thinking skills and more broadly, the
effectiveness of active learning in increasing student performance in STEM.

The rest of the paper is organized as follows. We first briefly introduce concept mapping and its
application in active learning. The assessment plan is then discussed, and the validation data is
presented and analyzed. We conclude the paper with observations and direction for future
work.

Concept Map based Learning

Conceptual mapping is a well-recognized approach that uses both content knowledge and process
knowledge to prompt users to create visual maps of a diagnostic strategy to identify technical
problems in complex technical systems10. A comprehensive study of applications of concept
maps in higher education is provided by Pia et al. 11 . A few noteworthy examples are highlighted
here. An interesting case is illustrated by Krupczak et al. 12,13 where concept maps are used to
communicate major aspects of technological systems to non-engineering students with limited
background knowledge. Castles and Lohani 14 present an example of building a comprehensive
concept map and an appropriate concept inventory to implement concept-inventory-driven
analysis of student knowledge in a large freshman mechatronics course unit. A Diagnostic and
Remedial learning system is introduced by Acharya and Sinha 15 to help pinpoint the exact
concept where the student is deficient. An effective role of concept mapping in teaching, learning,
and assessment in Power Electronics is described by Raud et al. 16 . Hwang et al. 17 show that a
computerized collaborative concept-mapping approach both reduces the cognitive load, and
improves learning achievements of the students. Triplett et al. 18 propose Concept-in-Context
maps (CCmaps) to link a wide array of different types of information that reflect the organization
of content within a topical area in an introductory materials course.

While concept maps are deemed to be a good tool to portray knowledge structure and diagnose
learner’s misconception, we are more interested in their integration with generic learning



paradigms and in this regard, our research shows the combination of active learning strategy with
concept mapping has led to plausible results for student oriented learning. Tembe and Kamble 19

have studied 414 concept maps from 207 basic school students before and after participation in
one of the active learning programs (ALPs) and concluded that active learning programs helped
the students to acquire new knowledge and reduce misconceptions. Yakhno et al. 20 show an
increasing level of self-confidence and satisfaction among students and instructors with a new
approach to Computer Engineering curriculum design based on a Module-Based Active Learning
model where all theoretical knowledge in the modules is connected into a concept map.
Schwendimann 21 investigates how a novel form of collaborative technology-enhanced concept
map, called Knowledge Integration Map (KIM), can support students’ learning from an
inquiry-based, technology-enhanced evolution curriculum. Findings indicate that KIM activities
can facilitate the generation of cross-connections between genotype and phenotype ideas and
support students distinguishing central ideas. Fang 22 tries a non-traditional, active learning
approach, in which students (rather than the instructor) construct their own concept maps in
engineering dynamics, a foundational sophomore-year undergraduate engineering course.
Rodrigues Da Silva et al. 23 report the results of a pedagogical strategy in a transportation course
offered to Civil Engineering students that is a combination of problem-based learning and
project-based learning (PBL) and blended-learning (B-learning) with cognitive maps as the
assessment tool. Stoyanov and Kommers 24 provide an empirical validation of the theoretical
position that concept mapping software with explicit problem-solving support performs
significantly better on problem-solving and on the most of the indicators of mapping production
and perceived effectiveness of concept mapping software. These results confirm the validity of
concept map based active learning in higher education community, and justify our idea for using
similar approach to teach system diagnosis principles.

Assessment Method

Even though concept maps have a proven track record in curriculum development and educational
practices, evaluating its quality remains a challenge. Out project has some unique features
concerning the use of concept maps, and thus requires a evaluation tool to better gather
assessment data. There are two reasons. First, the fault diagnosis problems in the training
modules are derived from actual industry experience, and our goal is to use the differences
between expert map and student map to drive students for in-depth analysis of the technical
problems. Therefore there needs to be a mechanism to recognize both structural and semantic
differences in the maps. Second, matching two concept maps is a time-consuming and complex
task because it needs to consider both the relations (links) between nodes and the content of the
nodes. We hope to automate the comparison process, which means let computers dissect the
results without human involvement. Several attempts have been made to facilitate concept maps
comparison. Limongelli et al. 25 propose seven measures of similarity among concept maps
dealing with both structural and didactic aspects of the maps. A weighted concept is proposed by
Chang et al. 26 where propositions are given a weight value from 0 to 1, based on the closeness
index and weighted value of each node, a similarity index is calculated for each node. Gao et al. 27

present an approach of string comparison with the meaning of the words–semantic similarity.
Melnik et al. 28 presented a method called Similarity Flooding Algorithm (SFA). Our method of



comparing concept maps is based on combining the weighting mechanism, SFA, and semantic
similarity of two strings. The detail introduction of the method is included in the paper by
Shahhosseini et al. 29 .

