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Rethinking the Macroscopic Presentation of the Second Law of 1 

Thermodynamics 2 

Abstract: The classical macroscopic presentation of the second law of thermodynamics is an elegant but 3 
abstract sequence of very specific thought experiments that utilize reversible processes occurring within 4 
heat engines operating between infinite temperature reservoirs. The length, specificity and complexity of 5 
this sequence may hamper the understanding of important concepts such as exergy and entropy. The 6 
pedagogical problems of this approach have been discussed, followed by an alternative presentation 7 
wherein second law concepts and formulations have been derived from thought experiments that use real, 8 
rather than imaginary processes. The thought experiments involve classifying heat transfer at any local 9 
point for any arbitrary process involving work-heat interactions into different categories, and then 10 
collecting terms for each category throughout the control volume in order to relate property changes to 11 
external heat transfer and/or work. They embrace the spatial non-uniformity present in any real process, 12 
are consistent with contemporary computational approaches, and can potentially serve as building blocks 13 
for the development of computational thinking in students. An assessment plan with limited sample size 14 
has been described. The primary purpose of this paper to interest other thermodynamics instructors in the 15 
proposed presentation so that the assessment can be performed with a large number of students 16 
 17 
1. Pedagogical Problems with the Classical Presentation: The approximate sequence of the classical 18 
macroscopic presentation of second law concepts and results has not changed for more than a century. 19 
Figure 1 shows a schematic of the sequence of steps followed by engineering textbooks used in 20 
introductory thermodynamics courses over the last half-century1-9, all based on the edifice constructed by 21 
Carnot, Clausius and Kelvin10. The sequence commencing with the Kelvin-Planck/Clausius statements of 22 
the Second Law and culminating with Exergy analysis is long, sometimes spanning more than 200 pages 23 
in recent textbooks1, complex and completely based on imaginary reversible processes.  24 

 25 
Figure 1. Schematic of the sequence of steps in the classical presentation of the second law in engineering textbooks over the last fifty years1-9. 26 
The proposed presentation derives the principle of increase of entropy directly, for any general process involving work and/or heat transfer. 27 

Although the classical presentation is stimulating in an abstract intellectual sense, it has a number of 28 
shortcomings from a pedagogical perspective: 29 

a. Derivation is unrelated to application: Mathematical formulations for calculating exergy, entropy 30 
generation and irreversibilities follow from the Clausius inequality, all of which are derived from 31 
arguments that utilize imaginary reversible heat engines (RHEs) in imaginary situations. RHE efficiency 32 
in turn originates from a seemingly arbitrary choice of temperature function used to define the 33 
Thermodynamic Temperature Scale (TTS). Ultimately, all second law formulations are derived using 34 
infinitely slow reversible processes during which all properties are spatially uniform. The insight gained 35 
by following and understanding the derivation is not directly transferable to the second law analysis of 36 
any real system. 37 

b. Specific-to-general approach: The derivations are undertaken with specific devices (heat engines) and 38 
processes (reversible processes) but students are expected to apply the second law to general problems 39 
that do not use these particular devices or processes, e.g. exergy analysis of a real (irreversible) fuel cell. 40 
This specific-to-general approach is an exception to the general pedagogical practice of deriving results 41 
for a general situation that is then applied to specific cases.  42 
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c. Entropy is an abstract concept: Determining the entropy change between two states requires traversing 43 
an imaginary reversible path between them. Entropy might have been an abstract concept in the twentieth 44 
century but it is defined, understood and used as a measure of dispersion in real systems, in many 45 
contemporary fields such as data mining and information theory. The proposed derivation is consistent 46 
with this modern approach; Entropy is defined at an infinitesimal point for a real process so that entropy 47 
generation is understood fundamentally in terms of dispersion of heat resulting from spatial non-48 
uniformity. 49 

d. Irreversibility is poorly understood: The classical presentation precedes the development of 50 
computational approaches that describe spatial non-uniformities. All derivations require spatially uniform 51 
(and therefore infinitely slow) processes. Irreversible processes are simply as processes that are not 52 
reversible. If future engineers are going to design devices with high second law efficiency by minimizing 53 
irreversibilities, they need to understand irreversibilities in terms of spatial non-uniformity of processes 54 
and properties.  55 

