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Abstract 

A laboratory exercise based on the performance testing of small consumer-grade water pumps 

provides a versatile and economical platform for teaching engineering technology students the 

basics of industrial experimental testing practices.  This exercise also provides a practical means 

for students to learn firsthand about the basic operating characteristics of centrifugal pumps and 

closely related devices such as centrifugal compressors and fans.  This experimental platform 

provides ample opportunities for students to gain experience with pre-test planning and 

uncertainty estimation, with unanticipated situations that may arise during tests that may 

introduce measurement error, and with post-test statistical analysis of the derived pump 

performance parameters.  As an example, in this experiment flow rate is determined by 

measuring the time it takes for a pump to discharge a measured volume of water at a fixed 

pumping height.  The flow rate is thus derived from measurement of two variables, volume and 

time, each prone to sources of experimental error that are easily visualized by the students.  Such 

tangible examples of experimental uncertainty go a long way in helping students to understand 

techniques such as the Kline-McClintock method of uncertainty estimation, since the Kline-

McClintock method involves mathematics (partial derivatives) to which many engineering 

technology students have had little or no exposure.  The equipment used consists of consumer-

grade submersible pumps sold in home improvement stores that are intended for use in small 

fountains.  With maximum head rises of about four feet and maximum flow rates of a few 

gallons per minute, quantities of water involved are small meaning that the testing can be carried 

out in minimally equipped lab spaces, in classrooms, and even outdoors.  Other equipment 

consists of readily available measuring vessels, stopwatches, and hardware grade buckets and 

tubing.  The pumps are nearly silent in operation, creating no noise issues on campus.  Because 

of the low cost of purchase and operation of the pumps, each laboratory group can have its own 

test setup.  It has been found beneficial to have lab groups swap pumps after a first round of 

tests.  Comparisons of performance results obtained by different groups with a common pump 

allows for reflection on discrepancies that may have resulted from differences in experimental 

techniques, care taken with measurements, and differences in compensation for various sources 

of loss (such as hydraulic friction in the pump discharge tubing) which are not necessarily 

directly attributable to the capabilities of the basic pump. 



  
  

Introduction 

An ability to plan, execute, and interpret experimental tests is an important part of the skill set 

for engineering technology graduates.  In the industrial settings in which our graduates are likely 

to find themselves it is important to be able to plan and execute a quality test while working 

within constraints which may be in place.  Limitations on such factors as available 

instrumentation, constraints on operating conditions, and availability of test time all need to be 

considered when planning and executing a test.  Failure to do so may squander resources and 

waste the sometimes limited opportunity to make tests on machinery being used operationally in 

an industrial environment. 

Student Outcomes for Engineering Technology programs (ABET, 2017) include educating 

engineering technologists with respect to experimental methods.  In this document for both 

associate’s and bachelor’s degree programs 3.A.c. and 3.B.c both state: 

“c. an ability to conduct standard tests and measurements; to conduct, analyze, and interpret 

experiments; and to apply experimental results to improve processes; “ 

It is the authors’ view that an important part of helping students to achieve this outcome is 

providing opportunities for hands-on experimentation that allows them ample opportunities to 

explore best practices for performing experimental tests.  These best practices fall in the areas of 

test planning, choosing instrumentation and test procedures that will help ensure measurements 

with the desired level of accuracy, and taking enough repeated data to be able to perform post-

test statistical analysis.  

It is therefore desirable to have some lab experiments that are economical enough to allow 

students to take repeated data sets and also to allow the sources of experimental uncertainty to be 

tangible enough to be easily understood.  This is particularly important as it is common in 

engineering practice. 

This paper describes a laboratory exercise in which students measure the performance 

characteristics of small water pumps.  The principal measurements are the variation of head rise 

(as manifested in the pumping height of water) and the corresponding volume flow rate while 

operating at a fixed rotating speed.  Experiments based on this apparatus can be employed in a 

variety of courses and with students at various levels.  The author developed this experiment 

while teaching a graduate level course on experimental methods in the Mechanical Engineering 

Department at The University of Texas San Antonio.  Presently, it is being employed in a 

bachelor’s level course in the Mechanical Engineering Technology program at the University of 

New Hampshire at Manchester. 

