
Paper ID #18916

Online Programming System for Code Analysis and Activity Tracking

Tian Qiu, Purdue University

Tian Qiu is a senior undergraduate in Computer Engineering and Mathematics-Computer Science.

Mr. Mengshi Feng, Purdue University

Mengshi Feng is a senior student at Purdue University. He is one of the team member in ACCESS project
supervised by Yung-Hsiang Lu.

Mr. Sitian Lu, Purdue University

Sitian Lu is a junior studying Computer Engineering in Purdue University. He has been working on the
online programming system (ACCESS) since later 2015. Sitian Lu has been studying in Purdue University
for 3 years. He is also the vice president of Purdue Billiards Club since 2015.

Mr. Zhuofan Li
Mr. Yudi Wu
Dr. Carla B. Zoltowski, Purdue University

Carla B. Zoltowski is an assistant professor of engineering practice in the Schools of Electrical and Com-
puter Engineering and (by courtesy) Engineering Education at Purdue University. She holds a B.S.E.E.,
M.S.E.E., and Ph.D. in Engineering Education, all from Purdue. Prior to this she was Co-Director of
the EPICS Program at Purdue where she was responsible for developing curriculum and assessment tools
and overseeing the research efforts within EPICS. Her academic and research interests include the profes-
sional formation of engineers, diversity and inclusion in engineering, human-centered design, engineering
ethics, leadership, service-learning, and accessibility and assistive-technology.

Dr. Yung-Hsiang Lu, Purdue University

Yung-Hsiang Lu is an associate professor in the School of Electrical and Computer Engineering and
(by courtesy) the Department of Computer Science of Purdue University. He is an ACM distinguished
scientist and ACM distinguished speaker. He is a member in the organizing committee of the IEEE
Rebooting Computing Initiative. He is the lead organizer of the first Low-Power Image Recognition
Challenge in 2015, the chair (2014-2016) of the Multimedia Communication Systems Interest Group in
IEEE Multimedia Communications Technical Committee. He obtained the Ph.D. from the Department of
Electrical Engineering at Stanford University.

c©American Society for Engineering Education, 2017

Online Programming System for Code Analysis and Activity
Tracking

Abstract
Many tools have been developed to assist programmers develop high-quality code. However,
installing, updating, configuring, learning, and running these tools can be unnecessary burden
on students. Moreover, instructors do not have detailed knowledge about students’ learning
experience before programming assignments are submitted. This paper presents an online
system that can automatically analyze students’ programs and provides insightful information
about their code. This system records every syntax and run-time error so that an instructor
can obtain real-time view of students’ activities and progress. Hence, the instructor can iden-
tify common misconceptions before an assignment is due. This system is evaluated in an A-B
test of a sophomore C programming class of 42 students. The results suggest that this system
has positive effect on helping students learn.

Keywords
Online Education, Web-Based Technology

1. Introduction
Imagine that a student must learn how to install, maintain, operate, and repair an engine be-
fore learning how to be a professional pilot. Now, imagine that a student must learn how to
install, maintain, configure, and execute programming tools before learning how to be a pro-
fessional programmer. These would be unreasonable requirements for the students. Yet, the
latter is commonly expected by instructors. Even though pilots do not need to know how to
install an engine, pilots need to know how to interpret the information from engine sensors
(such as overheating) and take appropriate actions. Even though programmers do not need to
know how to configure tools, programmers need to know how to correct their programs in
response to the information reported by the tools (such as memory leak and test coverage).
Therefore, it is necessary to provide a system integrated with useful tools for students learn-
ing to program.

Software development is a complex process; many tools (such as performance profiling, test
coverage, and memory leak detector) have been created to help software developers. These
tools can provide valuable information to help understanding, improving, and debugging soft-
ware. Learning how to use these tools can occupy precious lecture time. Teaching students to
write programs without these tools is like teaching how to fly an airplane without instru-
ments. Airplane manufactures and ground crew are responsible for installing and maintaining
the instruments. Following the approach to the aviation industry, we created an online pro-
gramming environment that provides valuable information (like an airplane cockpit) so that
students can learn to program (like pilots) and do not have to worry about how the infor-
mation is generated.