Outside the universe of engineering textbooks, the second law has been expressed and formulated in 56 
many different ways for different audiences, e.g. works by Morales11, Macdonald12, Muschik13, 57 
Thomsen14 and Baerlein15. A discussion of different second-law approaches can be found in a review 58 
paper by Muschik16. None of these approaches address the four pedagogical shortcomings listed above; 59 
they are still based on RHE’s operating between temperature reservoirs. Many Introductory physics 60 
textbooks at the college level have modified their presentation of the second law by introducing entropy 61 
from a molecular perspective, while using an abridged version of the sequence shown in figure 1 to 62 
discuss only RHE’s (exergy is generally not covered). Some introductory physics textbooks17-20 skip the 63 
Clausius theorem altogether, and derive RHE efficiency starting from ∆S=0. Others derive the Clausius 64 
theorem from RHE efficiency21, which is presented as the upper limit of efficiency (without the RHE 65 
corollaries presented in almost all engineering textbooks) after being derived for an ideal gas.  66 
 67 
The motivation for the current work is to address the four shortcomings listed above by deriving all 68 
macroscopic second law results for any arbitrary real process involving heat and/or work transfer. 69 
 70 
2. Proposed Derivation of Second Law Formulations for any Arbitrary (Real) Process 71 

The derivation is divided into two parts; the Local Heat Category (LHC) equation introduced in this work 72 
is presented first. It is then used to derive the standard second-law results found in introductory textbooks. 73 

2.1 Local Heat Category (LHC) Equation  74 

Consider heat transfer across the surfaces of an infinitesimally small volume inside a finite control 75 
volume (CV) as shown in figure 1. 76 

Energy transferred as heat at this infinitesimal point can be classified into three exclusive categories:  77 

a. Internal heat transfer from another internal point excluding the external source. This positive heat 78 

transfer term will be denoted by +dQ . 79 

b. Internal heat transfer to another internal point excluding the external sink. This negative heat transfer 80 

term will be denoted by −dQ . 81 
c. External heat transfer from/to the external source/sink. This can happen at points located along the 82 
boundary of the CV, or through radiation to /from internal points. This term will be denoted by83 

boundarydQ . 84 
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 85 
Fig 1. The terms of the LHC equation shown at an infinitesimal point inside a finite CV. Heat transferred from and to other 86 
interior points are denoted by dQ - and dQ+ respectively. Heat transfer to or from external sources/sinks is denoted by dQboundary. 87 
For simplicity, each term has been shown to act across one face only. In general however, each term is comprised of flux from all 88 
faces, as per equation 2. 89 
 90 

The net heat energy gained/lost at any point inside the CV is then given by: 91 
 92 

          boundarydQdQdQdQ ++= +−      (1) 93 
 94 

This is the Local Heat Category (LHC) equation. Each term represents the infinitesimal amount of energy 95 
transferred across the surfaces of an infinitesimal volume over an infinitesimal time duration. For 96 
example: 97 
 98 

                                                                   dtdAqdQ
i

ii )(
6

1
∑
=

−′′=−      (2) 99 

 100 

 where 
−′′iq  is the instantaneous negative heat flux across an infinitesimal surface of area dAi. Heat 101 

energy rather than heat flux terms will be henceforth used because of simplicity, so equation (2) is not 102 
part of the derivation. 103 

 104 

 105 
 106 
Fig 2. The dQ- term for the infinitesimal point on the left becomes the dQ+ term for the point on the right. For simplicity, each 107 
term has been shown to act across one face only. In general the dQ- term would be comprised of fluxes from multiple faces, as 108 
per equation (2), and disperse as part of the dQ+ term for multiple points. When collected, the sum of both terms will still be zero, 109 
as shown by equation (3).        110 

Since −dQ  is internal by definition, every −dQ term across the surface of every infinitesimal point must 111 

be part of a +dQ  term elsewhere (also internal by definition), and vice-versa, as shown simplistically by 112 

figure 2. The sum of all −dQ terms across all faces of all infinitesimal points must be equal in magnitude 113 

to the corresponding sum of +dQ terms. This is shown by equation (3): 114 
 115 
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       0=+∫ ∫ +−

CV CV

dQdQ     (3) 116 

 117 
Equation (3) simply says that the sum of positive internal heat transfer throughout the CV is equal to the 118 
sum of negative internal heat transfer. It can be integrated over a finite time duration: 119 
                                                                  120 
                                                                  0=+ ∫ ∫∫ ∫ +−

t CVt CV

dQdQ                                   (4) 121 

Note that the double integral produces finite terms because the dQ terms are products of two differential 122 
quantities as per equation (2). Second law results will be derived for finite processes, so double integral 123 
will be used henceforth. 124 

An important result follows directly from equation (4), and the Second Law statement that heat transfer 125 
can only occur from higher to lower temperature. Since the temperature at the internal source(s) of the 126 

