
Paper ID #18658

BYOE: Student-built Versatile Platforms Integrate Solar-powered Micropro-
cessor and Sensors for Chemical Engineering Data Acquisition

Rachel J. Monfredo, University of Rochester

Lecturer and Senior Technical Associate Department of Chemical Engineering Teach Freshman work-
shop, Junior and Senior Chemical Engineering laboratories.

David J. Schinsing
James Alkins, University of Rochester
Mr. Thor O. Olsen

c©American Society for Engineering Education, 2017

BYOE: Student-built Versatile Platforms Integrate Solar-powered
Microprocessor and Sensors for Chemical Engineering Data Acquisition

Abstract

Chemical Engineering freshmen at the University of Rochester were tasked with building
their own solar-powered microprocessor systems to experience hands-on machine shop training,
coupled with exposure to microprocessors, sensors, and data collection in a weekly workshop
associated with their Green Energy course. The student-built unit was supported on plywood cut
on a table or miter saw, with mounting holes created by a drill press. Students were taught the
fundamentals of soldering to attach a power cable to a 2.5W solar panel to provide power to the
microprocessor, and a small voltmeter panel to provide real-time voltage readings. Students had
a variety of low-powered sensors (i.e. temperature, humidity, sound, light) to choose from. In
alignment with the objectives of their Green Energy course curriculum, students, acting
individually or on self-selected teams, were challenged to collect data from sensors chosen for
creative application to some simulated aspect of green energy production or use—monitoring
environmental effects, evaluating a future collection site, or assessing the production process
itself. The on-board EEPROM enabled students to store up to 512 sensor readings on the
microprocessor for subsequent transfer to a computer. Students were shown how to collect data
generated by their solar-powered sensor and perform rudimentary calculations to understand the
implications of the data. Forty-seven students presented their findings orally at the end of the
semester (seven individuals, and fifteen ‘teams’ of two to four students). The experience exposed
students early in the major to the use of sensors, microprocessors, Arduino software, (remote)
data acquisition, and the data processing methods useful for their upper level unit operations and
process control laboratory courses. Projects included evaluating the economic potential of solar
panels or wind turbines installed on campus buildings, monitoring the temperature changes in a
recyclable-material parabolic trough, and developing smart agriculture irrigation systems based
upon soil moisture readings. Voluntary feedback from thirty-seven students at the end of the
course indicated that more than two-thirds of the respondents ‘Agreed or Strongly Agreed’ to
queries that the machine shop training was valuable, the hands-on assembly of components was
enjoyable, and developing and running experiments was enjoyable. Nearly fifty percent of the
class experienced an increased interest in green energy generation. Over ninety percent of the
team-based respondents indicated that the opportunity to work on a team was valuable.

Introduction

In April 2014, graduating seniors at the University of Rochester requested a meeting with the
chemical engineering department chair and professors, and the Dean and Asst. Dean of the
Hajim School of Engineering and Applied Sciences to review and critique the chemical
engineering curriculum. One of their requests was for the creation of a lab or hands-on project in
the freshman introductory chemical engineering (CHE) course, CHE150, Green Energy.
Students noted that other departments, specifically Mechanical and Biomedical engineering, had
freshman courses incorporating such experiences, as do many other universities.1-5 Their request
reiterated comments heard annually from juniors taking the spring semester CHE246 unit
operations laboratory during which machine shop training is provided in preparation for the
senior laboratory course. The senior lab course is typically popular with students, with extensive
positive end-of-college “Exit Survey” feedback, however, students comment that they wished
they had had the opportunity to perform hands-on projects earlier, and that they had gotten into
the campus machine shop earlier than second semester of their junior year:

 In general, this program starts hands on experimenting and training very
late which is such a shame… I would have liked to have more training in the
machine shop since that’s a great thing to be able to put on your resume. Hands
on experience is key for those people not going on to get a PhD. (Anonymous,
post-course exit survey, 2012)

… I think the machine shop training during CHE246
[the junior chemical engineering laboratory course]
was very helpful and interesting, and wish that I had
more time doing projects dealing with the machine
shop… (Anonymous, post-course exit survey, 2012)

Additionally, instructors of the junior and senior laboratories
find students lack basic assembly and implementation skills
for computer-based data-acquisition (DAQ) measurements of
common experimental parameters such as temperature, flow
rate, and pressure. Students are provided ample theory in
their core chemical engineering courses, and are generally
capable of analyzing data collected on existing laboratory
equipment. However, these same students rarely understand
the physical components needed to set up and implement
their own DAQ systems.