This online system automatically generates information about the runtime behavior of stu-
dents’ programs, including test coverage, performance profiling, and memory usage (the
amount of heap memory allocated, whether any invalid address is accessed, and memory
leak). Students are able to replace their unfinished or incorrect functions by the correct func-
tions written by the instructors; thus, students can perform unit tests more easily. Function re-
placement also makes it easy to give students partial credits. If a student’s program termi-
nates abnormally (such as a segmentation fault), the system automatically invokes a debugger
and shows the call stack. Students are also able to interactively debug their programs. Even
though this system sounds like an IDE (integrated development environment) on the surface,
it is much more than an IDE. The online system records every syntax and runtime error in the
students’ programs and reports the statistics to the instructor. Such information allows the in-
structor to identify common misconceptions and provide additional help to the students.

This system is evaluated in a sophomore C programming class of 42 students. The students
took a pretest to evaluate their understanding about the materials to be covered in the class.
Then, based on test results, students were divided into two groups. Both groups could use this
system in the first programming assignment. The first group could use the system for assign-
ments 2 and 4. The second group could use the system for assignments 3 and 5. All students
took posttests to evaluate their understanding of the materials. The evaluation results suggest
that this system is helpful to both students and instructors.

2. Related Work
Recognizing the importance of software development, computer science has become an inte-
gral part of general education in USA [1]. Our system integrates many useful tools and helps
students learn. Figure 1 shows the architecture of the system. The main components include
a web server, a file system, a database, an execution container, and analysis engines. The
analysis tools are integrated into the execution container. This system used Docker for the
container.

2.1 Web Integrated Development Environment
Web integrated development environment (WIDE), such as Cloud9 [2] and Codeanywhere
[3], provides similar features as desktop IDEs, e.g., syntax and compiling [4]. WIDEs store
programs on cloud, thus, eliminating the needs for backup. WIDEs may still be too complex
for beginning programmers to learn. Even though the process of setting-up (such as installing
plugins for language support in Desktop IDEs) is reduced for WIDEs, the required steps to
run different tools can still be overwhelming to beginners. Also, existing WIDEs provides no
information on instructors about students’ learning progress and experience. Our system
keeps the advantages of WIDEs and automates many tools to help students. The system pro-
vides a text editor that automatically saves multiple versions and requires no configuration
(students do not have to configure version control). Students can obtain insightful infor-
mation about their programs without learning how to configure and invoke these tools. The
tools that are already integrated into our system include debugger, test coverage, performance
profiling, and, a memory error detector (called valgrind). The system eliminates the needs
for students to manage the analysis tools. This approach is analogous to obtain an airplane
cockpit: pilots obtain crucial information about the plane from the instruments.

2.2 Interactive Tutorial-Oriented Platform
Codecademy [5] presents an interactive and collaborative platform that offers free coding les-
sons, and also offers features such as feedback, personal rating. Codecademy has some
“hints” containing mandatory directions, and occasionally does not give a reason why a stu-
dent fails a test [7]. Both tools lack debugging support. CS circles [6] integrates university
curriculums, embeds thousands of course-related auto-gradable practices assignments [7] and

Figure 1 System Architecture

also provides console and visualizer to execute and debug program [8]. Brusilovsky and Sos-
novsky [9] developed another online tool called QuizPACK, which receives parameterized
questions and exercises and generates different questions. The quiz generator and Knowledg-
eTree [10] may improve students’ understanding, by doing quiz-like questions. Our system
addresses the deficiencies and embeds analysis tools. These tools may have dozens or hun-
dreds of options. Learning these tools can occupy precious lecture time. Also, our system
generates statistics of students’ mistakes while they are doing homework assignments. Such
information can help instructors know the students’ progress.

