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Finite Element Simulation Models for Mechanics of Materials  
 
 
Abstract 
 
In this paper the creation and utilization of a set of virtual models for complementing a Mechanics of 
Materials course in the Civil Engineering and Construction Management Department at Georgia 
Southern University is outlined and discussed.  The simulated models are developed utilizing the 
Abaqus finite elements package.  The models can particularly be useful in cases where a physical lab 
is not accompanying the offered course, as is the case in the authors’ institution.  Several examples 
of the developed simulations are provided in the paper to better illustrate the utility and significance 
of the models.  The simulations for example can be used to determine and display the stress and 
deformation contours at various locations on the solid continuums having different geometries, 
boundary conditions, material properties, and loading conditions.  The models are specifically 
developed to be used by the course instructor in illustrating and explaining some of the more 
important mechanics principles and concepts. These visual simulations help students better 
comprehend the course concepts and more easily understand the limitations and assumptions used in 
the classical formulation of mechanics problems.  Some of the examples explored in the project 
include the analysis of axially loaded members, torque loaded shafts, bending of beams, combined 
loading of structural members, and pressurized thin-walled vessels.   
 
As an added measure to further maximize the effect of the project and to creatively enhance the 
educational effect of the undertaken project for our program as a whole, the developed modules for 
the mechanics of materials are also planned to be utilized in a newly developed undergraduate-
graduate finite element course offered in spring 2017.  Obviously, the intent for utilization of these 
models in the FE course will be different than what is previously described for the mechanics course. 
In the FE course, the created examples are specifically used to illustrate the actual details and 
procedures that need to be followed to properly model and analyze a solid continuum.  Using these 
examples, the students will be coached to develop the solution for other similar problems.  The 
newly developed simulations can in turn be used in future offerings of the mechanics of materials 
course. 
 
I. Introduction 
 
Mechanics of Materials is one of the most important courses the students pursuing a civil 
engineering, mechanical engineering, and aerospace engineering degrees need to take in preparation 
to taking other higher level courses in their specific majors.  This course mainly covers topics related 
to stresses and deformations, and discusses the behavior of various solid continuums subjected to a 
variety of loads.  Among the most important topics included in the course are axial loads, torsion, 
bending, combined loading, deflection, and buckling.  Included in the presented paper are six sample 
Finite Element models developed for the following problems to further complement the course. 
  
(1) Analysis of a rectangular bar with hole and fillet subjected to an axial load 
(2) Torsion of a circular shaft subjected to an applied torque  
(3) Bending of a curved circular beam  
(4) Analysis of a structural member subjected to combined loading 



(5) Deflection of a continuous beam 
(6) Analysis of pressurized cylindrical and spherical pressure vessels   
 
Developed modules are for problems similar to the ones included in references1-2.  These are the 
textbooks adopted for delivering a mechanics of materials and a structural analysis course at Georgia 
Southern University.  The modules created in this project are specifically designed to further 
complement the mechanics of materials course.  These modules can aid the students in better 
comprehending some of the key fundamental mechanics principles.  When utilizing the developed 
models in a classroom setting, the instructor can utilize some of the special tools available in the 
″visualization″ module of Abaqus to generate and display various results such as stresses and 
displacements at different locations on the analyzed part.  Several of these visualization tools are 
shown and briefly discussed in a few of the sample problems included in the paper.  Several other 
available features in Abaqus, enable the instructor to generate plots of various desired parameters 
and produce any needed output in a tabular format.  The generation of this type of plots and reports 
can further promote student learning. 
 
The FE models for more complicated problems such as the ones appearing in various structures 
resources3-6, advanced mechanics texts7-12, and finite element analysis resources13-15 can be 
developed and utilized in upper level courses to further complement these offerings.  
 
II. Axial Loading 
 
A thin A-36 steel plate of 5 mm thickness with a circular hole and a fillet with the dimensions shown 
in Figure 1(a) is subjected to a uniform distributed tensile load of 20 MPa at the right end and 
supported by a fixed support on the left.  The plate has respectively the modulus of elasticity (E) and 
Poisson’s ratio (n) of 200 GPa and 0.32.  To aid in meshing the part, ten partitions were created on 
the model in Abaqus as shown in Figure 1(b).  The partitions help in creating a finer mesh around 
the hole and in the vicinity of the fillet where the stress concentrations occur.  The meshed model of 
the part is provided in Figure 1(c) showing the axial stress contour exerted on the plate.  A CPS8R 
type element (An 8-node biquadratic plane stress quadrilateral, reduced integration element) was 
used in the analysis to produce the displayed results.  Various tools in Abaqus allow the users to 
produce and display the stress distribution along any desired path.  One sample created plot showing 
the distribution of axial stress along a section perpendicular to the loading axis and passing through 
the center of the hole is provided in Figure 1(d).  This plot is used to determine the stress 
concentration factor K which can be used to yield the maximum normal stress at this section in 
accordance to Eq. (1).  The section is marked in Figure 1(c).  Obtained value of K from this analysis 
can be compared against the theoretical value of stress concentration factor published in various 
mechanics text1.   
 

