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Modular System of Networked Embedded Components for a 
First-Year Engineering Cornerstone Design Project 

 
Abstract 
 
In Engineering cornerstone design projects, creating automated evaluation methods for those 
projects that attempt to mirror the complexity and variability of the real world is a challenging 
task. Furthermore, achieving such variability while maintaining accuracy often comes with a 
cost. To address this, an adaptable system of networked devices was developed with a 
combination of PCs, in-house boards, and hobbyist boards, such as Raspberry Pis and Arduinos. 
  
The function of the system is to evaluate the performance of autonomous robots developed as 
part of a first-year engineering design project. The components that comprise the system are 
embedded into each of the four 18-square foot course regions on which an individual robot 
completes a series of tasks. The tasks must all be completed in two minutes and can consist of 
anything from switch/button interaction to moving and depositing materials. The course can also 
include moving parts and illuminated objects that can either be aesthetic or used to communicate 
information to the robots.  
 
Introduction 
 
The first-year engineering student experience in the Fundamentals of Engineering for Honors 
(FEH) program of the Department of Engineering Education at The Ohio State University 
includes a culminating cornerstone design project.  The project carried out by teams of four 
students involves designing, building, testing, and demonstrating small autonomous robotic 
vehicles which must perform specified tasks while operating on a specially built robot course.  
To control the mechatronic elements of the course, a Raspberry Pi 2 Model B is used to drive an 
Arduino (via a serial connection), an I/O Board (via I2C), and a PWM Board (via I2C). This set 
of boards is synchronized via the Raspberry Pi to a central PC, allowing the four regions of the 
course to run in parallel and provide the opportunity for competition between four robots. 
 
From the student perspective, the system is simplified and abstracted through a touch screen 
interface that runs on the central or main course control PC.  This interface allows the students to 
restart runs, stop runs, change task requirements, and randomize tasks on the course.  With this 
interface, students can directly control the specific environment conditions, allowing them to test 
and prepare their robots for when task states are randomized during competition. This interface, 
along with the PC’s communications with other systems, allows live, automatic scoring and 
ranking of competing robots during competitions. 
 
The physical robotics course is developed each year to provide a variety of tasks as part of a 
larger theme. The CAD model for 2016, with the theme "Rocket Launch," can be seen in 
Figure 1 on the next page.  The scenario was:  "A group of workers at the Fundamentals of 
Engineering for Honors Space Administration (FEHSA), a research and exploration 
collaborative, have designed and built a rocket for space exploration. Most launch preparation 
tasks can be performed by human personnel; however, a designated safety zone surrounding the 
rocket itself (known as the spaceport) contains hazardous and sensitive materials.  FEHSA 



believes it would be safest and most efficient if an autonomous robot were used to complete 
necessary preparation tasks inside the spaceport."  The autonomous robots had to perform 
several tasks including initializing communications systems by toggling several switches, 
delivering supplies to the launch pad, activating the system for loading the rocket with fuel, and 
signaling the start of the launch sequence. 
 

 
Figure 1: Rocket Launch themed robotics course from 2016  

 
The annual construction of a new robotics course, which would provide unique tasks for students, 
created a large demand on hardware and software development.  That demand then paradoxically 
hindered the original goal of achieving complex and interactive tasks. To minimize this demand 
and allow complex course design, a system was developed that can facilitate a variety of sensors 
and actuators, while maintaining cost effectiveness. 
 
The robustness of the robotics course allows for more involved tasks and thus more complex 
student-designed robots. The uniqueness of the course year to year provides an environment for 
students to develop unique robot designs that must employ a variety of components to complete 
every task. Additionally, the PC user interface provides a way for students to control the course. 
With this control, students can more thoroughly test their robots, providing expanded 
opportunities for design and development and enhanced student learning. The interface also 
allows all four regions of the course to be synchronized, which allows competitive runs between 
robots with the same randomized requirements. 
 
Similar Systems 
 
A variety of engineering programs include robot design projects as part of their curriculum. 
Examples include the use of LEGO Mindstorms to complete tasks such as solving a Rubik’s 
cube1 or the development of robots to follow lines2. Because the complexity of these tasks is 
relatively low, many of these programs implement manual evaluation methods to measure 



student performance. While some programs utilize electronic scoring systems, a cursory review 
of the literature did not reveal any systems on the scale of the one described in the following 
sections. 
 
