
Paper ID #18241

Remote Interaction with a NAO Robot using a Tablet Device

Ms. Jennifer Leaf, Eastern Washington University

Jennifer Leaf is a student in the Mechanical Engineering department at Eastern Washington University.
She previously received a Bachelor of Science in Computer Science from Pacific Lutheran University and
a Master of Science in Computing and Software Systems from the University of Washington, and worked
as a software engineer and program manager in private industry. She intends to pursue graduate studies
in robotics.

Dr. Robert E. Gerlick, Eastern Washington University

Dr. Gerlick is Assistant Professor of Mechanical Engineering and Mechanical Engineering Technology at
Eastern Washington University. He teaches courses in the areas of Robotics, Mechanics, Thermodynam-
ics, Fluids, CAD, and Capstone Design.

Dr. Donald C. Richter, Eastern Washington University

DONALD C. RICHTER obtained his B. Sc. in Aeronautical and Astronautical Engineering from The
Ohio State University, M.S. and Ph.D. in Engineering from the University of Arkansas. He holds a
Professional Engineer certification and worked as an Engineer and Engineering Manger in industry for 20
years before teaching. His interests include project management, robotics /automation, Student Learning
and Air Pollution Dispersion Modeling.

c©American Society for Engineering Education, 2017

Remote Interaction with a NAO Robot Using a Tablet Device

Abstract

The NAO humanoid robot includes several programming tools and development kits that are

supported on commonly available operating systems for defining the behavior of the robot at

runtime. However, there are situations where it is desirable to control the NAO, or to run specific

programs, from tablets or other devices that are not supported by the vendor-provided tools. To

support a research project for improving the usability of the NAO by therapists treating autism

spectrum disorder (ASD) in children, we developed a method of using the WebSocket protocol

to send commands from an app running on a tablet device to a NAO robot. A proof-of-concept

architecture and implementation using an Android tablet app is presented. Finally, the alternative

technologies and potential next steps for future enhancement are discussed.

Introduction

The NAO robot [1], created by SoftBank Robotics (formerly Aldebaran Robotics), is a humanoid

robot with a rich set of features, including a vision system, text-to-speech system, speech and

facial recognition, touch sensors on its head, hands, and feet, and 25 degrees of freedom to move

its head, arms, and legs. It can be programmed using a drag-and-drop GUI software package

called Choregraphe [2], or via the Python or C++ programming languages using software

development kits (SDKs) provided by SoftBank. The SDKs permit a software developer to

create programs to remotely control the NAO, in addition to writing programs that run directly

on the NAO.

Motivation

To support a research project using the NAO in autistic therapy settings, a need to permit a non-

programmer practitioner to control the NAO was identified. It is assumed that a knowledgeable

programmer would create programs to run on the NAO to support various activities, such as

interacting with a patient by reciting the text of a story and asking questions about the story.

However the therapist should be able to command the NAO, in real time, to provide a desired

response in order to support the unique needs of the patient currently interacting with the NAO.

To minimize the technology footprint, it is desirable to provide the practitioner with an Apple

iPad or similar touchscreen device containing an app that would permit them to run the pre-

loaded programs on the NAO using a user-friendly interface.

While the SDKs provide a complete interface to the NAO’s capabilities, the remote programs

can only be run on supported operating systems, which include Windows, Mac OS X, and

Ubuntu Linux. Noticeably absent from the officially supported list of platforms are the

predominant mobile operating systems iOS (which is the operating system for the iPad) and

Android. Programming the NAO using only tools and SDKs provided by the manufacturer

minimizes the chances of significant rework when new versions of the NAO software are

released, thus reverse engineering the network communications as an opaque packets of bytes is

ruled out as a solution. Defining the communications between the NAO and the tablet as part of

the application design will permit the most flexibility when adding new features for end users.

Related Work

Brown et al. [3] reverse engineered the network communication between the NAO and a remote

computer by writing a Java application to run on a PC, and then capturing the packets exchanged

between the PC and NAO for various commands. The Android app was written to send the

appropriate bytes to the NAO over a TCP/IP connection to mimic what a PC-based application

would send. This approach can be particularly fragile from an implementation perspective, since

the underlying binary format is not formally documented by the robot manufacturer and subject

to change without notice.

At least three projects have documented a similar approach of creating a custom network

protocol as the one described in this paper. Ahn et al. [4] created an Android app to remotely

control the NAO. It used an intermediary bridge server (PC) to translate the commands sent by

the app to the appropriate application programming interface (API) calls for the NAO. They

streamed video from the NAO directly to the Android device in order to maintain a usable frame

rate for the video stream.