max avgK                    (1) 

 
A similar distribution can be plotted along a vertical section perpendicular to the loading axis close 
to the location of the fillet.  The value of K obtained from this analysis can also be compared against 
the theoretical values1.  The distributions of parameter K corresponding to various ratios of r/h and 
w/h have been documented in various mechanics texts.  If desired, more partitions and a further 



refined mesh can be used to generate more exact results.  The developed model can further be used 
to demonstrate the fact that the normal stress (and normal strain) distribution away from the fixed 
support and away from the location of the hole and fillets are fairly uniform.  This essentially 
confirms the Saint-Venant’s Principle.  Using a special tool available in the visualization module of 
Abaqus, values of stress or displacements at various locations on the part can be probed to further 
educate the students regarding the true behavior of axially loaded structural members.  
 

 
 
Figure 1.  Model of Plate with Hole & Fillet Subjected to an Axial Load: (a) Plate Constructed in 
Abaqus Sketcher, (b) Created Partitions for Meshing, (c) Axial Normal Stress Contour Plot,           
(d) Axial Normal Stress Distribution Across the Plate Width at the Hole Location 
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III. Torsion 
 
To investigate the behavior of torque loaded members, a model of straight A-36 steel shaft with a 
circular cross section subjected to an end torque was developed in Abaqus.  This model has been 
provided in Figure 2(a).  The applied torque was emulated by subjecting the shaft to a couple at its 
end.  The radius (r), length (L), shear modulus (G) of the shaft, and the applied couple moment (T) 
were respectively: 1.25 in, 20 in, 11x103 ksi, and 8.75 kip.in.  Observed in Figures 2(a) are also the 
six partitions that were created on the model using six previously created datum planes.  These 
partitions help in meshing the model and obtaining the results in the desired manner.  When 
developing the model for this example, a C3D8R type element (an 8-node linear brick, reduced 
integration element) was used to produce the results.  The contour for the shear stress developed in 
the shaft is provided in Figure 2(b).  Again, the stress value at any particular location on the member 
can be obtained using the probing tool in Abaqus.  One sample probed element on the boundary of 
the shaft can be seen in Figure 2(b).  The stress and angle of twist values obtained from the 
developed model can be compared against the theoretical values calculated using the following 
fundamental equations. 
 

Tr TL

J Gj
                    (2) 

 
Where in these equation, T, r, J, L, and G are respectively: the applied torque, shaft radius, polar 
moment of inertia of shaft’s cross section, shaft length, and shear modulus.  This confirms for the 
students that the distribution of shear stress along any radial line on the cross section of a circular 
shaft is linear, being zero at the shaft’s center and maximum at the outside boundary of the shaft.  
Also that the angle of twist varies linearly along the length of the shaft.   
 
Other similar models can be developed for non-circular members such as squares, triangles, and 
elliptical cross sections to verify the documented values for each case.  For example, when dealing 
with a square cross section, the model can be used to verify the following theoretical formulas1. 
 

max 3 4

4.81 7.10T TL

a a G
                   (3) 

 
Where in these equation, a is the length of the square side.  The model can further be used to 
establish that the maximum shear stress occurs in the middle of each side of the square cross section, 
and also that the shear stress is zero at the four corners.  The students can additionally verify that the 
square cross section also actually warps due to the applied torque. 
 
 
IV. Bending 
 
A model of an initially curved beam subjected to a bending moment was also developed in this 
project to investigate the behavior of this structural member subjected to this type of loading.  The 
normal stress results acting on a cross section of the model can be compared against the theoretical 
values obtained using the following theoretical equation1. 
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The terms in the above equation are defined as shown below. 
 

:  Normal stress acting on the beam’s cross section 
M:  Internal moment about the neutral axis of the cross section (positive if it increases beam’s radius 

of curvature) 
R:  Distance from the center of curvature to the neutral axis  

:r  Distance from the center of curvature to the centroid of the cross section 
r:  Distance from the center of curvature to the point where the normal stress is to be computed 
A:  Cross-sectional area of the beam 
 
Note that for a composite beam consisting of rectangular component parts, the equation for R can be 
defined as shown below1.   
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In Eq. (5); b, r1, and r2 are respectively the width of the rectangle, and the minimum and maximum 
perpendicular distances measured from the nearest and farthest parallel edges of the rectangular 
cross section to the center of curvature of the curved beam. 
 