2.3 Automatic Grading
Edwards [11] proposes test-driven development using an automatic grading tool called Web-
CAT [12] and encourages students to submit their own test cases. ASSYST [13] provides
compile/test/result-comparison for students and accepts student-provided test cases. How-
ever, students are not rewarded when providing their own test cases [11]. Anabela Gomes,
and António José Mendes [14] pointed out that some instructor’s methodologies may not suf-
ficiently consider students’ learning styles. Instructors often evaluate students’ understanding
by only assignment scores, i.e., after the assignments are submitted. Three professors at Uni-
versity of British Columbia [15] use Mylyn Monitor framework (a plug-in for Eclipse IDE)
to trace students’ coding activities, e.g., timestamps. Instead of checking correctness only,
our system considers the software development process and provides useful information on
both students and instructors. It collects different types of data, e.g., how much time a student
spends on an assignment and which part of the assignment. It also records compilation errors
and run-time errors, how students navigate through the learning materials. The system pro-
vides the information to instructors so that they can answer common questions before assign-
ment deadlines. Table 1 summarizes the difference between our system and other existing
work.

Table 1 Comparison of different approaches that facilitate the learning process. Our system is
designed to help both students and instructors.

3. Integrated Tools and Methods
The system is designed for scalability: it uses two separate servers. One is a web server that
hosts the web interface and student database. The other is a backend server that executes and
analyzes students’ code. The web server uses the Django framework. The backend server

uses Docker containers. Docker provides the ability to isolate each student’s code into an in-
dividual container so that even if student’s code misbehaves, it will not crash the backend
server. This design makes the system easier to scale up: when more students use this system,
more machines can be added to the backend and host more containers.

The communication flow between the two servers is shown in Figure 2 below. When a stu-
dent clicks the “run” button at the web site, the web server’s JavaScript sends an Ajax re-
quest. Then the request synchronizes the student’s code to backend server. The backend com-
piles and runs student’s code. Then the backend server sends the result (or error messages) to
the web server. The database in the web server records the results and displays them to the
student.

3.1 Web Server
The web server hosts three main web pages: home, workspace, editor. The home page is the
introduction before a student logs in. The workspace allows students to manage their courses,
projects, and account settings. The editor page is the place where students write code. The
ACE editor [20] is embedded into the system. It can automatically format code for better
readability. The web interface has multiple buttons (such as run, memory test, coverage, and
profile) to invoke these tools:

• valgrind - memory error checks
• gcov - code coverage
• gprof - performance profile
• git - version control system
• gdb - interactive debugging

Students can click these buttons without any effort to set up the tools. Students do not need to
know the commands to invoke these tools. When using version control, students do not have
to create repositories. Our system handles all the necessary steps in the database and the
backend. When a student clicks one specific operation (such as coverage), the Ajax request
takes the student’s information and operation to write as an input log. The information and
operations send the student’s files to the backend container. When the Docker container in the

Figure 2 Communication between web server and backend server.

backend finishes the compilation, execution, profiling, or other operations, the result is syn-
chronized with the web server and displayed in the browser. Figure 3 and 4 show two screen-
shots of the web interface. Figure 3 shows a run-time error: the program intends to derefer-
ence an NULL pointer. When this occurs, the program has a segmentation fault. This system
automatically invokes gdb and finds the function of the top frame. The line of the top frame
is highlighted so that the student can immediately know which line causes the segmentation
fault.

Figure 4 shows the editing environment. The left panel shows the programming assignments.
The center is the editor and a menu bar for editing commands (such as undo). The right panel
contains buttons of the analysis tools.

Figure 3 Sample programming scenario in our system

Figure 4 Overview of coding environment

3.2 Backend Server
The backend server compiles, executes, and analyzes students’ code in Docker containers.
Docker can package application for a standardized unit for software development [18]. A
docker image is created to invoke a docker container containing all the integrated tools
including gdb, valgrind, and gcc. Thus, all students work in identical environment and
eliminate the confusion from different versions of tools. After a Docker container starts, the
student’s code is sent into the container. Then, a python script invokes the desired operation
based on student’s request. Another advantage using a container is to separate and control the
working environments for better protection. It is also possible, if requested by the instructor,
to set resource limits, such as the amounts of heap memory, stack memory, or time a student’s
program can use. These limits can be helpful when an instructor wishes to teach resource
management or efficiency.