There are two assessment tools in place for this study. The direct measure focuses on gauging the
closeness of students’ maps with those of the expert’s, which is considered as the key indicator of
their mastering of the underlying diagnosis principle and procedure. There are four test groups,
one control group and three treatment groups, for the data collection sessions. Students in control
group only have the map feedback from the training program. Among treatment groups, Group I
has the map feedback and the expert’s map, Group II has the map feedback and four
meta-cognitive cue questions, and Group III has feedback, expert’s map, and meta-cognitive cue
questions. The results are based on upon the quantitative comparison from applying the SFA on
subjects’ and expert’s maps. The overall similarity of the maps is calculated using the relative
similarity of each nodes pair. Comparison feedback consists of two parts. One is the summary
that shows the overall similarity, number of nodes in expert’s map, number of nodes in learner’s
map, percentage of matched nodes, and the similarity range of matched nodes. The other is a
color-coded similarity: darker color stands for higher similarity and lighter color stands for lower
similarity.

The indirect measure aims at broader evaluation of student experience of concept map based
active learning strategy. Questionnaire is commonly used for collecting cross-comparison data,
and we develop a eight-qualitative-question student satisfaction survey similar to those adopted
by Huang et al. 30 and Wei and Yue 9 . The data is then analyzed using only descriptive
statistics.

Both training modules have identical flow and structure. The modules are a two-hour,
computer-based program. The instructional shell is developed using Lectora, and the expert’s map
is encoded. The students are asked to create and submit his/her own concept map using open
source concept mapping software Visual Understanding Environment (VUE). The first hour of
this training provides the students the background knowledge of the system diagnosis principles
and an opportunity to practice using VUE to draw concept maps. The second phase of the training
allows the students to work on two real fault diagnosis problems. After reviewing pertinent
system description and historical operational data, students are asked to develop a map to detail
the steps for finding the root cause of the malfunction. In this phase, we are interested in the
percentage accuracy between the student’s map and the expert’s map. This accuracy is not only
the key indicator for assessment purpose, but also the feedback on which the students rely to
revise their maps. The second round sees the re-submission be evaluated for accuracy again, and
the percentage is reported back to the students and recorded for comparison with the first round
results.

Assessment Results

Case Discussion The first case is a diagnostic task in electrical power generation and
transmission, courtesy of Duke Energy. Figure 1 shows the concept map developed by an expert
that details the diagnosis thought process in a systematic way. Students are provided with the



performance data of the past thirty-six hours on a boiler, a wind turbine, and a transmission line,
and are required to develop their own visual maps to choreograph how the maintenance team
could use these data to pinpoint the problem.

Figure 1: Expert’s Map for Power Grid Problem in the Training Program

In the first attempt, the student’s map has an 18% overall similarity and 38% “considerable” node
similarities to the expert’s map (range from 29% to 70%), as summarized in Figure 2. The
student’s map is shown in 3, where shade of the nodes indicates their semantic resemblance to
their counterparts in the expert’s map. There are three nodes with green colors. One is darker and
the other two are lighter. The darker the color of the node is, the more similarity the node has.
This case is from the control group, which means that the student only can see the comparison
feedback before developing the second map.

After the student reviews feedback provided by the comparison program, he creates a new map
shown in Figure 4. For this student, Figure 5 indicates that the second map sees an increase of
14% in overall similarity (from 18% to 32%), and 25% in the matched nodes (38% to 63%). This
increase is due to the fact that the new map uses a linear structure to replace the branch layout in
the first try, which makes it more inline with the expert’s map.

