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Using ‘mini’ network protocol stacks to facilitate and guide research 

Protocol research can be a demanding task due to the steep learning curve associated with the 
subject.  We can characterize protocol research as a quest to improve a protocol in some way.  A 
good example is an attempt to solve specific problems with security or throughput for example.  
A protocol is implemented predominantly in software although it is common to sequester 
portions of it in hardware for more speed.  A pre-requisite for research into this area is turgid 
understanding of the protocol.  Network simulators like NS2 (Network Simulator 2) and NS3 can 
be used to study and implement protocols.  There are also special purpose simulators that are 
protocol specific like the DEVS-Suite (Discrete Event Discrete Time Simulator) which is aimed 
at the OSPF (Open Shortest Path First) protocol (Zengin & Sarjoughian, 2010).  Layered 
protocols are easier to understand and modify in this regard.  Yang et al suggest a layered task 
based method using the TCP/IP layers as an aid to teaching network protocols (Yang et al., 
2010).  We suggest that implementing a simplified ‘mini’ protocol stack can greatly aid 
understanding and serve as a test bed for research.  In this technique one selects portions of the 
protocol in each layer and implements them rather than the whole.  In this paper we follow this 
idea and implement a mini DNP3 protocol stack purely with a view to applying a new split 
design to it and study the effects.  A further way to simplify debugging protocol implementation 
is to select a ‘tunneling’ version of it like MODBUS over TCP/IP or DNP3 over TCP/IP.  Since 
the protocols under study (MODBUS. DNP3) are being carried over TCP packets in these 
examples; it becomes easier to debug them.  Errors in packet formation etc. will not hamper 
transportation from one device to another.    

 

Figure 1 DNP3 Protocol Layers (IEEE 1815) 

DNP3 is predominantly used in the electric utility industry.  As shown in Figure 1 it is a 3 layer 
protocol (User Layer not counted).   It carries information about power systems and transmission 
parameters like voltage levels, power levels etc.  Since inception in the 1990s and 
standardization by the IEEE in 2009 (“IEEE SA - 1815-2012 - IEEE Standard for Electric Power 
Systems Communications-Distributed Network Protocol (DNP3),” 2016), there have been  

 

various exploits against commercial DNP3 stacks (East, Butts, Papa, & Shenoi, 2009) .  

  

Figure 1 



Table 1 Mini DNP3 stack features 

Application Request Application 
Response 

Pseudo-Transport Data Link 

Read Response Encapsulation into 
transport frames 

 

Encapsulation of 
transport packet 
into data link 
frames 

Write Unsolicited 
Response 

Segmentation De-capsulation 
from data link to 
transport frames 

Select Authentication 
Response 

De-capsulation into 
application frames 

Error detection 
via checksums 

Operate   Source and 
Destination 
Addressing 

Direct Operate   Send/Receive 
Confirm 

Direct Operate –no response   Lost/Repeat 
packet detect 

Freeze   Flow Control 
 

Table 1 above shows the features implemented in the mini protocol stack (Richard, Anand, 
2016).  Only the items in bold were included.  The columns serve as a summary of the protocol 
layers.  Application, Pseudo-Transport and Data Link are the 3 main layers in DNP3.  We chose 
to implement the ‘Read’ and ‘Write’ functions in the Application layer for example.  It becomes 
immediately clear from this table that the source code for the stack is greatly simplified due to 
the ‘mini’ approach.  This helps students to understand the protocol and also to make changes 
from a research perspective.  In the case of this paper specifically, the implemented features 
listed in bold enabled the testing of the Class 0 poll that a Master DNP3 device would send to an 
Outstation device in order to retrieve all the data configured therein as Class 0.  Class 0 data in a 
DNP3 device is merely ‘static’ data which cannot be configured for event messages.  For 
example a current or voltage level could be configured as Class 0 data.   



 

Figure 2 Wire Shark Decode of Class 0 poll and response 

Figure 2 shows the Wire Shark decode of a Class 0 poll issued from the Master DNP3 device and 
the response from the Outstation. Both were designed using the mini DNP3 protocol stack. 

A TCP connection can be divided into connection tasks (Connection) and data transfer (Data 
Transfer) tasks as shown in Figure 3.   

 

Figure 3 Traditional TCP Design 

Connection tasks deal with establishing and tearing down a connection.  Data Transfer tasks 
handle data transmission from the Server to the Client.  Since the tasks associated with these 
categories have clear boundaries we can situated them in multiple machines.  Figure 4 shows 
such a design. 



 

Figure 4 Splitting TCP across machines 

In such a design the machine that does the connection work is termed the ‘Connection Server’ 
(CS) and the machine handling all data transfer, the ‘Data Server’ (DS).  A machine running the 
split design TCP/IP stack can request one or more available machines on the network to become 
its Data Server.  On acceptance, the CS handles all the connection work of incoming TCP 
connections and offloads all the data transfer work of a connection to the DS with information on 
where to send the data.  When the Data Servers send out requested data, they use the IP address 
of the CS in the source IP field of their IP header. This obscures the fact to the client that a 
different machine is sending the requested data.  This distribution of work from a single machine 
to two machines immediately yields, redundancy, scaling in data reception time and security 
benefits.  Rawal et al (Rawal, Karne, & Wijesinha, 2012) discuss this approach where they report 
that adding multiple Data Servers to a single Connection Server shows a significant reduction in 
client request processing time with the number of Data Servers added.  In this paper we discuss 
the application of a split design to the Distributed Network Protocol 3 (DNP3) over TCP/IP.   