The model of a curved beam which initially has a circular shape is presented in Figure 3.  A 
screenshot of the beam’s cross section created in Abaqus sketcher is provided in Figure 3(a) to show 
various dimensions for the cross section.  The solid model of the beam generated through a 
revolving action has been presented in Figure 3(b).  Also seen in this Figure are the fixed boundary 
condition for the beam, along with the applied loading, and the seven partitions which were used to 
mesh the part.  A C3D20R type element (A 20-node quadratic brick, reduced integration element) 
was used in this example to mesh the model.  The normal stress contour for a cut section of the 
model is provided in Figure 3(c).  The cut was made to clearly show the stress values acting on a 
cross-section of the beam along the x-direction perpendicular the y-z plane.  These stresses can be 
compared against the values obtained using the theoretical equation provided above (Eq. 4).  Also 
shown in Figure 3(c) is the stress result for one sample probed element on the cross section obtained 
using a special tool in the visualization module of Abaqus.  Models similar to this can be developed 
for other curved members with various other cross sections.  The equations for bending stress of 
curved beams with triangular, circular, and elliptical cross sections can be found in various 
mechanics textbooks1. 
 
 



 
 
Figure 2.  Model of Shaft with Circular Cross Section Subjected to an End Torque: (a) Created 
Partitions for Meshing, (b) Shearing Stress Contour Plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Model of a Curved Beam Subjected to Bending: (a) Beam’s Cross Section Constructed in 
Abaqus Sketcher, (b) Loading, Boundary Condition, and Meshing Partitions, (c) Normal Stress 
Contour Plot  
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V. Combined Loading 
 
A sample model for a bent A-36 steel rod with a circular cross section of radius 0.5 in. subjected to 
three concentrated end loads along the x, y, and z directions was also developed in the project, so 
that it can be analyzed.  The model is provided in Figure 4(a).  Also seen in this Figure are the five 
partitions used in meshing the part.  Two sample contour plots for the stresses are also provided in 
Figure 4(b) and 4(c).  The first contour plot shows the variation of the normal stress along the x-axis, 
while the second displays the variation of the Von-Misses stress.  The stresses in the model were 
obtained using a C3D8R type element.  The parts of the model which are more severely stressed can 
be seen on the stress contour presented in Figure 4(c).  The Von-Mises stress contour can be used to 
make sure that the yield stress in the material is not exceeded.  Using this type of analysis the normal 
and shear stresses at any cross section on the structural member can be determined and compared 
against the theoretical stress values obtained using Eq. (6).    
 

y y z z yz
x xy xz

y z z z y y

M z V Q V QM y N Tc Tc

I I A I b j I b j
                     (6) 

The terms used in the above equation set are defined as shown below. 
 
My and Mz:  Moments about the y and z axes at the cross section 
N and T:  Normal force and torque acting on the cross section 
Vy and Vz:  Shear force in the y and z-directions at the cross section 
c and A:  Rod’s radius and cross-sectional area 
y and z:   Perpendicular distance from the point where the stress is to be calculated to the z and y 

axes 
Iy, Iz, and J:  Moments of inertia about the y and z axes, and the polar moment of inertia of the cross 

section 
Qy and Qz:  First moment of area at the section where the shear stress is to be calculated with 

respect to the y and z axes 
by and bz:  Width at the section where the shear stress is to be calculated along the y and z-axes 
 
The loads acting on the rod can easily be altered and applied in various load combinations to 
generate the results for other cases.  Additionally, models for analyzing other structural components 
subjected to variety of other combined loading cases can also be developed and studied. 
 