The tools for the backend generate results of different formats. Hence, post-processing of
these tools’ outputs is needed to present consistent information on students. Moreover, some
tools may generate many lines of information. Our system extracts the outputs from these
tools and provides succinct summaries to the students. Invoking these tools has three stages:
verification, execution, fetching. Before starting any operation, the backend server checks
whether it receives all the necessary information on the expected format. Before execution,
the backend checks if all the files are valid “.c” files. The execution stage uses Python’s
subprocess [19] to simulate terminal commands and to invoke the corresponding operation.
For example, if a student’s program has run-time errors, the backend invokes “gdb” and
prints the call stack. The last stage fetches and filters critical information on students. For
example, a valgrind report is usually very long. Post-processing keeps the memory error
types, the locations, and the line numbers. The system also removes duplicate information.
For example, if the same line of code causes multiple memory errors, valgrind prints
multiple error messages and our system keeps only one. Discarding some information helps
students focus on correcting their programs without knowing all details (such as the size of
leaked memory and how many times the same error occurs). Our observations suggest that
students could correct their mistakes faster because they do not have to read the lengthy error
reports.

4. Evaluation Results
During summer 2016, this system was utilized by a class of 42 sophomore students taking a
C programming class. This is the second programming class the students took. The prerequi-
site is a programming class that teaches C and MATLAB.

4.1 Pretest
In the first day of class, the students took a pretest of multiple-choice questions. This pretest
contains three types of questions: prerequisite, questions to specific assignments, and ques-
tions that requires knowledge about multiple assignments. The first type of questions is used

to understand students’ background. The other two types of questions evaluate whether the
students already know the materials. For all three types of questions, students could indicate
that they did not know the answer so to reduce the effect of guessing at the results. Students
could obtain bonus points by taking the pretest. The pretest results indicate that the students
had sufficient understanding of the prerequisite and most did not know the materials to be
covered in this course. Based on the pretests, the students were divided into two groups so
that the average scores were almost equal. Each group had 21 students. Both groups could
use this system for the first programming assignment. Group A could use this system for as-
signments 2 and 4. Group B could use this system for assignments 3 and 5. In this paper, the
group that uses this system is called the experimental group. The other group is called the
comparison group.

4.2 Experiment Results

 HW02 HW03 HW04 HW05
Experimental 7.6 4.1 7.3 4.6
Comparison 6.7 2.8 6.1 7.6

Table 2 Homework assignment average scores. The full score of each assignment is 10.

Table 2 indicates students’ scores for each assignment. The experimental group outperformed
in the second to the fourth assignments. The last assignment reveals the limitation of the sys-
tem. This system aims to play the role of scaffolding: helping students understand the valua-
ble information provided by many programming tools and eventually use the tools of this
system. For this purpose, the fifth assignment required that students design their own test
cases but many students failed to do so. As a result, their programs were not adequately
tested before submission. The last assignment suggests that some students became overly de-
pendent on this system. When this system is used in future courses, it would be necessary to
design better transitions.

4.3 Error Report
One advantage of this system is the ability to record every error message the students encoun-
ter. Table 3 shows the most common compilation errors and their percentage. Some rows
(such as “pointer error”) are aggregates of multiple error messages. Some students did not un-
derstand the meanings of the error messages. By knowing the common errors, the instructor
could explain to students how to correct their programs before the assignments were due. The
top three errors or warnings are “Expected identifier or expression not found”, “Undeclared
Variables”, and “Pointer error”. The first two errors can be summarized as “students writing
codes without a plan” [16]. The third error is the gap between understanding pointers and
their types. It is observed that some students tried to cast types of understanding the implica-
tions. Their programs could pass compilation but had run-time failures.

Table 3 Compilation errors and their percentages.