 

 



  
  

Key aspects of experimental testing that can be studied using this experiment include: 

1. Pre-test assessment of experimental uncertainty and planning of test to meet uncertainty 

goals. 

2. Practice in executing tests and developing an appreciation for unanticipated 

circumstances that can compromise the quality of the results. 

3. Post-test analysis to see if the quality of the data is consistent with that was anticipated in 

the pre-test phase. 

These are the principal aspects of the test that will be discussed in this paper.  Other areas that 

can be explored are elements of a study of variations of performance of a batch of pumps in the 

spirit of a consumer product test, and examining ways that variations in the details of the test 

setups used by the students might affect performance. 

Apparatus and Test Procedure 

Pumps Employed and their Characteristics 

The pumps used for this laboratory measurement are small capacity rotary pumps fitted with 

centrifugal impellers.  They are commonly used in small fountains and water sculptures and are 

readily available in home improvement and department stores. They are available in a wide 

range of pumping height capabilities and flow capacities.  However in the laboratory classes 

taught by the author, it has been found convenient to work with pumps that have a maximum 

flow capacity of about 10 liters per minute, and a maximum head rise of up to about 1.5 meters.  

These flow rates and head rises are easily measured with simple apparatus.  Further the amount 

of water needed is small enough that tests can be performed in a minimally equipped laboratory 

or classroom.  The water needed can be easily drawn, transported and disposed of, and if a spill 

occurs, the amount of water is easily contained and cleaned up.  The purchase price is typically 

$20-30 US per pump; therefore multiple units can be acquired for a class at modest cost. 

A typical pump suitable for the experiment is shown in Figure 1.  The photo on the left of the 

figure shows an assembled pump with a length of discharge tubing attached.  Water enters the 

pump through the gills in the area labelled with “Inlet” and is discharged from the pump through 

the tubing.  The pump is shown fitted with clear flexible polymer discharge tubing.  There are 

some advantages to using clear polymer tubing that allows observation of the water.  However, if 

the tubing chosen is relatively soft care must be taken to avoid kinks that will restrict the flow.  

The pump is shown partially disassembled in the right hand photo.  The inlet grating and the 

cover on the inlet side of the pump impeller have been removed.  The white star-shaped piece is 

a six-bladed rotating impeller. 



  
  

   

Figure 1  Typical submersible water pump suitable for performance measurement laboratory.  

Left:  Pump with discharge tubing attached.  Right: Partially disassembled pump showing 

magnetic-drive impeller. 

The pumps employ a magnetic-drive mechanism that allows the electric motor drive to be 

isolated from the portion of the pump in contact with the water.  Figure 2 shows the impeller 

removed from the pump.  The attached magnet (greyish cylinder) serves as the pump shaft.  

Torque is transmitted to the shaft by a rotating drive magnet located inside the sealed unit 

containing the electrical components.  This arrangement eliminates the need for a mechanical 

shaft seal that would be needed by a direct mechanical coupling, which helps to reduce chances 

of contact between the electrical equipment and the water. 

 

Figure 2  Pump impeller with attached magnet. 

As mentioned above, one of the principal performance parameters measured is the volume flow 

rate (i.e., gallons per hour) that is attained when the pump delivers the water at different heights 

above the surface of the water reservoir.  When the pump is not running, the water level in the 



  
  

discharge hose will be the same as that on the surface of the reservoir from which the water is 

pumped.  Therefore, the pumping height is measured from this level as drawn in Figure 3.   

 

Figure 3  Pump nomenclature and illustrative manufacturer supplied performance data. 

Manufacturers of small water pumps typically provide the user with a table of head rise and flow 

rate values at a few key operating points as an aid in choosing the correct pump for a specific 

application.  Table 1 is an example of such manufacturer data.  However, for purposes of the 

paper the values have been normalized in order to not identify a specific make or model of pump.  

The table provided by the manufacturer will contain the data in straightforward dimensional 

terms (i.e. gallons per hour of water pumped at the corresponding inches or feet of head rise). 

 

Table 1  Typical data table showing variation of head rise with flow as provided by pump 

manufacturers.  Data is presented in normalized form for purposes of the paper. 

