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Introduction

Programming education is an increasingly common part of first year engineering curriculum.1

However, the success of these efforts are fraught with challenges, both because teaching
programming is hard in general,2 and goals and motivations for learning programming are
different for CS majors compared to non-majors3,4 posing unique challenges for general first-year
engineering programs that include prospective CS majors. It is this general first-year environment
that is of interest to us and that inspired this study.

Our experiences with undergraduate general engineering education led us to identify computer
programming tasks as a crucial component in one’s identity as an engineer and in deciding how to
participate in group projects. Anecdotaly we have observed that students who do not believe they
have strong programming skills do not believe they can contribute to programming aspects of a
project. As a result, the programming falls on the group member who identifies as a strong
programmer. This is despite project and course setups that ostensibly promote a general level of
programming competence for all students, and in particular, enough to successfully engage with
the programming expected for the class project. Furthermore, computer programming is
positioned in many first-year programs such that students associate programming skill with
affinity towards computing majors (computer science of computer engineering). At universities
with general first-year engineering programs, how students experience computer programming in
the first year may have a significant impact in choosing whether or not to pursue a computing
related major. This is particularly relevant in light of recent pushes to increase participation in
computing fields coupled with observations that a feeling of “not belonging” contributes to some,
in particular LGBTQ+5 individuals and women,6,7 not pursuing or leaving computing fields.

Pinning down just what skills are required to successfully program has been an ongoing debate
since the dawn of programming itself. Abbate notes that the lack of understanding in just what
skills were needed for programming manifested in the variety of job postings for programming
positions. The skills listed on job postings tended to vary based on the industry, e.g. in a business
setting programming was associated with data management and accounting skills while in a
scientific setting it was associated with strong mathematical skills.6 Though the skillset seems to
have solidified if one looks at programming educational literature, it is also true that the variety of



positions requiring “programming” has similarly narrowed with the prevalence of commercial
software packages designed for specific job sectors (e.g. secretarial work, accounting). Thus, in
some ways “programming” has become more specialized than it perhaps once was.

The aim of this exploratory study is to discover skills and strategies that practicing programmers
make use of that may not be explicitly taught or acknowledged in first-year programming courses.
To achieve this goal we must utilize an appropriate theoretical perspective that accounts for the
complex social and material interactions that a programmer engages with in practice.

Theoretical perspective

Because we are interested in studying the relationship between programmer and computer we
need a theoretical perspective that incorporates both human and computer agencies. We chose the
perspective of sociomateriality which has been used in organizational studies,8 research of digital
literacy in learning environments,9 and increasingly in engineering education research.10,11 Said
simply, sociomateriality is the idea that humans and the material world can not be analyzed as
disjoint entities. That is to say, if we want to understand a student’s cognitive process while
programming we can not ignore the material world in which that student is situated and thinking.
Interacting with tools, in particular the computer along with the specific software used, will
shapes how we think and act.12 While most studies that utilize the sociomaterial theoretical
framework seek to describe system-level interactions, such as how the introduction of
video-conferencing technology shifts power dynamics in a work group,13 we take a slightly
different focus. Because our ultimate goal is to improve the learning experience of individual
students, we focus our data collection and inquiry to understand how individuals process and
make meaning from their interactions in the sociomaterial world.

Methods and participants

This study is part of a more general exploratory study to investigate the utility of functional
near-infrared spectroscopy (fNIRS) brain imaging technology for engineering education research.
fNIRS is a non-invasive means of measuring cognitive activity in the surface areas of the brain.
While we are still exploring techniques to analyzed the fNIRS data, we mention it here since the
setup added specific constraints to the study environment.

After receiving IRB approval for human subjects research, we contacted the leaders of several
computing-themed organizations at our university to distribute our invitation. These included
technically-themed groups such as Unix/Linux Users groups, and cyber security themed groups,
as well as affinity groups such as Women in Computing. We chose these organizations for the
likelihood that members would have personal programming projects they could use for the study,
and that by self-selecting into these groups, participants had at least some affinity for the field of
computing. We asked leaders of these groups to distribute an invitation email to their members
who would then contact us if they were interested in participating.