The most common memory errors are listed in Table 4. As we can see that most students’ er-
rors are invalid memory read and uninitiated conditions (i.e., a condition depends on a varia-
ble that has not been initialized yet).

Table 4 Memory errors and their percentages.

4.4 Posttest
A posttest of multiple-choice questions was given at the very end of the semester. The ques-
tions were again categorized into three types. The first type had four questions and was not
specific to any homework assignment. The second type contained another 4 questions and
they required knowledge from multiple assignments. The third types had 12 questions spe-
cific to assignments 2 to 5. The first two types of questions were used to evaluate the students
understanding of the entire class. Among the 12 questions on the third type, the group that
used the system were better in 8 questions. The average advantage was 7%. Among the other
four questions, one was discarded due to ambiguity in the question. The average score of the
pretest (including four prerequisite questions) was 10.6. The average scores of the posttest
(without the prerequisite questions) was 13.9 and 13.95 of the two groups. The results sug-
gest that the students have learned the course materials. In addition to the pretest and posttest

Compilation Error Percentage of total errors
Expected identifier or expression not found 23.5%
Undeclared Variables 20.8%
Pointer error 17.2%
Not used Variables 13.3%
Implicit declaration 11.2%
Control reaches end of non-void function 8.3%
Shadow declarations 2.3%
Invalid type or operands 1.8%
Uninitialized Variables or functions 1.4%
No such file or directory 0.3%

Memory Error Percentage of memory errors
Invalid Memory Read 21.4%
Uninitiated Condition 18.5%
Invalid Memory Write 11.3%

Invalid Memory Free 8.3%
Memory Leak 6.9%
Uninitiated Value 1.3%
System call Parameter 0.6%

comparison, some students told the instructor that the system was very helpful in their learn-
ing. The evaluation showed promising results and we are extending this system to a class of
data structures. The following paragraphs provide more details of the insight we obtained
from the evaluation.

4.4.1 Memory Leak
This system is particularly helpful for students to correct mistakes that might not be obvious.
Among the twelve type-3 questions in the posttest, all students in the experimental group
were correct in one particular question. In contrast, only 70% students in the comparison
group answered this question correctly. This question was about memory leak and the order
of releasing memory for a multi-dimensional array. Program will not crash immediately due
to memory leak. Thus, it is often overlooked by students. Our system makes checking
memory leak easy, by clicking a single button to invoke valgrind. Moreover, the results
were presented succinctly. Thus, the experimental group was able to determine whether their
programs leaked memory. According to our collected data, on average one student checks
memory leak five times for each assignment before submission.

4.4.2 File Operations
We also discover that the experimental group outperformed in the question about file I/O.
This question requires understanding of stdin and stdout. Our system separates students’
stdin from the command line in terminals. Instead of typing in one command line with ar-
gument and executable file name together, students who used our system typed in arguments
separately on our website. By doing so, students understood the concept of stdin better and
were able to distinguish stdin from command-line arguments. Among the two posttest
questions related to file I/O, the experimental group outperformed by 12% (65% vs. 53%)
and 28% (60% vs. 32%).

4.4.3 String
In C programs, a string is an array of characters with a special ending character ‘\0’. This spe-
cial character is a frequent source of misunderstanding and errors. It is common to forget the
memory space needed for this special character. It is also common to forget ending a string
with this special character. Three questions in the posttest were related to strings. The experi-
mental group showed slight advantage over the comparison group with only 5% (95% vs. 90)
and 5% (64% vs.58%). Since each group has only 21 students, this difference is caused by
only one student.

4.4.4 Structure
Two questions in the posttest were related to structures. The experimental group outper-
formed significantly in one question (74% vs. 45%). This question is about retrieving an at-
tribute through a pointer to a structure. This question asked students two different ways: Sup-
pose ptr is a pointer and ptr -> x is an integer. What is the type of (*ptr).x? It was

not expected that the experimental group would outperform the comparison group signifi-
cantly. We interviewed a few students and they suggested that this system was easy to use and
thus encouraged the students to try different solutions. Thus, they understood different ways
to solve the same problem.