Another iOS app
1
 uses a datagram socket between the NAO and an iPhone/iPad device to

transmit binary commands, which are interpreted by a custom behavior installed on the NAO and

translated into the appropriate NAO API calls
2
. While the source code for the components to

install on the NAO is published to GitHub, it did not include a license file, so it was unclear

whether the code is open source, and therefore this source code was not examined nor used. A

third iOS app
3
 used a similar approach to the one described here, but using a unicast (TCP)

socket and text based commands. The source code
4
 is published as open source, but restricted

from commercial use.

Several projects
5,6,7,8,9

 have been published on YouTube or to a mobile device app store, but were

not published as open source, nor did they reference any documentation or publication describing

1
 https://itunes.apple.com/us/app/nao-controller/id991306890?mt=8

2
 https://github.com/Bigshan/NAOControllerClient/blob/master/NAOqi2.1/NAOControllerClient/

NAOControllerClient/behavior.xar
3
 https://play.google.com/store/apps/details?id=de.robotik.nao.communicator&hl=en

4
 http://northernstars-wiki.wikidot.com/projects:naocom

5
 https://www.youtube.com/watch?v=cDu2iLKLQdk

6
 https://play.google.com/store/apps/details?id=de.daboapps.androidnao&hl=en

7
 https://itunes.apple.com/us/app/nao-control-for-aldebarans/id534912647?mt=8

8
 https://play.google.com/store/apps/details?id=com.robinbonnes.naorobotcontroller&hl=en, also

https://www.youtube.com/watch?v=NsO-a8u35cc and http://www.robotappstore.com/Apps/NAO-Robot-
Controller-for-Android.html?x=3D508580-906C-40EF-8484-DB9E7C5AFEAA

their design. As their approach is not described, it cannot be used or adapted, but they are

mentioned here for completeness.

Finally, the app shown in this YouTube video
10

 was the model used for the approach described

in this paper. This project used the Websocket protocol [5] to communicate between a NAO and

an iPad. A Python Websocket server ran on the NAO, using the pywebsocket library
11

 originally

written by Google. This library was less suitable for an application targeted at non-technical

users since it contains many scripts, which increases the complexity of deploying the software to

the NAO. The software running on the iPad
12

 is written in JavaScript.

System Design

In order to support development of a tablet-driven interface to the NAO, a number of existing

technologies were assembled to bridge the gap between the tablet and the NAO software. Since

access to an iPad device and a software developer with iOS programming experience were not

readily available, the implementation of the tablet interface targeted an Android tablet. The NAO

supports running programs directly on the NAO using C++ and Python. Python was selected for

this project due to its shorter learning curve.

A set of Python scripts was developed that use NAO’s text-to-speech API to read books and ask

related questions. The books are pre-loaded onto the NAO as plain text files, with specific text

markers to indicate the book title and questions as distinct from the text of the book. A user runs

an app on an Android tablet to select the book to read, which section from the book to read, and

which question to ask. The app includes buttons to instruct the robot to indicate a correct or

incorrect answer. The app does not store the answers to the book questions. While the child is

expected to answer the questions verbally, they may not be able to articulate the appropriate

words clearly enough for the speech recognition software to decode them. Allowing the human

user to determine if the answer is correct supports the customization of the therapy activity to the

capabilities of the individual patient.

The system consists of components running on both a tablet device and directly on the NAO

robot. Figure 1 shows the components created or used in the system. Boxes with a dashed border

indicate components or libraries that were reused from other sources. Boxes with a solid border

indicate components that were written specifically for this project.

9
 https://www.youtube.com/watch?v=r6zGxhUSPA0, also http://www.robotappstore.com/Apps/NAO-Server--

Remote-Control-From-Android.html?x=41B586C9-FEC2-427C-B75F-1B7DAB589CD7
10

 https://www.youtube.com/watch?v=PYhVelznnFk
11

 https://github.com/google/pywebsocket
12

 https://github.com/jbyu/naoRemote.git

MessageQueueMessageQueue

BookDetailsActivityBookListActivity

NAONetworkInterface

MessageQueue

WebSocket

nao_books.py

NAOqi

server.py

WebSocket

server.py

WebSocket

nao_interface.pynao_interface.py

Android tablet NAO robot

Figure 1. Software components for the NAO book reading system.