Once participants contacted a researcher we scheduled a time for them to come into a research lab
on campus. When participants arrived, after reviewing the consent form and addressing any
questions, we conducted a brief intake interview to learn about their experiences learning to
program. After the intake interview, participants were fitted into an fNIRS cap and set up their
computer for work. The cap is designed to fit snugly, and while effort is taken to make the fit as
comfortable as possible, experience from a pilot study indicated the cap becomes increasingly
irritating after 45-60 minutes of continuous use. For this reason, we planned to limit the time
participants were wearing the cap to 45 minutes. Flexible wires connect the cap to the fNIRS
machine which limits large movements, but does not restrict typical movements associated with
programming, i.e. hand movement, leaning back while remaining to sit, etc.

As part of the setup process, a researcher started screen-capture recording hardware. Because we
did not want to require that participants install special software we needed an external means to
record screen capture data. For the first two participants we used a camcorder pointed at the
participant’s computer screen. The resulting video was only moderately useful as the camcorder
did not consistently focus on the screen in the low light environment of the study location. For
this reason, we ordered an HDMI screen recorder commonly used by gamers to record and share
gaming sessions. We used this device for remaining participants, connecting it to their video-out
port and asking them to mirror their screen to the recording device which was detected as an
external monitor. We also used a stand alone audio recorder to continuously record from the
intake interview through the outtake interview.

Once the necessary recording equipment was setup, participants started work on the project of
their choice. Researchers generally did not interact with participants during their work session
except to tell them when 45 minutes had passed so that they could reach a convenient stopping
point. All participants signaled that they were done working within 5 minutes of the 45 minute
notice.

After the work session, a research helped the participant remove the fNIRS cap and then
conducted the outtake interview. The entire process from when the participant arrived at the study
location until they left took about 1.25 to 1.75 hours.

Interview Protocol

The semi-structured interview protocol was designed to augment the data collected from screen
capture and video recordings. The intake interview was designed to get a sense of participant’s
beliefs about programming, and beliefs about their skill at programming. The outtake interview
was designed to learn possible points of interest in the programming session (e.g. times the
participant got stuck) and to provide more context around the participant’s access and experience
working with computers growing up.

Intake

1. Please tell me your major and how you came to choose that major.



2. Describe what programming is to you.

(a) What does it mean to “be a programmer”?

(b) Do you consider yourself a programmer? Why or why not?

3. Describe how programming is integrated into the curriculum in your major.

(a) What did you learn from the curricular activities vs. on your own?

4. Tell me about the project you will be working on today.

(a) Why did you choose to start it?

(b) How long have you been working on it?

(c) How often do you work on it?

(d) When do you think it will be complete?

Outtake

1. Think back over the programming session you just completed. At any time did you
experience a “flow” state? At what point did you experience that?

(a) If you didn’t experience a flow state during this session, is it something you have
experienced before? Can you describe the conditions that have led to it in the past?

2. Did you experience times of getting stuck or not knowing what to do next?

(a) When did this occur, i.e. what made you stuck?

(b) If you were able to resolve the situation, how did you?

3. Hypothetically, let’s say you were starting a new programming project. Walk me through
the first 15 minutes or so of that project.

4. I’m interested in knowing a little bit about your history with programming. Can you tell me
how and when you first started programming?

5. Did you have your own computer growing up?

(a) If not, did you have access to a shared (e.g. family) computer?

6. When you were first learning to program, what resources (including people) did you use?

7. When did you begin participating with your first computer-themed organization?

(a) Did you feel welcome on the first day?

(b) Why did you decide to stick with it (or not)?

(c) Did you try participating in other organizations as well? Why or why not?



Preliminary analysis

Multi-modal data collection and analysis is not particularly new, nor are the specific modalities
used here: interview audio, video recording, and screen capture. Our analysis method followed
that used by Bhatt and Roock in their study of digital literacy events.9 Our environment differed
though, in an important regard. While their study was situated in the context of the classroom,
and thus data were collected in that environment, we conducted our study in a research lab. This
was a constraint of the study due to the data we wanted to collect, which included the use of an
fNIRS machine located in a psychology lab on campus.