4.5 System Usage
The system uses Google analytics [17] to track students’ usage. We added several tags to
track behavior flow, acquisition, operations, etc. The behavior flow indicates each step that a
student goes from link to link. Also, it shows where the drop-offs happen. Acquisition helps
understand the different traffic sources to our site [17]. The system can report to instructors
who is using the system right now. It is also possible to know when more students write as-
signments and this information may help the instructor schedule office hours. The program
activities show during the experiment period the intensity that students used system. This in-
formation helps instructors understand how much time students spend on the assignments. If
the instructors discover that students spend much more time than expected, the instructors
may provide more help during lectures. If one particular student spends much more time, the
instructor could communicate with this student and provide personalized help.

5 Conclusion
This paper presents an online programming system to help students learn and to help instruc-
tors understand their students’ progress and experience. The system adopts the approach to an
airplane cockpit: information about students’ programs is presented to the students but the
students do not have to take much effort generating the information. Such information can of-
fer deeper understanding of their programs. Instructors can know whether most students (or a
specific student) need help before an assignment is due. The posttest of our experiment shows
that the experimental group (the group that used our system for a specific area of knowledge)
significantly outperformed the comparison group in questions related to memory leak,
memory operation and structure. This promising result suggests that this system is helpful.

REFERENCES

1. Ormond, J. 2015. ACM Hails New "Every Student Succeeds"
https://www.acm.org/media-center/2015/december/essa-epc

2. https://codeanywhere.com/
3. https://c9.io/
4. Wu, L., Liang, G., Kui, S., & Wang, Q. 2011. CEclipse: An online IDE for program-

ing in the cloud. In 2011 IEEE World Congress on Services, IEEE, pp. 45-52.
5. https://www.codecademy.com/
6. http://cscircles.cemc.uwaterloo.ca/
7. Pritchard, D. and Vasiga, T. 2013. CS circles: an inbrowser python course for begin-

ners. In ACM Technical Symposium on Computer Science Education, pp. 591-596.  
8. Guo, P. 2012. Online Python Tutor: Embeddable web-based program visualization

for CS education. http://pythontutor.com/.

9. Brusilovsky, P. and Sosnovsky, S. 2005. Individualized exercises for self-assessment
of programming knowledge: An Evaluation of QuizPACK. ACM Journal of Educa-
tional Resources in Computing, 5(3), pp.6

10. Brusilovsky, P. 2004. A component-based distributed architecture for adaptive
Web-based education, in: Hoppe, U., Vardejo, F. and Kay, J. (eds.) Artificial Intelli-
gence in Education: Shaping the Future of Learning through Intelligent Technolo-
gies, pp.386-388.

11. Edwards, S. H. 2003. Improving Student Performance by Evaluating How Well Stu-
dents Test Their Own Programs. Journal of Educational Resources in Computing

12. http://webcat.org/
13. Jackson, D. and Usher, M. 1997. Grading Student Programs Using ASSYST. In

Proc. 28th SIGCSE Technical Symp. Computer Science Education, ACM Press,
pp.335-339.

14. Gomes, A. and Mendes, A. J. 2007. An environment to improve programming edu-
cation. In Proceedings of the 2007 international conference on Computer systems
and technologies, pp.88.

15. Murphy, G. C., Viriyakattiyaporn, P., & Shepherd, D. 2009. Using activity traces to
characterize programming behavior beyond the lab. InProgram Comprehension,
2009. ICPC'09. IEEE 17th International Conference on IEEE, pp. 90-94.

16. Eick, S.G., Loader, C. R., Long, M. D., Votta, L. G. and Wiel, S. V. 1992. Estimat-
ing Software Fault Content Before Coding. In proceeding of ICSE '92 Proceedings
of the 14th international conference on Software engineering, ACM, pp. 59-65.

17. http://www.google.com/analytics/
18. https://www.docker.com/what-docker
19. https://docs.python.org/2/library/subprocess.html
20. https://ace.c9.io