The second case is a technical problem of a heat exchanger in a waste plastic pelletizer,
contributed by Beamis, a packaging solution company at Terre Haute, Indiana. The water bath
system is malfunctioning with multiple potential causes. Figure 6 is the expert’s map used in the
training program.

In the student’s first map (Figure 7), there is a 36% overall similarity and 46% of “considerable”
node similarity to the expert’s map (See Figure 8). This map only has six nodes while the expert’s



Figure 2: Power Grid Maps Comparison Summary: First Attempt

Figure 3: Student’s Map for Power Grid Problem: First Attempt



Figure 4: Student’s Map for Power Grid Problem: Second Attempt

Figure 5: Power Grid Maps Comparison Summary: Second Attempt



Figure 6: Expert’s Map for Heat Exchanger Problem in the Training Program

map has 13 nodes. The student is in the treatment Group I, which means that the student can see
the comparison feedback and access the expert’s map before he makes the second map.

The second map, shown in Figure 9, contains three additional nodes that are similar to the nodes
in the expert’s map. The comparison summary (Figure 10) shows that the overall similarity has
increased by 25% (from 36% to 61%) and the number of matched nodes has increased by 23%
(from 46% to 69%). The highest similarity of an individual node, which is “Check input water
temperature”, is 100%.

Student Survey After completing the training program, the students are given a “satisfaction”
questionnaire to provide feedback regarding their experiences with the training. The responses
can be in the range of 1 to 4 for each of the eight questions asked. Consequently, the overall range
for the satisfaction score is between 8 to 32. Such an approach has been tried by other researchers
(for instance see Fang 22).

Eighty students participate in four data collection sessions and complete the survey. The average
score for overall experience is 3.09 out 0f 4. For question 6, most of the students “agree”
(n = 58) or “strongly agree” (n = 10) that the content of the training program is meaningful; for
question 7, most of the students “agree” (n = 45) or “strongly agree” (n = 25) that this training
would be useful to anyone in a technical career. For other questions, most students also choose
“agree” or “strongly agree”.



Figure 7: Student’s Map for Heat Exchanger Problem: First Attempt

Figure 8: Heat Exchanger Maps Comparison Summary: First Attempt

Question SA A D SD Mean Deviation
Q1. The computer based training program was interesting 14 54 9 3 2.99 0.67
Q2. The screen design was reasonably attractive 13 57 9 0 3.04 0.53
Q3. The screen layout was logical (i.e., made sense) 25 51 3 1 3.25 0.58
Q4. All of the program buttons worked as expected 27 43 9 1 3.20 0.68
Q5. It was easy to navigate my way through the program 27 45 7 1 3.22 0.66
Q6. The content of the training program was meaningful 10 58 7 3 2.95 0.61
Q7. This training would be useful to anyone in a technical career 25 45 8 2 3.16 0.70
Q8. Overall, this was a high quality, professional experience 18 53 7 2 3.09 0.64