To prepare data for analysis we loaded the audio recording, facial video recording, and screen
capture video recordings into ELAN, an open-source tool designed for time-aligned linguistic
annotation.14 Figure 1 shows a screen shot of ELAN during data analysis using a demonstration
video of a member of the research team. Each of the three primary data streams: screen-capture
video, front facing video, and audio, can be played back in sync using ELAN’s controls. The
lower part of the screen shows custom defined tiers, ELAN’s term for an analytic layer of
annotation. While not shown here, ELAN can also load and synchronize timeseries data such as
eye tracking data, or in our case fNIRS data. We are still exploring suitable filtering and analysis
of the fNIRS data to add useful information to the analysis process.

Preliminary analysis involved viewing several of the sessions within ELAN to get a sense of what
to code for, and how to code for interactions between human participant and computer.15 For an
initial first-pass at coding we decided to code for compile error messages in the screen capture
data and use those reference points to more closely explore interactions.

A notable pattern emerged even before coding for error messages: nearly every participant used a
combination of the Google search engine and the StackOverflow website as part of their
debugging process. The initial viewing indicates that most of the time, participants would enter
the text of an error message into a Google search, and then select one of the top hits, usually
linking to StakeOverflow. Participants tended to always go to Google first, despite almost always
ending up at StackOverflow. Once on the StackOverflow site, some participants would refine their
search if the first hit wasn’t what they were looking for. A quick literature search indicated that
the task of extracting useful information from StackOverflow results and applying it to one’s own
problem is a non-trivial task16 suggesting that this process warrants further exploration.

Integrating neuroimaging data into analysis

Challenges remain with understanding how best to integrate the neuroimaging data collected with
fNIRS into analysis. Our study design different significantly from other fNIRS and fMRI studies
that use either block or event-related designs. In a block design participants are asked to engage in
a short task, on the order of 10-15 seconds, such as studying a section of code on a screen,
followed by a period of rest. Task-related data and rest-related data are averaged separately and
across participants to determine if the task resulted in detectable activation in a particular region
of the brain.17 In an event-related design, tasks are also short, but are randomly presented to the
participant. Data analysis techniques for both these designs assumes that the task is the same



across participants, and is relatively short compared to the time data were collected. In our design,
however, neither of these assumptions hold. Participants are working for about 45 minutes on a
single complex task, and while all participants are programming, there is tremendous variety
across how each participant engages in the task.

We are currently evaluating exploratory data analysis methods that may be suitable for our study
design. One such method is dynamic connectivity regression. This technique attempts to find
time points at which connectivity across brain regions changes.18 In particular, it may be suitable
for situations when experimental tasks are not repeated, as in our setup.

Ongoing considerations

Defining the skillset necessary for “success” in a particular domain is not an objective task.
Indeed, the concept of “success” itself is highly subjective and tends to shift with time and who
and what ideas enjoy powerful positions in society. Often “skill” and “success” are defined by the
tasks and achievements of the dominant group, programming being a prime example. Not only is
this relevant to the study at hand (programming itself has been shaped by this social power, thus
the participants we observe are products of that shaping), it is especially relevant when making
decisions regarding how to synthesize these results into practice. Any changes to assessment must
always be accompanied with reflection about how changes might affect different people, in
particular those who have been historically disadvantaged. In short, we caution against rushing to

Figure 1: Screenshot of ELAN during data analysis. The large pane contains the screen capture
video, the smaller window shows the front facing camera of a member of the research team for
demonstration purposes. These two video streams, and the audio, are played in sync using the
playback controls below the video panes. Below that we see the audio waveform and custom
defined tiers, ELAN’s term for a single analytic layer of annotations.



incorporate any initial findings, or those in the complete analysis, in your next programming
assessment without further critique. This also serves as an important reminder to us as researchers
that our findings are necessarily incomplete. By inviting participants who have been working on
their own projects we are likely to get those that have more or less aligned their own identities and
skillset with the dominate view of what programming is (with the important distinction that there
may still be a disconnect between what we teach programming to be, and how it is generally
practiced in non-academic environments). Thus, we are at risk of reinforcing the prevailing
definition of what programming is and what skills are necessary to be successful at it by doing
this research.