Figure 1. Students cut
plywood on rip or chop
saw.

The following first-semester freshman project was implemented in the fall 2016 semester to
address these concerns. The main goals were to expose chemical engineering freshmen to
machine shop facilities, and to microprocessors and different sensors as a means of collecting
data. The multi-week, hands-on project encouraged creative use of sensors through applications
of the students’ choosing, and in concert with their Green Energy course goals, exposed students
to the challenges of green energy/power generation. The over-arching implication being that the
projects were to use green energy (as supplied by the solar panel) to evaluate other authentic
forms of green energy.6, 7 The requirements of the final project were intentionally vague: to find
a green energy application for their chosen sensor to some simulated or actual aspect of green energy
production (i.e. monitoring environmental effects, evaluating a future collection site, or assessing the
production/implementation process itself). Students were told they needed to come up with a means of
interpreting the raw data the sensor generated (typically a voltage signal) and apply a calibration method
in order for the data to have meaning (i.e. use an ice bath and boiling water for the waterproof
temperature sensor). The intent was to employ a form of hybridized discovery learning with project-
based learning to provide students an open-ended challenge to investigate more deeply one of the various
forms of green energy they were learning about in the main course;8 the kind of “creative and critical

thinking exercise” Felder suggests to make their coursework more
meaningful and memorable.9 The overall project was explained to
students early in the semester, with weekly descriptions of one or
another sensor that would be available. This was intended to
motivate the students to consider the forms of green energy as
they were being taught, from the perspective, ‘how could I
evaluate this?’ and to generate projects which would, as
Blumenfeld et al. claim “build bridges between phenomena in the
classroom and real-life experiences.”10, 11 In the absence of a
formal laboratory space associated with the Green Energy course,
the students were expected to generate their own ‘laboratory
setting’ within the surrounding campus or beyond—to create a
legitimate (if simulated, in some instances) real-world application.
In addition, students were encouraged to work on teams if
they chose (up to four members). The success of the ‘real-
world application’ challenge as a teamwork effort is the topic of a
future paper.

Accomplishments included fabrication of a solar-powered DAQ system, submission of a written
proposal for an intended application of their sensor(s), and an oral presentation to the class of the
project results. Students voluntarily completed an end-of-semester survey on their achievement
of the intended goals. Forty-seven students completed the course (eight were not declared
chemical engineers or freshmen); an additional five dropped the course within the first few
weeks of class. Thirty working solar-panel boxes were completed for twenty-three individual or
team projects (all students completed initial machine shop training), and thirty-seven surveys
were completed (79% response rate). One professor lectured for 75 minutes, twice weekly on
material derived from Richard Dunlap’s Sustainable Energy12 for the 14-weeklong semester. A
second professor led the ‘workshop’ portion of the class meeting once weekly for 75 minutes:
the first half of the semester focused on readings and assignments from Raymond Landis’

Figure 2. Students solder
components to solar panel.

Studying Engineering: A Roadmap to a Rewarding Career13 while students built the solar panel
boxes in a campus machine shop outside of class time. Students were introduced to the sensors
during the second half of the weekly workshop sessions. Students were shown how to wire
sensors to breadboards or directly to the Arduino-compatible microprocessors (the less-
expensive RedBoard from SparkFun.com, also the source of the low-powered sensors) mounted
on the solar panel boxes. Operation of pre-existing Arduino software code (developed
specifically for use with the solar-powered units, included in Appendix) demonstrated the
process of data collection with the microprocessor and how to transfer data to a computer. The
workshop ended with the final oral presentations.

Apparatus Design and Assembly

Students completed a brief safety course prior to working in the machine shop. All components,
shop equipment, and staff support were available to students in one-hour sessions. Most students
completed their units in two to three sessions. The solar panel boxes (SPBs) had a series of
inexpensive components to enable versatile
functionality. A Sterilite® 6-quart shoe box served as
the housing, with the lid becoming the base of the
structure. A 10.5” x 5.75” x 0.25” plywood piece was
cut by students on a rip or chop saw (Figure 1). A drill
press was utilized for drilling holes for mounting the
plywood to the Sterilite® base, and for holes to mount a
SparkFun Electronics RedBoard©, and a 0.25” panel
meter. A 3.29” x 2.15” x 0.33” breadboard was
mounted with pre-attached double-stick tape. Soldered
to the underside of an Allpowers solar panel (130mm x
150mm, 2.5W/500mAh mini-encapsulated solar cell
epoxy solar panel) were the wires of the panel meter,
wires for alligator clips for additional optional
accessories, and a barrel jack plug cable for powering
the RedBoard (Figure 2). The solar panel was held in
place with hot-melt adhesive at each corner (Figure 3).
See Appendix A for a complete parts list. The Sterilite®
box provided storage space to the components as the
‘lid’, as well as protection from environmental hazards
and backpack storage.