Table 1: Mean and Deviation of Student Satisfaction Questionnaire



Figure 9: Student’s Map for Heat Exchanger Problem: Second Attempt

Figure 10: Heat Exchanger Maps Comparison Summary: Second Attempt



Number of
Students

Pre-Mapping
Mean

Post-Mapping
Mean

Post-Mapping
Mean

Difference

Pre- and Post
Mapping
Deviation

Control
Group 20 0.38 0.37 -0.01 0.08

Treatment
Group I 14 0.34 0.38 0.04 0.12

Treatment
Group II 35 0.25 0.25 0.01 0.04

Treatment
Group III 15 0.26 0.27 0.01 0.06

Average 0.31 0.32 0.01 0.06

Table 2: Mean Differences between Control Group and Three Treatment Groups

Discussion

As the survey results show, the students during pilot testing and experimentation find the training
to be interesting and useful. However, on average, the students’ level of performance is much
lower than expected. This is certainly a surprising outcome because it differs from the findings in
other literature that confirm concept maps’ advantages. Only a small portion of students clearly
understand and find the mapping technique and the feedback provided helping them improve their
diagnostic skills. Also, there does not seem to be significant statistical difference in pre- and post
mapping means between different groups, which indicates that feedback is not providing the
expected guidance to students in improving their maps. We must emphasize these are still
preliminary findings, therefore it would be premature to draw the conclusion based on a relatively
small sample size. We do recognize a few areas of the assessment process that can be improved.
For example, we notice that two hours are not enough for the majority of the students to complete
the problem-solving tasks in each module. We also see the need to re-develop the survey to have
the questions tied to more specific facets of the student’s thought process. When it comes to
administering the survey, the staff are looking at ways to assure students taking the process
seriously and offering constructive feedback. With these changes, we believe the assessment data
in the new cycles will be able to offer more conclusive evidence for concept map based active
learning. Further, the researchers will work to expand the work to all stages in the process from
problem identification to solution and follow-up assessment.

Acknowledgment

This work is sponsored by the National Science Foundation under Grant DUE-1547789 and
DUE-1140748. The authors would like to acknowledge NSF for its support. Any opinions,



findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

[1] Michelle Pantoya, Patrick C. Hughes, and Jennifer S. Hughes. A case study in active learning: Teaching
undergraduate research in an engineering classroom setting. Engineering Education, 8(2):54 – 64, 2013.

[2] Arif Sirinterlikci. Active learning in manufacturing engineering programs. International Journal of Agile
Manufacturing, 11(1):27 – 38, 2009.

[3] Judy Chartrand, Heather Ishikawa, and Scott Flander. Critical thinking means business: Learn to apply and
develop the new #1 workplace skill. white paper, Pearson, 2013.

[4] Hart Research Associates. It takes more than a major: employer priorities for college learning and student
success. Liberal Education., 99, 2013.

[5] Keith E. Holbert and George G. Karady. Strategies, challenges and prospects for active learning in the
computer-based classroom. IEEE Transactions on Education, 52(1):31 – 38, 2009.

[6] Franz-Josef Kahlen, George Swingler, Anabela C. Alves, and Shannon Flumerfelt. Decision-making
competencies in engineering and medicine. In ASME International Mechanical Engineering Congress and
Exposition, Proceedings (IMECE), volume 11, Montreal, QC, Canada, 2014.

[7] Patricia Benner, Ronda G Hughes, and Molly Sutphen. Clinical reasoning, decisionmaking, and action:
Thinking critically and clinically. In Ronda G Hughes, editor, Patient Safety and Quality: An Evidence-Based
Handbook for Nurses. Agency for Healthcare Research and Quality (US), 2008.

[8] Kuang-Chao Yu, Kuen-Yi Lin, and Szu-Chun Fan. An exploratory study on the application of conceptual
knowledge and critical thinking to technological issues. International Journal of Technology and Design
Education, 25(3):339 – 361, 2015.

[9] Wei Wei and Kwok-Bun Yue. Using concept maps to teach and assess critical thinking in IS education. In
AMCIS 2016: Surfing the IT Innovation Wave - 22nd Americas Conference on Information Systems
Proceedings, San Diego, CA, United states, 2016.

[10] J.D. Novak. Learning, Creating, and Using Knowledge: Concept Maps(tm) As Facilitative Tools in Schools and
Corporations. Taylor & Francis, 1998.

[11] Amparo Bes Pia, Encarna Blasco-Tamarit, and Maria Jose Munoz-Portero. Different applications of concept
maps in higher education. Journal of Industrial Engineering and Management, 4(1):81 – 102, 2011. ISSN
20138423.

[12] John Krupczak, Lauren Aprill, and Mani Mina. Adaptations of concept mapping for technological literacy
courses. In 118th ASEE Annual Conference and Exposition Proceedings, Vancouver, BC, Canada, June 2011.

[13] John Krupczak, Lauren Aprill, and Daniel J. Langholz. Development of a simplified method of representing
technological systems for non-engineers. In 121st ASEE Annual Conference and Exposition Proceedings,
Indianapolis, IN, United states, June 2014.

[14] Ricky Castles and Vinod Lohani. A paradigm for comprehensive concept map-based modeling of student
knowledge. In ASEE Annual Conference and Exposition, Conference Proceedings, pages BOEING –, Austin,
TX, United states, 2009.



[15] Anal Acharya and Devadatta Sinha. A concept map approach to supporting diagnostic and remedial learning
activities. In Smart Innovation, Systems and Technologies, volume 27, pages 565 – 574, Kolkata, India, 2014.