Since applications written for the tablet cannot use the NAO SDK directly, it is necessary to have

a component running on the NAO that can interact directly with the NAO software. A Python

script called nao_interface.py was written to accomplish this. Programs created in Choregraphe

contain one or more Behaviors, which are a set of instructions that the robot should carry out.

The ALBehaviorManager API allows a programmer to start or stop a Behavior by knowing the

identifier of the Behavior. The nao_interface.py script is intended to be customized as new

Behaviors are installed on the NAO. It can also be customized to use other NAO APIs to control

NAO’s operation directly, without writing a separate program in Choregraphe.

In order for a remote application to communicate with the nao_interface.py script, a technology

called the WebSocket Protocol [5] is used. This protocol is an openly documented network

communications format to create a low overhead, bidirectional communication channel that uses

the widely implemented HyperText Transport Protocol (HTTP) [6] used by web servers

worldwide. WebSockets was selected for this project since libraries that implement this protocol

exist for many programming languages and operating systems, including iOS and Android. This

allows development of NAO programs and the tablet interface to occur independently, and

permits replacing the Android tablet with a different system in the future if desired.

Another Python script, websocket_server.py, creates and manages the server end of the

communications interface between the NAO and the tablet app. This script is a third party open

source program [7] that implements the basic functionality of WebSockets with no additional

dependencies, keeping the software footprint running directly on the NAO as small as possible.

This script is used as-is with no modifications for this project.

A third Python script, server.py, runs on the NAO when the NAO is started. It uses

websocket_server.py to create the listening socket and wait for messages. When a message is

received from the tablet, this script then calls a function in the nao_interface.py script to actually

run the appropriate program on the NAO. The server.py script also originated from the

websocket_server project, and is used largely as-is, except for the interaction with

nao_interface.py.

Table 1 describes the commands implemented in nao_interface.py for the book program.

Arguments are separated by a single space. Response messages from NAO are formatted using

JavaScript Object Notation (JSON) [8], which is a commonly used standard for exchanging data

between two applications. The app uses the Autobahn open source library [9] to translate the

JSON text into an in-memory tree representation so its contents can be inspected more readily.

No error messages are currently returned if the client requests a book, section number, or

question number that does not exist.

Table 1. NAO book reading commands.

Command name Arguments Return Value Description

listbooks None JSON dictionary,

key = book ID,

value = book title

Gets a listing of all books loaded

on the NAO. The book ID is the

book filename, which is used in

subsequent commands). The title

is the text as extracted from the

title line in the file.

getbookdetails <id> JSON dictionary,

key = section

number, value =

number of questions

Gets the number of sections in

the book, and the number of

questions for each section.

readsection <id>

<sectionNumber>

None Reads the n
th

 section number

from the book, where n = the

section number given in the

command. Section numbers are

1-indexed.

readquestion <id>

<sectionNumber>

<questionNumber>

None Reads the m
th

 question from the

n
th

 section in the book, where m

= the question number given in

the command and n = the section

number given in the command.

Section numbers and question

numbers are 1-indexed.

correctanswer None None Uses text-to-speech module to

say affirmative response

incorrectanswer None None Uses text-to-speech module to

say negative response

A native Android application, written in Java, runs on the tablet. The application provides a

simple user interface (UI), allowing the user to specify the IP address and port where the Python

WebSocket server is running. Once the app connects to the Python server, it sends space-

delimited string messages to the NAO, which processes the command. In the case of the book

program, the commands to get the list of available books, and to get the list of sections and

questions for a particular book, return a response to the tablet app. This response is then used to

create appropriate buttons on the UI for the user to control what NAO says.

The nao_books.py script encapsulates the details of where the book data is stored and how the

book files are formatted. In this way, the format and location of the book data can be changed

without impacting the rest of the system.

In order to customize the Android app screens for the specific book being read, the book text

requires a small amount of custom formatting. Each book is in its own text file. All book text

files are stored in a single folder on the NAO, which is configurable in the nao_books.py script.

This is an excerpt from a formatted book file:

Title: Mary Had a Little Lamb

Mary had a little lamb.

Its fleece was white as snow.

And everywhere that Mary went

The lamb was sure to go.

? What type of animal did Mary have?

? What color was the lamb's fleece?

There are three distinct sections in this excerpt: the title, the main text of the book, and the

questions. The title line must be the first non-blank line in the file, and it must start with “Title:”.

The remainder of this line is considered to be the title of the book, and will be presented

verbatim on the tablet screen to the user.