Figure 3. Completed unit with
solar panel, breadboard, voltmeter
panel, microprocessor, power and
accessory cables.

 Collection Methodology

Sensors for the project were chosen from the SparkFun Electronics website for low operating
current and voltage requirements. Simplicity of wiring and data acquisition were secondary
considerations. Some sensors as breakout boards required additional wiring to enable flexible
application in novel contexts generated by the students. Table 1 provides a chart of the sensors
used, voltage and current requirements, wiring considerations, and the form of the output signal.

A special Arduino code was written to enable students to bring their sensor (wired to the SPB)
outdoors to be powered by the solar panel (see Appendix B for sample code). The EEPROM
provided storage of up to 1024 bytes, or 512 data points. Students were required to enter the
number of data points they wished to collect (especially if multiple sensors were employed
simultaneously) and how often data would be collected (in milliseconds). A jumper wire
controlled the onset of data collection or retrieval from the microprocessor to the Arduino’s
Serial Monitor when the unit was reconnected to a computer (see Appendix C for instructions for
collecting data). A separate data collection mode, utilizing power through a computer USB port,
could be used in the absence of sunlight, and for testing and calibration. Part of the project’s

Table 1. Sensors used by students and supported by Arduino code for data collection on
RedBoard microprocessor.

objective was for students to make the sensors’ “analog output” signals ‘meaningful’ by
establishing their own calibration criteria.

Challenges and Student Feedback

By far the greatest challenge of the project was preparing all of the sensors—wiring and testing
SparkFun break-out boards—and ensuring the Arduino software interfaced properly with each
sensor. Several students responded in the end-of-semester survey that they wished they had had
more time to work with the sensors beyond the three weeks provided. Other challenges included
multiple students with color vision deficiencies who incorrectly wired sensors to their
breadboard/microprocessor, students’ failure to detect loose wires when systems weren’t
working, and complaints that the lack of sunlight in upstate New York interfered with students’
ability to collect data. These were far outweighed by the popularity of the project and the
initiative students demonstrated collecting data in novel and challenging contexts: students
seeking out building facilities managers for access to rooftops and otherwise inaccessible
windows to collect light exposure or wind pattern data (utilizing the sound sensor) with
supporting economic feasibility studies; a student bringing home his SPB over the Thanksgiving
break to gather water temperature data upstream and downstream from a low head hydroelectric
facility to evaluate the environmental impact; or continuous multi-day attempts to gather soil
moisture data (indoors) as various houseplants transitioned from drenched to dehydrated states to
investigate the application of soil moisture sensors in farming irrigation systems. One team of
students successfully demonstrated the operation of a parabolic trough, made from recycled soda
bottles and aluminum foil, utilizing the waterproof temperature sensor.

Thirty-seven students completed a voluntary,
anonymous end-of-semester survey providing
feedback on various components of the project, a
seventy-nine percent response rate. Response
categories included Strongly Agree, Agree, Neutral,
Disagree and Strongly Disagree. The project inspired
increased interest in green energy and in the chemical
engineering major for a large portion of students in
both categories (Figures 4 and 5). Overwhelmingly
positive responses, where combined Agree and
Strongly Agree totals exceeded two-thirds of the
respondents, were in the students’ perception of the
value of machine-shop training (84%) and the hands-on assembly of the boxes (76%), the value
of microprocessors for collecting data (68%) and slightly-less, their enjoyment of developing and
running the experiments (65%), the numbered likely tempered by those with wiring problems.

Figure 4. Student responses to
“This project increased my interest
in Green energy generation.”