−dQ  term must exceed the temperatures at the locations corresponding to the +dQ term, 
T

dQ−

 must be 127 

smaller than 
T

dQ+

. Therefore: 128 

                                                                   0≥+ ∫ ∫∫ ∫
+−

t CVt CV T
dQ

T
dQ     (5) 129 

 130 
because, the first term is positive while the second is negative. This result will be used later. 131 

2.2 Derivation of 𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑
𝑇𝑇

 for any Arbitrary (Real) Process 132 

Consider any arbitrary process involving external heat transfer to or from any CV as shown in figure 1. 133 
Multiple heat sources and/or sinks might exist and external work may/may not be done on/by the CV. If 134 

Externalq ′′  is the instantaneous heat flux at any point on the surface of the CV, then the net external heat 135 
transfer is given by: 136 
 137 
                                                                External

t At A

ExternalExternal QddtdAqQ ∫ ∫∫ ∫ =′′=                    (6) 138 

 139 
The external heat flux is integrated over the surface area of the CV, denoted by A. All of the external heat 140 
transfer must occur across the boundary of the CV. Therefore: 141 
 142 
                                                                External

t At CV

boundary QddQ ∫ ∫∫ ∫ =     (7) 143 

 144 
where dQboundary is the last term of the LHC equation, see equation (1). Note that integration of dQboundary 145 
over the CV implies integration over the surfaces of infinitesimal points as per equation (2). This leads to 146 
the second important result following equation (5): 147 
 148 

                                                                ∫ ∫∫ ∫ ≥
t A

External

t CV

boundary

T
dQ

T
dQ     (8) 149 

 150 
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The argument identical to the one used to obtain equation (5); the temperature of any boundary point 151 
inside the CV has to be lower than the external source temperature, or higher than the external sink 152 
temperature. For the latter case, the left-hand-side will be a smaller negative number than the right-hand-153 
side. 154 

Adding the two important results, equations (5) and (8): 155 
 156 

                                            ∫ ∫∫ ∫∫ ∫∫ ∫ ≥++
+−

t A

External

t CV

boundary

t CVt CV T
dQ

T
dQ

T
dQ

T
dQ    (9) 157 

 158 
Re-organizing terms and using the LHC equation (1), we obtain: 159 
 160 

                                     ∫ ∫∫ ∫∫ ∫ ≥=
++ +−
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External

t CVt CV

boundary

T
dQ

T
dQ

T
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 162 

If the term 
T

dQ is denoted by the variable dS: 163 

                                                                   ∫ ∫∫ ∫ ≥
∀ t A

External

t T
dQdS      (11) 164 

 165 
It can be easily shown that the variable dS is a point function; therefore ‘S’ is a property that will be called 166 
entropy. Equation (11) is the familiar mathematical statement of the second law, derived from heat engine 167 
arguments in the classical presentation. The proposed approach reverses this specific-to-general approach, 168 
and uses equation (11) to derive all the mathematical results of the second law, including reversible heat 169 
engine (RHE) efficiency, as illustrated in the next sub-section 3.3.  170 
 171 
2.3 Mathematical Results Following from the Equation (11) 172 

For any cyclic process, the property change ∆S=0 and equation (11) reduces to the Clausius Inequality: 173 
 174 

                                                              0≤∫ ∫
A

External

T
dQ

      (12) 175 

 176 
It is evident that in order to convert heat into work, at least one heat sink would be required in order for 177 
the left-hand-side to be negative. This is consistent with the Kelvin-Planck statements of the second law. 178 
For the limiting case where the CV encloses a cyclic and reversible heat engine (RHE) operating between 179 
a single source and a single sink of constant temperature, equation (12) reduces to: 180 
 181 

                                                             0=
∆

+
∆

Sink

Sink

Source

Source

T
Q

T
Q

     (13) 182 

 183 
This results in the familiar expression for the thermal efficiency of a RHE operating between two 184 
temperature reservoirs:  185 

                                           Sink

Source

Source

SinkSource

reversible T
T

Q
QQ

−=
∆

∆+∆
= 1η     (14) 186 
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The second law equation (11) can also be used to determine the exergy of a substance. If the CV encloses 187 
the substance (without a heat source), it can be seen that a heat sink will be required to achieve a change 188 
of state, i.e. non-zero ∆S. Equation (11) then integrates to: 189 
 190 