Automated scoring systems have been designed for other domains. For instance, researchers 
proposed a system consisting of an Arduino and personal computer to record hit times and force 
levels during matches of Kendo, a Japanese martial art3. This system only measured one sensor 
and was not designed to be a real-time indicator of progress. Real time monitoring and control 
systems using networked embedded devices have been implemented in other domains. Others 
had created a prototype network consisting of Raspberry Pis, Arduinos, and a personal computer 
to measure vibrations and detect ice buildup on offshore platforms4. This system provided a real-
time display of the sensor data and allowed for multiple sensor node devices to be connected to 
the network. Additionally, researchers described a sensor network consisting of multiple 
Arduinos and a Raspberry Pi as a base station configured in a star topology to monitor 
environmental conditions within buildings. This system also included a real time graphical web 
interface to view sensor data5.  
 
While the networks described above both allowed for the connection of additional homogeneous 
nodes, neither provided a framework for connecting heterogeneous devices. To address this 
issue, researchers proposed a framework for Internet of Things devices with the key 
characteristic of providing a method of addressing variability in connected device types6. The 
framework followed a layered architecture approach, consisting of layers for sensors and 
actuators, a controller for these devices such as an Arduino or similar microcontroller, a hub 
layer consisting of a general computer such as a Raspberry Pi, and finally a “cloud” layer that 
allowed remote user interaction. While this layered approach is like the final method proposed in 
this paper, it lacked a key component, namely the portion of the software that provided context to 
the sensor data and ultimately an evaluation system. In addition, this framework did not allow for 
the configuration or network topology required for the course software framework.  
 
Earlier Systems 
 
The system has evolved over the past ten years.  Originally, the course software was entirely 
rewritten every year, in C/C++, and ran on a BeagleBone Black.  This resulted in a limited 
capability to design new tasks for the students’ robots to complete, as there was no core 
framework on which to build these features.  Eventually, a new, reusable framework was created 
to address this issue.  That system was designed to minimize the amount of development work 
from year to year.  Software components corresponding to hardware devices, such as buttons, 
levers, and LEDs, would remain unchanged year to year, allowing the developers to focus on 
new features.  Additionally, the system was implemented in C# rather than C/C++ to take 
advantage of the features available in Microsoft’s .NET Framework. With this modified system, 
the design of a new course only required changes to several XML files, a XAML file, and a 
single C# class. The XML files configured the network, the XAML file defined the user 
interface, and the C# class contained the high-level logic. Examples of high-level logic in the C# 
class include which LED should be which color, or which button corresponded to the robot 
completing a particular task. The software ran using Mono on BeagleBone Blacks, which were 
all connected to a central course computer and to each other via a network switch.  



 
The software was designed with a tree as the underlying data structure. The tree was of arbitrary 
height and size. Each node in the tree was a class representing a piece of hardware. The root 
node represented the main computer, internal nodes represented circuit boards and wires, and 
leaf nodes represented Input/Output (I/O) devices. Each edge in the tree represented a connection 
between two pieces of hardware; that is, a parent node represented some hardware component 
that was directly connected to the hardware component represented by the child node. When a 
circuit board received an interrupt from an input device, such as a button, the software on the 
circuit board would update its state and send a message up the tree to the main computer, 
informing it of the change. The main computer would then update its own state to match that of 
the microcontroller. This state could then be written to other software systems like the Robot 
Positioning System or competition bracket. Likewise, if a user interacted with the main computer 
via the user interface, the software on the computer would update its state, then send a message 
down the tree to the corresponding microcontroller, informing it of the change. The 
microcontroller would then update its own state to match that of the course computer. This state 
could then be written to an output device like an LED. 
 
Each node had an address line, such as a string or an integer, to determine the destination or 
origin of a message. By traversing from the root of the tree to a node, pushing address lines onto 
the back of a linked list along the way, an address list for that node could be generated. Address 
lists were unique because nodes could not have the same address line if they were siblings.  
When the root sent a message to a leaf, it attached the unique address list of the leaf to the 
message. The root then popped the first line off the address list and sent the message to the child 
that matched the new front of the address list. This process was repeated on internal nodes, until 
no more address lines remained, and the message reached the leaf. When a leaf sent a message to 
the root, it attached an address list to the message and pushed its address line onto the front of the 
address list. The message was then sent to its parent. When the message arrived at its 
intermediate destination, the intermediate node repeated the process. This would happen until the 
message reached the root. When the message arrived at the root it could read the address list to 
determine the origin of the message.  Messages were sent over the network via the UDP 
protocol. 
 