The workshop was not intended to teach students how
to write computer code in the Arduino language, so
some concern was expressed by instructors that
students would not be able to use the provided code to
collect data. Three separate class periods were
dedicated to demonstrating the use of the SparkFun
RedBoards, breadboards, and the operation of the
Arduino code with the sensors. Handouts with step-
wise instructions for collecting data were provided, in
addition to wiring diagrams and detailed instructions
accompanying individual sensors (sample provided in
Appendix D). Handouts were distributed after
students submitted one-page proposals for their
intended sensor application. Multiple, open office
hours were offered to students for additional help.
Survey responses indicated a mixed response that
sufficient background in Arduino programming
language was provided to collect data (Figure 6).
This indicates a quarter of the class still struggled
with this aspect of the project, a problem that needs to
be addressed in future course iterations.

Additional changes would include allotting more time
in the machine shop to complete the preparation of
materials and assembly of the SPBs; two 1-hour
sessions were insufficient in many cases. Early on it
was identified that wood screws failed to secure components to MDF board, so a switch was
made to quarter inch plywood. Subsequent observations suggest three-eighths plywood would
be more successful. Mini USB cables connected the solar panel to the microprocessor, but initial
testing indicated unregulated voltage levels generated by the solar panel exceeded the specified
5V microprocessor input voltage at the mini USB port. A barrel jack cable retrofitted to the USB
cable connected the solar panel to the RedBoard barrel jack which could tolerate variations from
7-15V. Initial cost estimates predetermined that students would share materials. Thirty of a
possible forty units were completed. Suggestions that a lab fee attached to future classes to
allow each student to make and keep their own SPB were met with mixed reviews. More in-
class time needs to be spent to ensure students wire their chosen sensors properly, and are able to
collect meaningful data.

The opportunity to work on a team was unexpectedly the most popular aspect of the project.
Ninety-four percent of the respondents who admitted working on a team Agreed or Strongly
Agreed that they enjoyed working with classmates on their self-selected teams of two to four
students (seven chose to work alone). Student oral presentations indicated the cohesive nature of
the formed teams. In order to accommodate twenty-three presentations over two course periods,
students were allotted defined amounts of time to present. Students, formally dressed, delivered

Figure 5. Student responses to “This
project increased my interest in my
major.” 29 responses indicated
Chemical Engineering major.

Figure 6. Student responses to
“Sufficient background to
Arduino programming language
was provided to collect data.”

organized, well-researched, and obviously practiced PowerPoint presentations. Student teams
sought ‘public speaking’ tutors available on campus to critique their delivery. Many students
invested significant amounts of time to gather data under harrowing conditions—interactions
between presenters on teams indicated the level of comradery developed among classmates
unknown to each other at the start of the semester.

Conclusions

Empowering freshman to build and use solar-powered microprocessor systems to collect data
from sensors was considered an overall success. Chemical engineering freshmen were
introduced to campus machine shop facilities five semesters earlier than previously practiced,
and enabled to engage in remote data collection in student-generated contexts around topics of
green energy power generation, application, and environmental effects. Students utilized
multiple resources across campus to complete data collection, perform background research, and
prepare for their oral presentations. The project not only introduced students to aspects of data
collection, calibration and regression analysis needed for their major, it also provided freshmen
chemical engineering students the opportunity to work with each other and collaborate on teams
as demonstrated through professional, informative and organized final project reports. Any
enduring impact of the workshop exercise on students’ performance in their upper level
laboratory and process control courses will be evaluated as these students enter those upper-level
courses.

Acknowledgments

The authors wish to thank Dean Wendi Heinzelman and Assistant Dean James Zavislan for their
support and for underwriting the major costs of this project, and to Sandra Willison of the Dept
of Chemical Engineering for ‘finding’ the remaining needed funds. Special thanks to Prof.
Mitchell Anthamatten for enabling and encouraging his Green Energy course recitation time to
be used for this workshop; to Larry Kuntz for sharing his electrical knowledge for the initial
designs; to Moriana Garcia for assistance and training on library resources for the students, and
to Prof. F. Doug Kelley for promoting hands-on experimental work with DAQ systems in the
labs.

References

1. Bernstein, A.; Gaudet, C.; Lyons, L.; Sherman, D.; Shikari, A.; Stewart, K.; Stilson, B.; Ward, J.; Zabrodsky, A.,
Curriculum meeting with the CHE Department Chair, Professors and Hajim School of Engineering and Applied
Science Deans Robert Clark and James Zavislan. Monfredo, R., Ed. April 18, 2014.

2. Moor, S. S.; Saliklis, E. P.; Hummel, S. R.; Yu, Y.-C., A Press RO System: An Interdisciplinary Reverse
Osmosis Project for First-Year Engineering Students. Chemical Engineering Education 2003, 37 (1), 38-44.