                                                                   
o

Sink

T
QS ∆

≥∆       (15) 191 

 192 
where ∆S corresponds to the change between current and dead state. Maximum work production will 193 
correspond to minimum heat rejection, i.e. the limiting equality corresponding to an imaginary reversible 194 
process: 195 
 196 

                                                                STQSink
reversible ∆=∆ 0      (16) 197 

 198 
The mathematical expressions for exergy of any closed or open system readily follow from equation (16) 199 
when combined with the first law. The ∆S term must include the entropy change of the flow terms if mass 200 
crosses the CV boundaries. 201 
 202 
3. Pedagogical Implications of Proposed Derivation: The proposed derivation makes it easier to 203 
understand (ir)reversibility, entropy, entropy generation and exergy destruction in real and arbitrary 204 
systems that are not heat engines. The only second law statement used for the derivation is that heat is 205 
transferred from higher to lower temperatures. Students understand this intuitively and can appreciate that 206 
everything else follows from this. Reversibility can be mathematically defined using the LHC equation as 207 
any process in which: 208 
 209 
                        0== +− dQdQ      (17)   210 
 211 
at every point and every instant throughout the process. This is because every kind of irreversibility 212 
within a CV, including frictional dissipation, will ultimately result in irreversible internal heat transfer. 213 
The definition unites the different kinds of irreversibilities that are described in current textbooks as any 214 
process violating equation (17). In that case it is easy to see that every violation results in the loss of work 215 
potential. The differential amount of exergy lost when dQ- becomes dQ+ across temperature difference dT 216 
can be easily derived from equation (14): 217 
 218 

                                                                                  dT
T
dQ

dX 2

+

=      (18) 219 

 220 
Students can then understand why reversible processes conserve work potential while irreversible 221 
processes do not. They can appreciate that dQ+ and dQ- terms will be non-zero for a real process, but 222 
minimizing them can reduce exergy destruction. They can intuitively understand that dQ+ and dQ- terms 223 
can be minimized by minimizing temperature gradients within the system, by designing processes that are 224 
spatially uniform. For example, the exergy destruction in any combusting system is greatly reduced if 225 
combustion occurs uniformly throughout the combustion chamber22.  226 
 227 
Entropy is defined at an infinitesimal point, see equation (11), and calculating entropy change does not 228 

require a parallel reversible process. Entropy generation can be understood to result from 
T

dQ+

and 
T

dQ−

229 

terms, and ultimately from spatial non-uniformity. A more detailed discussion of defining entropy in this 230 
manner can be found elsewhere23, and is best suited to a graduate thermodynamics course.   231 

6 
 



 232 
The derivation can also be used to reduce confusion between the different temperature scales. Unlike the 233 
classical presentation which requires defining a Thermodynamic Temperature Scale (TTS), see figure 1, 234 
the proposed derivation can be based on the more easily understood Ideal Gas Temperature Scale (IGTS). 235 
The TTS (or the Kelvin scale) can then be derived from equation (14) to show that the IGTS coincides 236 
with the TTS. Again, the reader is pointed elsewhere23 for a more detailed discussion on this topic. 237 
                                                              238 
4. Assessment: A simple assessment method would be to compare two cohorts of students who have been 239 
taught the classical and proposed presentations respectively, using a well-validated measurement tool. 240 
One such tool is the Concept Inventory for Engineering Thermodynamics (CIET) developed by Vigeant 241 
et al23. Reliability data for the CIET was collected from 15 institutions nationwide. This data shows that 242 
the CIET has sufficient reliability to be used as a research instrument for post-testing. No pre-testing is 243 
being proposed in the current work. At the author’s institution, classes in mechanical engineering run 244 
double sections because classes are capped at 24 students. Hence the CIET will be administered to both 245 
sections but only one section will be instructed using the proposed presentation. The primary purpose of 246 
this paper to interest other thermodynamics instructors in the proposed presentation so that the assessment 247 
can be performed with a large number of students, and the normal distribution can be used (not possible 248 
with n=24) to assess the effect of the proposed approach on the population of students studying 249 
thermodynamics . 250 
 251 
5. Conclusions: A number of shortcomings in the classical presentation of the second law of 252 
thermodynamics as found in contemporary engineering textbooks have been pointed out from a 253 
pedagogical perspective. A new presentation that uses thought experiments about real rather than 254 
imaginary processes to derive second-law results has been proposed. The proposed derivation has 255 
conceptual implications. The effectiveness of the proposed presentation can therefore be measured using a 256 
reliable concept inventory. The author urges fellow thermodynamics instructors to examine the problem 257 
described, and consider an educational experiment with the proposed solution.  258 

 259 
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