Current System 
 
The current system was designed using a client-server model with the idea that any client could 
attempt to connect to the course server, which runs on the course computer. The server accepts 
clients with a client-requested name and handles each one as if it were its own unique region of 
the course.  Synchronization is done via an event system, where a physical event on the course, 
such as a button press, results in a software event that is sent over the network, so that the 
corresponding component on the server is updated.  Rather than an addressed based system like 
the original framework, the current framework uses a subscription based system such that any 
component of the software that wants to receive an update about a particular component can 
subscribe to those updates.  The state of the entire course is not serialized or sent over the 
network; only individual events are serialized and sent.  Rather than using UDP, the current 
system works with a TCP connection, which guarantees in-order packet delivery and thus is 
more reliable. 



 
The client runs on a Raspberry Pi 2 Model B.  Each Raspberry Pi has an XML configuration file 
with network information and other runtime configuration values, and a DLL containing the code 
required to connect to the server.  Once the client connects, the server sends the remaining DLLs 
across the network, which are dynamically loaded by the client to begin the application.  This 
reduces the amount of time it takes to push new code onto the live system.   
 
Each client Raspberry Pi is connected to an Arduino via a serial port, and to an I/O board, a 
Pulse Width Modulation (PWM) board, and an Analog Board, all via the Raspberry Pi’s I2C 
ports.  The communication is managed with classes that represent hardware.  These classes are 
written as a part of the software, with references to an open source project called Raspberry#.  
Communication over I2C allows for a reliable and fast update cycle.  On the client, all the 
components are updated at each cycle.  Each update is performed by polling the boards over the 
I2C communication.  The I2C protocol operates at approximately 100kHz, so these updates 
happen extremely quickly.  The Arduino is used for aesthetic LED displays, and can either run 
independently of the Raspberry Pi and the course software, or accept data from the course 
software and display a specific pattern.  A diagram of the system architecture may be seen below 
in Figure 2. 
 

 

 
 

Figure 2: Overview of System Architecture 
 
Like the previous system, the underlying data structure is a tree.  Each component is responsible 
for keeping itself synchronized with its counterpart on the server or client at each discrete update 
cycle.  Between update cycles (cycles are typically defined to be as short as possible, so that the 
course updates as often as possible), events are queued in a buffer.  Events represent anything 



that happens on the course, such as a button press, or anything that happens on the user interface, 
such as a student indicating that an LED should be turned on.  At the next cycle, this queue is 
emptied by sending those updates across the network for the server or client to consume, and a 
new queue is filled with updates from the new cycle.  Update cycles occur at a rate of 
approximately 80 to 100 cycles per second (variable due to hardware clock speeds and network 
latency), and a single cycle encompasses everything that needs to happen for the server and 
client to remain synchronized. 
 
The server, which runs on the central course computer, is responsible for determining higher 
level properties, such as whether a robot has adequately completed a given task.  Given the 
physical state of each client, the server translates that data into a format that is meaningful for the 
scenario and for the robot competition.  The server also maintains a separate timer for each 
region, so that the students can see how long it takes their robot to complete a run.  This timer 
has millisecond resolution, meaning ties in score can easily be broken using the time.  
Information regarding task completion, robot performance, and current course state can be seen 
on the user interface designed for the course.  Students interact with the user interface by 
choosing requirements for specific tasks, randomizing requirements, starting or stopping a run, 
or viewing their score after a run is over. 
 
Finally, the course computer also communicates with the Robot Positioning System (RPS).  The 
RPS is responsible for tracking each student’s robot and providing a coordinate system for those 
robots on the course7.  The RPS also repeats the data sent to it from the course software to 
another networked computer that manages the bracket for the final public competition.  The 
bracket displays the state of each course for the audience, calculates the score for a robot, and 
generates a PDF of that score to be used for grading. 
 
Comparison of Systems, Effects on Students 
 
The update pattern in the original framework caused delays in the time it took for events on the 
course to be reflected on the course computer’s display.  This was caused by the overhead 
involved with creating and sending the messages, and with generating the address for a message 
receiver.  Network packets sent via UDP, as in the original framework, are not guaranteed to 
arrive at their destination nor to arrive in any particular order, and issues involving dropped 
packets impacted performance as well. 
 