3. Farrell, S.; Hesketh, R. P.; Savelski, M., A Respiration Experiment to Introduce ChE Principles. Chemical
Engineering Education 2004, 38 (No. 3, Summer), 7.

4. Coronella, C., Project-based learning in a first-year chemical engineering course: Evaporative cooling. In 113th
Annual ASEE Conference and Exposition, 2006, June 18, 2006 - June 21, 2006, American Society for Engineering
Education: Chicago, IL, United States, 2006.

5. Menicucci, J.; Duffy, J.; Palmer, B., Hands-on introduction to chemical and biological engineering. In 114th
Annual ASEE Conference and Exposition, 2007, June 24, 2007 - June 27, 2007, American Society for Engineering
Education: Honolulu, HI, United States, 2007.

6. Slater, C. S.; Hesketh, R. P.; Fichana, D.; Henry, J.; Flynn, A. M.; Abraham, M., Expanding the frontiers for
chemical engineers in green engineering education. International Journal of Engineering Education 2007, 23 (2),
309.

7. Crippen, K. J.; Boyer, T. H.; Korolev, M.; de Torres, T.; Brucat, P. J.; Chang-Yu, W., Transforming Discussion
in General Chemistry With Authentic Experiences for Engineering Students. Journal of College Science Teaching
2016, 45 (5), 75-83.

8. Prince, M.; Felder, R., The Many Faces of Inductive Teaching and Learning. Journal of College Science
Teaching 2007, 36 (5), 14-20.

9. Felder, R. M., Why are you teaching that? Chemical Engineering Education 2014, 48 (3, Summer), 131-132.

10. Blumenfeld, P. C.; Soloway, E.; Marx, R. W.; Krajcik, J. S.; Guzdial, M.; Palincsar, A., Motivating project-
based learning: Sustaining the doing, supporting the learning. Educational psychologist 1991, 26 (3-4), 369-398.

11. Ryan, R. M.; Deci, E. L., Intrinsic and extrinsic motivations: Classic definitions and new directions.
Contemporary educational psychology 2000, 25 (1), 54-67.

12. Dunlap, R. A., Sustainable Energy. Cengage Learning: Canada, 2015.

13. Landis, R. B., Studying Engineering: A Road Map to a Rewarding Career. Discovery Press: Los Angeles, CA,
2013.

Appendix A

Bill of Materials for 1 Solar Panel Box

Item Source Item # Unit Price
1

Sparkfun RedBoard programmed with Arduino SparkFun.com DEV-12757 17.95

USB Mini-B Cable, 6ft SparkFun.com CAB-00598 1.95

ALLPOWERS 2.5W 5V/500mAh Mini Encapsulated

Solar Cell Epoxy Solar Panel DIY Battery Charger

Kit for Battery Power 130x150mm

Amazon.com 7.99

7" Jumper Wires for RedBoard M/M - 30AWG (30

pack)
SparkFun.com PRT-11026 1.95

Mini breadboard 3.29 x 2.15 x 0.33" Fits wire sizes

29-20AWG
Newark.com 99W1759 2.51

DC Power Connector (barrel jack) Plug, male, cable

mount, 2.1mm*
Newark.com #34C3282 0.75

Red 22 awg wire for barrel jack*, sensors, 25ft SparkFun.com PRT-08865 2.95

Black 22 awg wire for barrel jack*, sensors, 25ft SparkFun.com PRT-08867 2.95

Sterlite 6 Qt shoebox Big Lots 1.00

1/4" Mini-Panel-Meter MPJA.com 32320 ME 2.59

42.59

*Pre-wired barrel jacks may also be available

Sensors--see Table 1 Additional

Assorted Parts

Machine shop: plywood, size 1 screws for panel

meter, size 2 screws for microprocessor, nuts, solder,

glue gun sticks

Additional

Breakout board wiring: colored wires (can also use

Sparkfun jumper wires), solder; resistors for circuits

Additional

1
 2016 list price; may depend upon quantity discount

Preliminary total

Appendix B
recorder.ino

/* Code available upon request. Email author. */

/* Code to be used for Solar Panel Boxes, written by

 David J. Schinsing, 2016. Different pieces of code are

 present to accommodate different operating modes i.e., either

 in Solar Panel data collection mode or in test mode, for continuous

 data presented on the Serial Monitor of this Arduino sketch. Default

 operating mode is for continuous data, plugged into computer (Thor

 Mode 1). To activate different modes, follow instructions provided

 separately.