Open environments

Of particular interest in this study is moving beyond the confines of well-structured programming
problems that we often present our students in class. Indeed, one participant from the study noted
that the programming he did as part of his introductory engineering course was not “real”
programming because “if they give you the solution to the problem, that’s not problem solving,
then I would argue that’s not really programming either.” This participant equated programming
with problem solving, and believed that programming assignments in which the end goal were
given, e.g. “write a program that does X”, did not constitute problem solving, leading to the
assessment that this was not “real” programming. It is interesting to note that this view is in stark
contrast to the prevailing methods of analysis several decades ago when programming was often
presented as simply the development of code that satisfied input/output data processing
requirements that were handed to the programmer.19 Thus, programming work has changed, and
continues to change. While being aware of the limitations outlined above in assessing skill sets,
we were interested in the aspects of programming practice that might not be captured in the
conventional classroom environment. This motivated our study design to call for participants
currently working on their own personal projects, rather than something assigned by a teacher or
researcher. Further work is needed to learn how students transition from the highly structured
programming environments of introductory courses to a more open environment. Ideally that
work would inform introductory course design to help facilitate that transition.

Conclusion and future work

While our analysis is still ongoing, preliminary observation of the heavy use of external
resources, such as internet search engines and crowd-sourced debugging help should prompt
some reflection among programming instructors as to what skills we ought to teach and assess.
For example, strategies for finding solutions to compile-time errors typically are not taught in
introductory programming courses, but participants in this study all relied on skills to quickly
determine which search result would help them solve their problem. In many cases, Google’s
algorithm put a relevant answer at the top or the results page, but not always. In some cases
participants eliminated the first result without clicking on it, going immediately to the second.
This suggests a practiced recognition of summaries as curated by Google.



A number of participants mentioned the complexity of the process they were attempting to
implement with a program. However, few used external resources to help manage the complexity
(e.g. diagrams, flowcharts) while most relied on “holding” the complexity in their head which
some acknowledged required significant time to build up the complex mental representation
before each session. This is of particular interest because some institutions teach the use of
flowcharts as a tool to aid in visualizing logic flow in introductory classes, but these findings
suggest that in practice flow charts may not be used to manage complex representations of
processes. This warrants further investigation of just how expert programmers manage complex
representations, and how this process might impact the cognitive load of novices. In particular, it
suggests further inquiry as to why some experienced programmers choose not to use external aids
to help maintain context in one’s mind.

Our preliminary analysis suggests skills around error resolution such as interpreting error
messages, identifying pieces of code with errors, and making use of online resources to find
solutions to common errors are an important part of programming practice. Through further
analysis we plan to finish categorizing the skills that are utilized by our participants, as well as
make use of the fNIRS data we collected to incorporate information about cognitive load during
different programming phases (adding a feature, debugging, testing a feature).

We caution against interpreting some of the observed tool use at face value. That is, even though
nearly every participant utilized StackOverflow as tool in their process, this does not necessarily
mean “teaching about StackOverflow” should be a specific objective in introductory
programming courses. Specific tools change with time, and if contemporary tools are
incorporated into the curriculum, they should be done so with attention to learning objectives and
assessment techniques.20 We encourage readers to think about the underlying skills that are
involved in using a particular tool. Considering StackOverflow again, we find that using it
requires a number of assumptions and beliefs. For example, the belief that a crowd-sourced forum
can provide useful information to aid in debugging a specific error; the belief that one is capable
of finding relevant information on a crowd-sourced repository and successfully interpreting it; the
ability to identify relevant information in error messages and transform this into a search query
that yields useful results. It is these skills and beliefs that we encourage researchers to explore
further, and that we plan to explore through the completion of this study.
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