[16] Zoja Raud, Valery Vodovozov, and Tonu Lehtla. Concept maps in power electronics education. In International
Conference-Workshop Compatibility in Power Electronics , CPE, pages 280 – 285, Ljubljana, Slovenia, 2013.

[17] Gwo-Jen Hwang, Hui-Chun Chu, and Yi-Rong Liang. Effects of computerized collaborative concept map
approach on students’ learning achievements and cognitive loads. In Proceedings of the 12th IEEE
International Conference on Advanced Learning Technologies, ICALT 2012, pages 258 – 262, Rome, Italy,
2012.

[18] Jessica Triplett, Jacquelyn E. Kelly, and Stephen J. Krause. Development and use of concept-in-context maps to
promote student conceptual understanding in an introductory materials course. In ASEE Annual Conference
and Exposition, Conference Proceedings, Vancouver, BC, Canada, 2011.

[19] B.L. Tembe and S.K. Kamble. Implementation of active learning methods in mechanical engineering education
to enhance students’ performance. In Proceedings - International Computer Software and Applications
Conference, volume 2, pages 258 – 263, Atlanta, GA, United states, 2016.

[20] Tatyana Yakhno, Emine Ekin, and Tevfik Aktuglu. Work in progress - module-based active learning approach
for introductory level of computer engineering curriculum. In Proceedings - Frontiers in Education Conference,
FIE, pages American Society for Engineering Society, ASEE; IEEE; IEEE Computer Society; ATM; San
Antonio College, SAC –, San Antonio, TX, United states, 2009.

[21] Beat A. Schwendimann. Collaboratively generating and critiquing technology-enhanced concept maps to
improve evolution education. In Computer-Supported Collaborative Learning Conference, CSCL, volume 2,
pages 153 – 156, Madison, WI, United states, 2013.

[22] Ning Fang. Student-constructed concept maps for active learning in a foundational undergraduate engineering
course. In Proceedings - Frontiers in Education Conference, FIE, volume 2015, pages ASEE Educational
Research and Methods Division; IEEE Computer Society; IEEE Education Society; New Mexico State
University; University of Texas –, El Paso, TX, United states, 2015.

[23] Antonio Nelson Rodrigues Da Silva, Nidia Pavan Kuri, and Adriana Casale. PBL and B-learning for civil
engineering students in a transportation course. Journal of Professional Issues in Engineering Education and
Practice, 138(4):305 – 313, 2012. ISSN 10523928.

[24] Slavi Stoyanov and Piet Kommers. Concept mapping instrumental support for problem solving. International
Journal of Continuing Engineering Education and Life-Long Learning, 18(1):40 – 53, 2008.

[25] Carla Limongelli, Matteo Lombardi, Alessandro Marani, Filippo Sciarrone, and Marco Temperini. Concept
maps similarity measures for educational applications. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9684, pages 361
– 367. Springer, Zagreb, Croatia, 2016.

[26] Kuo-En Chang, Yao-Ting Sung, Rey-Bin Chang, and Shui-Cheng Lin. A new assessment for computer-based
concept mapping. Educational Technology & Society, 8(3):138–148, 2005.

[27] Jian-Bo Gao, Bao-Wen Zhang, and Xiao-Hua Chen. A WordNet-based semantic similarity measurement
combining edge-counting and information content theory. Engineering Applications of Artificial Intelligence,
39:80–88, 2015.

[28] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 117–128. IEEE, 2002.

[29] A. Mehran Shahhosseini, Haisong Ye, George Maughan, and Tad Foster. Implementation of similarity flooding
algorithm to solve engineering problems using diagnostic skills training technique. In ASME 2014



International Mechanical Engineering Congress and Exposition, pages V005T05A023–V005T05A023.
American Society of Mechanical Engineers, 2014.

[30] Shaobo Huang, Karim Heinz Muci-Kuchler, Mark D. Bedillion, Marius D. Ellingsen, and Cassandra M. Degen.
Systems thinking skills of undergraduate engineering students. In Proceedings - Frontiers in Education
Conference, FIE, El Paso, TX, United states, 2015.