 To enable short-term data storage on the RedBoard while powered by a

 solar panel, the system utilizes the EEPROM library. Data is stored

 or released depending upon the placement of a jumper wire, called

 here a 'mode jumper'. The mode jumper applies a ground to a digital

 pin. This is the active state: mode jumper in, and the pin reads LOW.

 The pin is configured as INPUT_PULLUP so when the mode jumper is

 removed, the pin rises to HIGH, which is the inactive state.

*/

#include <Wire.h>

#define MODE_JUMPER 2 // mode jumper is digital pin 2

#define LED_PIN 13 // LED on digital pin 13

/* The number of samples and the sample rate is defined here. Consider

 the sensor, how fast does the physical property change?, what is

 the duration of the event you're measuring?

*/

#define N 59 // number of samples

#define TICK 900000 // sample every 15 minutes

/* How many analog channels do you need? The SparkFun RedBoard has

 6 analog inputs, or channels. Set CHANNELS to how many you want. I'll

 read A0 first, then A1, and A2, ... up to however many you need.

*/

#define CHANNELS 1 // maximum of 6 channels

/* Are you using the TMP102 sensor? If not, comment this out. */

//#define TMP102

/* Are you using the RHT03 sensor? If not, comment this out. */

#define RHT03

/* A word about memory: When recording, data from the analog channels

 is saved in EEPROM. EEPROM is limited to 1024 bytes on the

 ATmega328/P. Each sample of data takes 2 bytes. Do the math. Or

 read the table:

 CHANNELS(+TMP102) ... maximum N (samples)

 1 ... 512

 2 ... 256

 3 ... 170

 4 ... 128

 5 ... 102

 6 ... 85

 Just make sure N*CHANNELS <= 512. I'm not going to check in the code.

 And don't set N or CHANNELS to zero. That's dumb, and I'm not going

 to test for that, either.

*/

#include <EEPROM.h>

// Arduino runs this first, and only once

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(MODE_JUMPER, INPUT_PULLUP);

 ACSR = 0;

#ifdef TMP102

 tmp102_setup();

#endif

#ifdef RHT03

 rht03_setup();

#endif

#ifdef DS18B20

 ds18b20_setup();

#endif

}

void flashLED() {

 digitalWrite(LED_PIN, HIGH);

 delay(150); // ms delay

 digitalWrite(LED_PIN, LOW);

 delay(150);

}

/* Record Mode: Because we got here, the mode jumper is

 in. Data collection is armed, waiting for mode jumper

 removal.

*/

void record() {

 int n, channel;

 int address = 0; // EEPROM address starts at 0 (Arduino provided a nice

EEPROM interface!)

 int value;

#ifdef RHT03

 int temp;

#endif

 // wait for the mode jumper to be removed

 while (digitalRead(MODE_JUMPER) == LOW) // while the jumper is installed, ...

 flashLED(); // ... blink

 delay(TICK / 2);

 for (n = 0; n < N; n++) { // for N samples, ...

 for (channel = 0; channel < CHANNELS; channel++) { // for each CHANNEL,

...

 value = analogRead(A0 + channel); // ... read sensor, ...

 EEPROM.put(address, value); // ... and stuff it in the EEPROM

 address += sizeof(value); // next address

 }

#ifdef TMP102 // for TMP102, ...

 value = tmp102(); // ... read sensor, ...

 EEPROM.put(address, value); // ... and stuff it in the EEPROM

 address += sizeof(value); // next address

#endif

#ifdef RHT03

 rht03(&temp, &value); // ... read sensor, ...

 EEPROM.put(address, temp); // ... and stuff it in the EEPROM

 address += sizeof(temp); // next address

 EEPROM.put(address, value); // ... and stuff it in the EEPROM

 address += sizeof(value); // next address

#endif

#ifdef DS18B20

 value = ds18b20(); // ... read sensor, ...