These issues impacted the students because the tasks that their robots completed would not 
register as soon as they needed to for the students to adequately progress in the challenge.  
Additionally, the steep learning curve of the system made it difficult to learn for new developers, 
which hindered the original intent for a reusable framework that was simple to add onto.  Finally, 
a runtime error on any region (which could be caused by something being unplugged) would 
result in the entire four region course crashing.  While it is difficult to evaluate the performance 
from previous years, Table 1 below shows high level, anecdotal data comparing the original and 
current systems and their performance. 
 
The original framework required the developer to individually and manually put updated code on 
both course’s computers and all eight microcontrollers each time a course software update was 



developed.  The current framework only requires the developer to put the code on the course 
computer, from which the update is automatically copied to any microcontroller that connects, at 
runtime.  Students benefit from this functionality during testing times because changes to the 
software do not require the course to be out of commission for longer than about a minute.  With 
the previous framework, any type of update would require the course to be down for at least 
twenty minutes. 
 

Table 1: Comparison of Systems 

 
 

The modularity of the course software allows for maximum reusability and simple testing.  Each 
component, like a button or LED, is represented by a corresponding class in software.  Those 
classes, along with all the code related to networking, update time steps, and synchronization, do 
not change year to year.  It is simple to build new components and easy to use old components. 
 
Like the modularity of the code itself, the structure of the course software results in the 
functional modularity between the independent regions.  A runtime issue, such as an unplugged 
cord, would crash a single region but not an entire course, thus only affecting the students on the 
affected region, not the surrounding regions.  This has a huge impact during the student’s testing.  
In the past, if the course went down, all four regions would be down until someone fixed it; the 
current system allows for minimum impact on students should something go wrong. 
 
The reliability of this system also benefits the students in several ways.  First, when a student 
group’s robot accomplishes a task, the students are guaranteed to see the results practically 
immediately, both on the course and on the user interface.  In other words, they can rely on the 
integrity of the course so that they can focus on their own design goals rather than accounting for 
potential errors caused by the course itself.  During testing and competition, this software 
provides students with accurate, immediate feedback on the user interface and on the course 
regarding how well their robot performed.  Additionally, this software displays the actual score 
received by a robot in real time, even during tests.  These two aspects together provide students 
with the means to perform more formal tests that are backed by real-time scoring data.  Because 
the score is updated the instant a task is completed, students are not required to test their entire 
robot during every testing session, rather, they can design modular tests that evaluate a single 
aspect of their design. 
 
Finally, the real-time scoring includes the timing data from the course computer.  Students can 
record, with millisecond resolution, the time it takes their robot to complete the test they are 
performing.  With this information, students can make informed design decisions about where 
they should improve their robot.  The timing data, coupled with the scoring data, also gives 
insight into the consistency of a team’s robot.  A team that can complete the course with a 
perfect score in approximately the same amount of time each time is better off than a team that 

Original Framework Current Framework
Course State Update Cycle ~10Hz, Inconsistent ~100Hz, Consistent

Network Protocol UDP TCP
Course Restarts Per Week 12-15 1-2

Course State Update Reliablility Low High
Difficulty of Development High Low



can earn a perfect score, but with a large variance in time.  Having the real-time scoring and 
timing data exposes these insights, which further allows for refinement of the students’ design. 
 
Conclusion 
 
Two iterations of software designed to control a freshman honors engineering design program’s 
robotics course were analyzed and compared.  The original system was designed with specific 
goals in mind, but was unable to perform adequately, and its effects on the students were 
negative and prohibitive. The current system, which utilized low cost hobbyist microcontrollers 
such as the Raspberry Pi 2 Model B and Arduinos, allowed for a variety of supported sensors, as 
well as the ability to automatically and instantly score students on the performance of their 
robots. Beyond providing a means to operate the robotics course, the system also aided students 
in testing their robots and provided consistency throughout the project. The user interface 
allowed students to easily change and control the settings of the robotics course to enable better 
testing. While mainly supportive in its nature, the system provides great benefit to design 
programs in general. Through its modularity and support of Arduino, digital and analog I/O, and 
PWM, the system is easily adaptable to any program in which sensors need to be monitored or 
actuators need to be controlled. 
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