 

Figure 4 shows a head vs. flow performance curve that results from plotting a curve using the 

performance data in the table.  As is typical practice when working with turbomachinery the plot 

is drawn with the flow rate on the horizontal axis, and the head rise (pumping height) shown on 

the vertical axis. 



  
  

 

Figure 4  Typical head vs. flow curve for a centrifugal pump with flow points of interest 

labelled. 

As is generally true for an inexpensive pump sold to consumers, there is no indication given by 

the manufacturer about how much an individual pump’s performance might vary from that on 

the curve.  It is not untypical for a manufacturer to state that the performance given is that of an 

“average” pump of this make and model. 

The general shape of the curve in Figure 4 is typical of the behavior of a well-designed 

centrifugal pump in that the head rise gets smaller as the volume flow rate is increased.  This 

feature tends to help the pump maintain a stable flow rate.  This characteristic is also typical of 

compressors and fans used in applications involving air and other gases.  Three particular 

operating points of interest on the operating curve are shown with the blue circular symbols in 

the figure.  The first of these, located at a normalized flow rate of 𝑄 𝑄𝑟𝑒𝑓 = 1⁄  and a normalized 

head rise ℎ ℎ𝑟𝑒𝑓 = 1⁄  is the so-called “Reference Operating Point”.  Often this point corresponds 

to the nominal design operating head and flow of the pump.  To the right of this point is the point 

labelled “Flow at Zero Head Rise”, which is the operating point of the pump when the discharge 

height of the water is at the same level as the surface of the reservoir from which the pump is 

drawing the water.  The third point is the point at which the pump delivers no net flow.  This 

point is the so-called “Shutoff Point”.  At the shutoff condition, the pump will maintain a column 

of water at a certain height above the surface, known as the “Shutoff Head” of the pump.  These 

points are of interest when carrying out a laboratory exercise with students, as a goal can be to 

try to resolve the performance at these three operating points.  Operation at the shutoff point can 

easily be produced by raising the discharge tubing to a height beyond which the pump can raise 

the water.  Depending on the test setup used, it may be possible to lower the discharge hose to 

the level of the supply reservoir and directly measure the flow at zero head rise.  Alternatively, 

the curve constructed by measuring head and flow at a number of operating points can be 

extrapolated to the zero head rise point. 

 

 



  
  

Head Rise and Flow Measurement 

In an effort to have students come to terms with the uncertainties and inaccuracies inherent in all 

experimental measurements, the measuring apparatus and configuration of the test setup are 

intentionally somewhat rudimentary.   Engineering technology graduates are quite apt to find 

themselves working in industrial environments and in other situations where operational 

conditions cannot be as precisely controlled as in a scientific laboratory.  See for example 

discussions of uncertainties involved in field testing of large scale operational fluid machinery in 

Brun & Kurz (2001) and Tavares, Gatewood & Sivadas (2013).  

The method used to determine volume flow rate involves measurement of the time necessary to 

collect a sample of water in a container.  Dividing the volume of the sample collected by the time 

interval in which the sample is collected yields the average flow rate (volume per unit time) 

produced by the pump.  Provided the operating conditions are held constant, this average flow 

rate will also be the instantaneous flow rate.  Measurement by such a timed collection technique 

is an example of a Positive-Displacement flow measurement technique (Holman, 2012).  This 

method can produce high accuracy, and is often employed as a method to calibrate other types of 

devices that are more convenient for measuring flow without having to capture a sample in a 

vessel.  The accuracy of the timed-fill method can also be easily increased by taking larger 

volume samples over longer collection times. 

A few examples of the types of measurement devices used for this lab are shown in Figure 5.  

They include common household volume measuring devices such as drink pitchers, paint 

buckets, and kitchen measuring cups.  While adequate for their intended purposes, these are 

obviously not laboratory grade measuring devices.  They generally have relatively coarsely 

spaced volume measurement increments, and the accuracy of the volume markings may be found 

to be off by several percent. 

 

Figure 5  Examples of common household measuring devices used for pump flow measurement. 



  
  

However, inaccuracies in the liquid volume measurement indications from these devices can be 

overcome by calibration against a more accurate measuring device such as a graduated cylinder.  

This provides an opportunity to teach basic principles of instrument calibration. 