 EEPROM.put(address, value); // ... and stuff it in the EEPROM

 address += sizeof(value); // next address

#endif

 flashLED(); // look alive!

 delay(TICK); // ms delay

 }

}

void playback() {

 int n, channel;

 int channels = CHANNELS

#ifdef TMP102

 + 1

#endif

#ifdef RHT03

 + 2

#endif

#ifdef DS18B20

 + 1

#endif

 ;

 int address = 0; // EEPROM address starts at 0

 Serial.begin(9600); // initialize

 while (!Serial); // wait for port to open

 Serial.print("\n\nSAMPLE");

#if CHANNELS > 0

 Serial.print(", A0");

#endif

#if CHANNELS > 1

 Serial.print(", A1");

#endif

#if CHANNELS > 2

 Serial.print(", A2");

#endif

#if CHANNELS > 3

 Serial.print(", A3");

#endif

#if CHANNELS > 4

 Serial.print(", A4");

#endif

#if CHANNELS > 5

 Serial.print(", A5");

#endif

#ifdef TMP102

 Serial.print(", TMP102");

#endif

#ifdef RHT03

 Serial.print(", RHT03(temperature), RHT03(humidity)");

#endif

#ifdef DS18B20

 Serial.print(", DS18B20");

#endif

 Serial.print("\n");

 for (n = 0; n < N; n++) { // for N samples, ...

 Serial.print(n);

 Serial.print(", ");

 channel = 0;

 do {

 int value;

 EEPROM.get(address, value);

 address += sizeof(value); // next address

 Serial.print(value);

 channel++;

 if (channel == channels) break;

 Serial.print(", ");

 } while (1);

 Serial.print("\r\n");

 }

}

// THOR Mode: use this for testing sensors, or setting up your serial

communication

#define THOR 0

//#define THOR 1 // don't check MODE_JUMPER, just read and display

continuously

void thor() {

 int value;

#ifdef RHT03

 int temp;

#endif

 Serial.begin(9600); // initialize

 while (!Serial); // wait for port to open

 do {

 int channel;

 Serial.print("---, ");

 channel = 0;

 do {

 int value;

 value = analogRead(A0 + channel); // ... read sensor, ...

 Serial.print(value);

 channel++;

 if (channel == CHANNELS) break;

 Serial.print(", ");

 } while (1);

#ifdef TMP102

 value = tmp102(); // left as an exercise to the user to multiply these

numbers by 0.0625 degrees C (TMP102 only!)

 Serial.print(", ");

 Serial.print(value);

#endif

#ifdef RHT03

 rht03(&temp, &value);

 Serial.print(", ");

 Serial.print(temp);

 Serial.print(", ");

 Serial.print(value);

#endif

#ifdef DS18B20

 value = ds18b20();

 Serial.print(", ");

 Serial.print(value);

#endif

 Serial.print("\r\n");

 delay(500); // slower

 } while (1);

}

// Arduino runs this second. This code never returns. See the infinite loop at

the

// bottom. Is this atypical Arduino code? Probably.

void loop() {

 delay(1000);

#if THOR

 thor(); // never to return ...

#endif

 if (digitalRead(MODE_JUMPER) == LOW) { // is the jumper installed?

 record(); // mode jumper in, ... record mode

 } else {

 playback(); // mode jumper out, ... playback

 }

 // turn LED on:

 digitalWrite(LED_PIN, HIGH); // done recording or playing back, ... turn LED

on

 while (1); // power-hungry stall (I wonder if Arduino has a sleep mode?)

}

rht03.ino

#define RHT03_1 9

#define RHT03_2 8

#define RHT03_4 7

void rht03_setup()

{

 TCCR1A = 0;

 TCCR1B = 0x82; // /8 prescaler

 pinMode(RHT03_1, OUTPUT);

 digitalWrite(RHT03_1, HIGH);

 pinMode(RHT03_2, INPUT_PULLUP);

 pinMode(RHT03_4, OUTPUT);

 digitalWrite(RHT03_4, LOW);

}

static int low() /// return the time it went low

{

 while (digitalRead(RHT03_2) == HIGH);

 return TCNT1;

}

static int high() // return the time it went high

{

 while (digitalRead(RHT03_2) == LOW);

 return TCNT1;

}

int rht03(int *temp, int *humid)

{

 int i;

 int x, y;

 int data[5];

 pinMode(RHT03_2, OUTPUT);

 digitalWrite(RHT03_2, LOW);

 delayMicroseconds(2000); // 1000 uS minimum

 pinMode(RHT03_2, INPUT_PULLUP);

 delayMicroseconds(50); // get away from the noise

 y = low();

 x = high();

 y = low();

 for (i = 0; i < 5; i++) {

 x = high();

 y = low();

 if (y - x > 100) data[i] = 0x80; else data[i] = 0;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x40;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x20;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x10;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x08;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x04;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x02;

 x = high();

 y = low();

 if (y - x > 100) data[i] |= 0x01;

 }

 if (((data[0] + data[1] + data[2] + data[3]) & 0xff) != data[4]) {

 *temp = 0^-1;

 *humid = 0^-1;

 } else {

 *temp = data[2] << 8 | data[3];

 *humid = data[0] << 8 | data[1];

 }

}

tmp102.ino

#include <Wire.h>

#define TMP102_I2C_ADDRESS 0x48 /* This is the I2C address for our chip.