The lines with no special prefix are considered to be the text of the book. Books can contain one

or more sections, where sections are divided by blank lines (i.e., two or more consecutive

newlines). Sections can contain as few as one line, or as many as desired. Since lines are read by

NAO one at a time, separating each sentence onto its own line may be desirable to more closely

mimic human speech. Once a blank line is encountered, the section ends.

Question lines begin with a question mark, followed by the text of the question, which will be

read verbatim by NAO. More than one question can follow a particular book section, provided

each question is on its own line and the line begins with a question mark. Excess whitespace and

blank lines between questions or consecutive sections are ignored when parsing the file.

If multiple buttons are pressed on the tablet app, the commands are processed sequentially by the

Python script running on the NAO. The robot will finish saying the text for the current command

before processing the next one.

There are two screens in the app. The main screen as shown in Figure 2 has a fixed button to

request the list of books available. Once the list of books is received, a button is added for each

book. Since the available books will vary based on the text files currently loaded on the NAO,

the buttons on the UI are added at runtime. User interface controls have a field called Tag that

allows storage of an arbitrary Java object to associate with the control. For the book list, the Tag

is the book ID, which is the filename of the book. This ID is used in subsequent commands to

specify the book that the user desires to read.

Figure 2. Book selection screen.

When the user presses the button for a specific book, a new screen is created for the buttons

specific to the selected book. A representative example is shown in Figure 3. The left side of the

screen contains commands that are available regardless of the book selected. The remainder of

the screen is populated with buttons to allow the user to select which book section or question to

read next.

Figure 3. Screen when a particular book is selected.

Conclusion

While the current programs are suitable for proof-of-concept use, there are a few modifications

that could be made to improve the usability for non-technical end users.

Once the user has pressed a button for NAO to read or say something, NAO will read the section

or question until completion. There is no means for the user to interrupt NAO, which may be

problematic if NAO is in the midst of reading a lengthy passage. User studies should be done to

determine if certain commands should interrupt NAO and immediately begin reading something

else.

NAO will only say words that are pre-programmed into the book files or into the Python scripts.

A user may want to have NAO say something ad hoc, so the ability to type some text on the

tablet and send it to the NAO could be desirable.

In order to upload new books, the user would have to acquire and use an FTP program, and

upload the files to the correct folder on the NAO. This may be intimidating to a non-technical

user, so writing a standalone program to hide the details of connecting to the NAO and uploading

files may prove helpful in reducing the complexity for end users.

In the next phase of this project, we plan to conduct a usability study with current practitioners to

determine whether the tablet interface is useful to a practitioner during a therapy session. Based

on this feedback, we will modify the tablet interface, and add more behaviors to the NAO and to

the app to broaden its applicability to more patients.

References

[1] SoftBank Robotics, "Discover Nao, the little humanoid robot from Aldebaran | Aldebaran,"

[Online]. Available: https://www.ald.softbankrobotics.com/en/cool-robots/nao. [Accessed 5

July 2016].

[2] SoftBank Robotics, "Choregraphe User Guide," [Online]. Available:

http://doc.aldebaran.com/2-1/software/choregraphe/index.html. [Accessed 5 July 2016].

[3] R. L. Brown, H. L. Helton, A. C. Williams, M. T. Shrove, M. Milošević and E. Jovanov,

"Android Control Application for Nao Humanoid Robot," in Proc. of the International

Conference on Frontiers in Education: Computer Science and Computer Engineering, 2013.

[4] H. Ahn, H. Kim, Y. Oh and S. Oh, "Smartphone-Controlled Telerobotic Systems," in Cyber-

Physical Systems, Networks, and Applications (CPSNA), 2014 IEEE International

Conference on, Hong Kong, 2014.

[5] I. Fette and A. Melnikov, "The WebSocket Protocol," [Online]. Available:

https://tools.ietf.org/html/rfc6455. [Accessed 25 July 2016].

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee,

"Hypertext Transfer Protocol -- HTTP/1.1," [Online]. Available:

https://tools.ietf.org/html/rfc2616. [Accessed 20 January 2017].

[7] Pithikos (alias), "Websocket Server," [Online]. Available:

https://github.com/Pithikos/python-websocket-server. [Accessed 25 July 2016].

[8] Ecma International, "The JSON Data Interchange Format," 2013. [Online]. Available:

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf. [Accessed

12 January 2017].

[9] Autobahn Project, sponsored by Tavendo, "Autobahn|Android," [Online]. Available:

http://autobahn.ws/android/index.html. [Accessed 9 August 2016].