VI. Beam Deflection 
 
Beam deflection is another main topic traditionally covered in an elementary mechanics of materials 
course.  One sample developed model for analyzing the deflection of a continuous beam is presented 
in Figure 5.   The steel beam considered is supported by a pin and two rollers and subjected to a 
uniform distributed and a concentrated load.  Included in this figure is the deflected configuration of 
the beam which has been generated using a B22 type element (a 3-node quadratic beam element).  
The deflection values determined using Abaqus can be compared against the results obtained using a 
variety of available classical approaches.  In the mechanics of materials course offered at Georgia 
Southern University, the double-integration method is mainly discussed in detail.  When using this 
approach the differential equation of the beam (Eq. 7) is utilized.   
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In the above equation, v is the transverse deflection and M(x) is the bending moment.  The E and I 
terms are as defined previously.  Using the visualization module of Abaqus, the students can see the 
shape of the elastic curve and better understand the behavior of beams when subjected to various 
loads and boundary conditions. The elastic curve produced in Figure 5(a) specifically illustrates how 
the moment (or the curvature) is changing sign along the length of the beam, indicating the portions 
of the beam which are subjected to tensile and compressive bending stresses.  The distribution of the 
moment along the length of the beam obtained using Abaqus is provided in Figure 5(b).  This 
distribution can be used to determine the location of the inflection points of the beam.  Several other 
FE models designed for analyzing a variety of other structural members such as trusses, beams, two 
and three-dimensional frames, as well as, several other solid structural members were included in a 
separate publication of the authors16.   The models provided in that publication were specifically 
designed for enhancement of a finite element course offered in the civil engineering curriculum. 

 
Figure 4.  Model of a Bent Structural Component with Circular Cross Section: (a) Loading, 
Boundary Conditions, and Meshing Partitions, (b) Normal Stress Contour Plot, (c) Von-Mises Stress 
Contour Plot 
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Figure 5.  Model of a Deflected Continuous Beam Subjected to a Distributed and Concentrated 
Load: (a) Deflected Shape of the Beam, (b) Bending Moment Distribution Diagram  
 
VII. Pressure Vessels 
 
A sample model of a thin-walled steel cylindrical and a spherical pressure vessel were also 
developed in this study for determining the principal stresses in such vessels.  The generated models 
are provided Figure 6.  The vessels both have an inside radius of 3 ft and a thickness of 0.5 in.  The 
height of the cylindrical model is 8 ft.  Depicted in Figures 6(a) and 6(d) are the partitions that were 
created for meshing the two parts.  To generate the results for these examples, a S8R element (an 8-
node quadratic doubly curved reduced integration shell element) was utilized.  The stress contours 
for circumferential and longitudinal normal stresses are shown in Figure 6(b-c) and Figure 6(e-f), 
along with a sample probed element for each case. The horizontal and vertical planar cuts in these 
figures are used to better visualize the stress results acting on the cut surfaces.  The values for the 
circumferential and longitudinal stresses can be compared against the results obtained using the 
theoretical equations1.  
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Figure 6. Pressurized Cylindrical and Spherical Vessels:  (a) Developed Meshing Partitions for a 
Cylindrical Vessel, (b-c) Contour Plot of Circumferential and Longitudinal Stresses in a Vertical and 
Horizontal Cut Section of a Cylindrical Vessel, (d) Constructed Meshing Partitions for a Spherical 
Vessel, (e-f) Contour Plot of Circumferential Stress in a Vertical and Horizontal Cut Section of a 
Spherical Vessel 
 
VIII. Summary & Conclusion 
 
In the presented paper, the development of models produced utilizing Abaqus for complementing a 
mechanics of materials course was included and discussed.  The created modules can be used in a 
classroom setting to further enhance the students’ understanding of the course topics and provide a 
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(e) 

(f) 

(c) 



better learning environment for students.  Included in the paper were six examples to clearly 
establish the value and utility of the developed models.  The simulated models cover some of the 
more important topics typically covered in an introductory mechanics of materials courses.  In the 
created instructional modules, the geometric details and size of various features of structural 
members, including details regarding the boundary conditions and loading conditions, as well as the 
material properties of components can easily be adjusted to create the solutions for a wide range of 
other problems.  This adjustments may not be possible through using other canned programs. This is 
perhaps one of the main advantages of the created modules.  The models will be used by the main 
author to complement a section of the mechanics of materials course offered in fall 2017.  These 
models will additionally be made available to other instructors who may be interested in using them. 
  
Models similar to the ones discussed in this paper can be developed to analyze other more 
complicated structures discussed in advanced courses.  Some examples can include the analysis of 
structural components subjected to various dynamic loading conditions, investigation of the behavior 
of various composite materials when used in different settings, and analysis of contact problems 
involving solid bodies.    
 
As previously stated in the paper, to further enhance the impact of the project, the main author is 
also planning to use the developed modules in a finite element course offered at Georgia Southern 
University in spring 2017.  The purpose for this utilization is to further enhance the students’ 
knowledge regarding the utility of various element types and meshing techniques that can be 
incorporated when analyzing solid components.  The students in the course can additionally be 
coached to develop FE models for other more advanced topics.   
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