 This value is correct if you tie the ADD0 pin to ground. See the datasheet for

some other values. */

void tmp102_setup() {

 Wire.begin(); // start the I2C library

}

signed int tmp102() {

 signed short firstbyte, secondbyte; //these are the bytes we read from the

TMP102 temperature registers

 Wire.beginTransmission(TMP102_I2C_ADDRESS); //Say hi to the sensor.

 Wire.write(0x00);

 Wire.endTransmission();

 Wire.requestFrom(TMP102_I2C_ADDRESS, 2);

 Wire.endTransmission();

 firstbyte = Wire.read();

 /*read the TMP102 datasheet - here we read one byte from

 each of the temperature registers on the TMP102*/

 secondbyte = Wire.read();

 /*The first byte contains the most significant bits, and

 the second the less significant */

 return (firstbyte << 8 | secondbyte) >> 4;

}

PLAYBACK

RECORD

Mode
Jumper

in?
no

yes

delay T/2

done for N
samples?

yes

no

no

yes

reset

FTDI/VCP Note:
Communication on USB is provided by an FT231XS chip on the
SparkFun RedBoard. You need a VCP (Virtual Communication
Port) driver from: http://www.ftdichip.com/Drivers/VCP.htm
Select a driver the matches your operating system (Windows,
Linux, …) and processor (x32, x64, …)

The VCP driver makes the USB connection appear as an
additional COM port on your computer. Use Hyperterminal,
TeraTerm, Procomm, or other terminal program to receive data
formatted as: 9600 baud, 8 data bits, no parity, 1 stop bit.

Mode
Jumper

in?

no

yes

read analog
channel

Store to EEPROM

flash LED

Recording Data:
With the mode jumper
in and power applied,
push the reset button.
Record mode is armed.

When you are ready to
collect data, pull the
mode jumper out. The
LED will flash as data is
sampled. The LED
comes on solid when
done.

By default, 60 samples
are collected at second
intervals. (N=60
samples, T=5000
milliseconds)

Do not put the mode
jumper back in until you
are ready to arm record
mode again.

delay T

Serial output
“i, data”

Data Record and Playback on a SparkFun RedBoard

done for N
samples?

read from
EEPROM

HALT w/ LED on

Playback Data:
Simply apply power
and/or press the reset
button without the mode
jumper in.

The data will be printed,
one sample per line,
preceded by a line
number.

Caution against data loss:
The only way you can lose the data you have
collected is by removing the mode jumper with
power applied.

To protect against data loss, do not insert the
mode jumper until you have successfully
uploaded the captured data and are ready to
capture new data.

HALT w/ LED on

Appendix C: Instructions for Collecting Data

Appendix D Sample Handout for Sensor wiring and use

2.2” Flex Sensor FlexSens ___________

Sparkfun.com SEN-10264

Description: A simple flex sensor 2.2" in length. As the sensor is flexed, the resistance across the

sensor increases.

Note: Please refrain from flexing or straining this sensor at the base (where it attaches to red and

black wires). It can be broken, and doesn’t provide a reliable signal at this location.

Hardware/Software needs:

This sensor has two wires: one red wire, which needs to be connected to a voltage source (ie. 5V)

and a black wire which needs to be connected to ground (GND) via a voltage dividing resistor.

A 47K ohm resistor and jumper wires are needed. See the diagram below for wiring between your

RedBoard (essentially the same as the Uno Board pictured below), the breadboard and the sensor.

See also the Sparkfun website: https://learn.sparkfun.com/tutorials/flex-sensor-hookup-

guide#example-program

Red wire to breadboard to 5V via jumper wire

Black wire to breadboard to colored jumper wire to A0 and to 47KΩ resistor to ground.

Utilizing the RecorderA0 program in the test mode will enable you to determine how the values

change from a flat to fully flexed configuration

The Sparkfun site also suggests uses for the sensor.

Red wire

Black wire
Source: SparkFun.com

	DELOS paper v9
	Appendix A BOM
	Appendix B Recorder Code
	Appendix C Instructions for Collecting Data
	Appendix D Flex Sensor user sheet