Test Setup and Practices 

Figure 6 is a schematic drawing showing the setup for the pump performance test.  Photos of 

tests in progress are shown in Figure 7.  The pump is submerged in a bucket that serves as the 

reservoir.  Since the head rise required from the pump is the difference in the height between the 

exit of the pump discharge tube and the surface of the feed reservoir, it is important to keep this 

height difference constant.  This is accomplished by having one member of the test team 

replenish the water in the feed bucket.  It is convenient to maintain the water level at the top rim 

of the feed bucket.  Placing the feed bucket in a large plastic tub contains any water that may 

overflow in the course of replenishment, and prevents spillage on the laboratory or classroom 

floor.  If the tub is sufficiently sturdy, it can also serve as a support for mounting the tape 

measure or ruler used to measure the head rise. 

 

Figure 6  Schematic drawing of test setup for water pump performance measurement. 

The photo at the left of Figure 7 shows how the measurement typically involves enough tasks to 

require three students to perform the test.  In classes where a fourth student is available, this 

extra team member can be employed in recording data, taking photos that may be useful for 

documenting the tests, and in observing any anomalies in the test setup or procedure.  It is felt 

that having a test that requires coordination of students in a team is realistic practice for many 

test situations encountered in industry. 



  
  

       

Figure 7  Annotated photos showing water pump test setup and testing in progress and roles of 

test team. 

Uncertainty Analysis 

An ability to appreciate the factors that may affect the accuracy of a test, and to quantify the 

effect of uncertainties in individual measured quantities on the test results, is a vital part of 

performing high quality experimental measurements.  Knowledge of the effects of uncertainties 

assists the experimenter in choosing the correct instrumentation and other test equipment, and 

also in formulating appropriate test procedures and practices in a given situation.  Often a test 

performed in an industrial environment is subject to a number of constraints that makes this 

planning especially important.  Testing must sometimes be carried out on equipment that is being 

used in production, where opportunities to run the equipment at special operating conditions can 

be both limited and expensive. 

Documents of best practices and industry standards for performance testing are available for 

most types of equipment.  Examples that are pertinent to fluid machinery include society 

standards such as ASME PTC-10 (1997) and Brun & Nored (2006).  A good society standard for 

uncertainty analysis that is applicable to a wide range of testing is ASME 19.1 (1990).  This 

ASME standard includes discussion of the uncertainty estimate method developed by Kline & 

McClintock (1953).  These methods are also well explained in a number of textbooks, an 

example being the one by Holman (2012).  The sections below discuss a few aspects of 

quantifying experimental uncertainty that can be explored within the pump performance 

laboratory described in this paper. 

Use of Uncertainty Ellipses in a Two Variable Measurement 

Producing an experimental pump performance curve involves the measurement of two quantities, 

head rise and volume flow rate, at a series of operating points.  Figure 8 is an illustration of such 

a measurement point overlaid with a reference performance curve.  Such a reference curve might 



  
  

be a manufacturer’s performance claim or the result of a design calculation.  At first glance, an 

observer might be tempted to conclude that the experimental measurement indicates that the 

pump head rise is definitely higher than the reference curve indicates at the corresponding flow 

rate.  However, the head rise and flow measurements are subject to experimental uncertainty, and 

these uncertainties need to be quantified before drawing a reliable conclusion. 

 

Figure 8  Illustrative comparison of an experimental measurement at one operating point to a 

reference operating curve. 

 

The concept of the uncertainty ellipse as described by Brun & Kurz (2001) is helpful in showing 

the how effects of uncertainty on a two variable measurement can be illustrated effectively.  

Figure 9 illustrates the development of this concept.  In the plot on the left, the experimental data 

point is shown with error bars added to show the estimated uncertainty in the head rise and flow 

rate.  A dotted line rectangle has been added that encloses the error bars.  Given these levels of 

uncertainty, the actual head and flow quantities corresponding to this measurement can 

conceivably lie anywhere inside the rectangle, with the corners of the rectangle representing 

instances where the errors in both quantities would be at the limits of their estimated uncertainty. 

 

Figure 9  Illustration of the concept of the uncertainty ellipse for a two variable measurement. 



  
  

 

From a statistical standpoint however, it is unlikely when taking a particular data point that the 

maximum levels of uncertainty will occur simultaneously in the measurements of both head rise 

and flow rate.  It is instead more probable for the uncertainty to lie within an ellipse having axes 

of the length of the two uncertainty levels.  This is the underlying concept of representing 

uncertainty with an ellipse, as illustrated in the right hand plot on the figure. 

The value of the uncertainty ellipse in drawing a conclusion from an experimental measurement 

is shown in Figure 10.  In the plot on the left, the experimental uncertainty is rather large, in the 

respect that the uncertainty ellipse overlaps the reference performance curve.  This means that 

statistically, the actual value of the measurement cannot be conclusively determined to be 

different from the reference performance curve.  As drawn in this example, there is enough 

uncertainty in the measurement of head rise and flow rate that a significant overlap is present.  

However, if the quality of the measurements can be improved sufficiently, the size of the 

uncertainty ellipse will be small enough that there is no overlap with the reference curve, and the 

measurement can be interpreted as demonstrating a distinct performance difference. 

 

 

Figure 10  Illustration of the effect of uncertainties of different magnitudes represented by 

ellipses on evaluating experimental results. 

Pre-Test Uncertainty Analysis 

An important part of obtaining high quality experimental results involves making pre-test 

estimates of uncertainties in the measurements to be taken, and selecting instrumentation and test 

techniques accordingly.  Making uncertainty estimates and quantifying the propagation of 

uncertainties in two or more measured quantities into a final experimental value can be a 

somewhat complex subject for students.  A standard technique for uncertainty analysis and 

propagation of uncertainty is that of Kline and McClintock (1953).  In particular, the standard 

treatment of the Kline and McClintock technique involves the use of partial differentiation to 

obtain the sensitivities of a quantity to each measured variable.  This level of mathematics is 



  
  

often not yet familiar to engineering technology students.  However, a simplified treatment, 

which at least incorporates the propagation of the effects of two uncertainties can usefully 

introduce the concept.  The book by Holman (2012) refers to this simplified treatment as “Error 

Analysis on a Commonsense Basis”. 

As an example, the flow rate in the experiment described here is obtained by dividing a 

measured amount of fluid collected in a container by the time required to collect it.  The 

measured volume, 𝑉𝑚𝑒𝑎𝑠, can be represented as the sum of the volume which was actually 

collected, 𝑉𝑎𝑐𝑡𝑢𝑎𝑙, and any measurement error, ∆𝑉.  Therefore, 𝑉𝑚𝑒𝑎𝑠 = 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 + ∆𝑉.  Similarly, 

the time interval measured consists of the sum of the actual time interval and any time 

measurement error: 𝑡𝑚𝑒𝑎𝑠 = 𝑡𝑎𝑐𝑡𝑢𝑎𝑙 + ∆𝑡.  The measured volume flow rate that results from 

these two measurements, 𝑄𝑚𝑒𝑎𝑠 , can then be expressed as: 

𝑄𝑚𝑒𝑎𝑠 =
𝑉𝑚𝑒𝑎𝑠

𝑡𝑚𝑒𝑎𝑠
=
𝑉𝑎𝑐𝑡𝑢𝑎𝑙 + ∆𝑉

𝑡𝑎𝑐𝑡𝑢𝑎𝑙 + ∆𝑡
 

From this result, one can see that both the volume and time measurement errors will have a 

cumulative effect on the flow rate derived from these measurements.  Depending on the signs of 

the errors in the two quantities (which are equally likely to be positive or negative in the case of 

random measurement error), the measured errors can either compound or compensate each other 

in some manner.  In the case where the measurement errors ∆𝑉 and ∆𝑡 are taken to be small 

relative to their respective actual values, a good approximation to the difference between the 

measured and actual flow rate, 𝑄𝑎𝑐𝑡𝑢𝑎𝑙, is: 

𝑄𝑚𝑒𝑎𝑠 − 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 ≅ 𝑄𝑚𝑒𝑎𝑠 [
∆𝑉

𝑉𝑎𝑐𝑡𝑢𝑎𝑙
−

∆𝑡

𝑡𝑎𝑐𝑡𝑢𝑎𝑙
] 

For the same statistical reasons discussed in connection with the uncertainty ellipses, it is 

unlikely that one will encounter the maximum uncertainties in both the volume measurement and 

the time measurement simultaneously.  This means that the equation above is somewhat 

conservative in its calculation of the total uncertainty.  The more sophisticated analysis used in 

the Kline and McClintock method calculates the combined error using the square-root of the sum 

of the squares of the individual uncertainty values. 

However, the simplified analysis given above gets across the basic ideas of sensitivities to 

individual measurement errors and how these errors propagate into quantities calculated from 

them.  With these concepts introduced, the extension to use of the full Kline and McClintock 

method is relatively straightforward.  One can, if desired, continue to use finite difference 

representations of the sensitivities to uncertainties rather than ones based on partial derivatives. 

 

 



  
  

Post-Test Data Reduction, Uncertainty Analysis, and Reflection 

Following collection of data, the flow rates can be calculated from the timed volume 

measurements.  Standard techniques can be used to obtain averages and to assess scatter in the 

data, and to reject data points that are clearly outliers.  If multiple points have been taken at a 

fixed operating condition, outliers can be formally identified using Chauvenet’s criterion 

(Holman, 2012).  Data reduction and plotting of the resulting performance parameters can easily 

be done using a spreadsheet.  Figure 11 shows a representative comparison of student test data to 

the manufacturer’s performance curve.  The plot shows that in the test performed in the 

classroom, the head rise at a given flow is noticeably lower than that shown in the curve supplied 

by the manufacturer.  For the three test points where the flow rate is non-zero, ellipses 

representing the estimated uncertainty in head and flow are included.  The ellipses do not overlap 

the manufacturer’s curve for any of the data points shown.  This indicates that, provided the 

uncertainty estimates are reasonably correct, the lab test demonstrates that the pump tested 

underperforms relative to the manufacturer’s supplied data.  Since there is no net flow at the 

shutoff point, there is no uncertainty in the flow rate.  Therefore the only uncertainty in 

performance at this point is in the head rise, which is shown as a solid blue bar with circular 

symbols. 

 

Figure 11  Representative comparison of observed pump performance data to manufacturer 

supplied performance curve. 

Because the tests are easily repeated, there are ample opportunities for students to make multiple 

measurements at a single operating point and to perform some post-test analysis of the 

consistency of the data. 

Figure 12 shows an example of a post-test examination of observed flow rate measurements, 

represented by red X symbols, at a fixed amount of head rise.  The observed flow rates had a 

range of 345-379 liters/hr. with a mean of 363 liters/hr., which is shown as a solid red line.  The 

pre-test uncertainty measurement was approximately +/- 7.5 liters/hr.  The observed range of 

345-379 is approximately twice as large as the pre-test uncertainty level, which suggests that the 



  
  

students may wish to go back and revisit the assumptions used in making the flow rate error 

estimate.   

Students can easily repeat experiments using longer or shorter measurement times and observe 

the effect on uncertainty.  Other aspects of post-test reflection may include calculations or 

experiments to quantify losses due to the tubing used and how variations in test technique could 

affect the results. 

 

Figure 12  Example showing results of 4 flow rate measurements at a fixed operating condition.   

Conclusions 

Experiences with incorporating the testing of small water pumps in an engineering technology 

curriculum have shown that it is a versatile and economical tool for learning valuable techniques 

in experimental testing.  The tasks involved in carrying out this laboratory are relatively simple, 

but at the same time are very effective in illustrating the effects of uncertainty on the quality of the 

results obtained.  A pre-test uncertainty analysis is valuable in demonstrating how the effects of 

errors in individual measurements can compound themselves when used in calculating 

performance parameter values.  An appreciation of the effects of errors can help the students learn 

how to choose appropriate instrumentation and test procedures.  Since the testing is inexpensive 

and proceeds relatively quickly, it is also practical for students to take enough repeat measurements 

to allow post-test statistical analysis to be performed.  This post-test analysis can be compared to 

the pre-test uncertainty analysis, and provide a basis for reflection on factors that may not have 

been anticipated, and thereby guide changes to the test technique that will yield higher quality 

measurements.  
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Disclaimer 
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product or correspondence of performance measured in the classroom with the actual capability 

of the pumps should be drawn.  The photos and performance data are drawn from a mixture of 

pump makes and models. 