We examine if applying the split design to our mini DNP3 over TCP/IP protocol stack could 
address security in a general way through giving an Outstation under attack a possible mitigation 
strategy.  We posit that DNP3 administrators could identify vulnerable Outstations and 
implement a split configuration using multiple Outstations.  This will allow the victim of an 
attack to offload its processing to other Outstations by making them its Data Servers.  This 
strategy can also be used to dynamically scale the number of Outstations to distribute Outstation 
processing load.  In this case we presume that the Outstations will share a common DNP3 
database.    
  
One of the objectives of this paper was to prove that a ‘home grown’ mini protocol stack is a 
sine-qua-non to conducting research into its fundamental design.  Making changes in a full 
protocol stack would be highly complicated, demanding and require a large team in which 
everyone is a DNP3 subject matter expert.  The team that worked on this paper consisted of only 
two members.  The lead author was part of the team that worked on the original split protocol 
design of TCP (Rawal et al).  The co-author undertook the work of reading and comprehending 
the IEEE 1815 DNP3 specification and implementing the mini protocol stack itself.  The split 



design was devised by the lead author and implemented by the co-author.  The development 
work of writing and testing the code took a semester to accomplish.   It must be stressed however 
that the Instructor should be a DNP3 subject matter expert to some degree. This is because 
understanding the IEEE 1815 specification requires a significant investment of time but once 
accomplished, the knowledge can be used by the Instructor to shorten the learning curve for 
students considerably.  Students stand to benefit enormously by having the source code and 
documentation for such a protocol stack. It serves a dual purpose of being an instructional aid as 
well as a research test bed on which future investigations can be carried out. 

In the  ‘mini DNP3 over TCP/IP protocol stack’(Richard, Anand, 2016) we applied the split at 
the TCP level.  The DNP3 protocol per se was not changed.  The stack was written in C# on 
Windows following the IEEE 1815 standard.  The split design was implemented using the 
SharpPcap library (“Tamir Gal | SharpPcap,” n.d.).  SharpPcap enables users to build and 
transmit TCP packets where packet headers can be modified.  Rawal et al changed the source 
code of a Linux TCP/IP stack to incorporate the split design.  Here we used an extra library to 
build, send and intercept packets using SharpPcap with an existing traditional Windows TCP/IP 
connection already running to initiate the first connection between the client and server.  This 
approach while not ideal provides a faster way to implement the split design and also to test it.  
We built a Master and Outstation device.  The Outstation was configured with 20 Class 0 Data 
Counters.  We then measured the time taken for the Master to complete a Class 0 Data Poll from 
the Outstation.  The poll from the Master to the Outstation retrieves all Class 0 Data from the 
Outstation. We next enabled the split configuration in the Outstation to use 1, 2, 3 and 4 Data 
Servers and measured the time again. 
 
We conducted 40 trials for each configuration of Non-Split, 1DS, 2DS, 3DS and 4DS.  All 
packet data was captured using Wireshark.  The mean for each sample was then taken to build 
the final bar graph in Figure 5. 

       

Figure 5 Class 0 poll in non split mode 
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Figure 6 Results from Rawal et al (“IEEE Xplore Abstract Record,” n.d., p. 4) 

Our results in Figure-5 show an 82.5% decrease in time taken for the Class 0 Poll from a non-
split approach to a single DS.  There is a further 34% decrease with 2 DSes.  Diminishing returns 
are noticed with a 3rd DS and 4th DS.  Adding a 4th DS actually slightly increases the response 
time. In this regard we were unable to duplicate the results of Rawal et al shown in Figure 6.   

We suggest this is due to the small data size of Class 0 20 counters used in the study.  Dividing 
20 counters across 2 machines gives us faster response times because each DS handles the 
transmission of 10 DNP3 counter messages which is a significant load taken away from the CS.  
When we move to 3 and 4 DSes the counter data handled per DS reduces to 7 and 5.  The 
difference in work handled by each DS becomes marginal and hence we see marginal 
improvement on adding more DSes.   

Using 4 DSes in fact very slightly increases the response time as can be seen in Figure 3 from 9 
ms to 9.87 ms approximately.  It is possible this increase is our application response time to 
handle the CS redirect of the client request to the 4th DS which gets added on to the peak 
performance time of 9 ms. 

Based on our data we conclude the following: 

1. A mini DNP3 protocol stack can be built with a reduced feature set.  The packets 
generated by this stack can be read and deciphered by Wireshark proving independent 3rd 
party confirmation of our design. 

2. A split design can be applied to the DNP3 stack indirectly using the SharpPcap library 
and shown to work.  This is facilitated by the reduced complexity of the ‘mini’ stack. 

3. The split design tests reveal a significant reduction in the time taken for a Class 0 poll. 
4. Based on ‘3’ above we can state that in the event of a DNP3 Outstation coming under 

attack, it could mitigate the attack via use of the split design to offload processing work 
to a Data Server DNP3 device. 

We suggest further research in the following areas: 

1. Examination of the tests here under a larger data size, i.e. 100 counters instead of 20 to 
determine if benefits continue as suggested by Rawal et al across 4 DSes. 



2. Investigate if increasing the packet size without crossing the threshold of DNP3 message 
fragmentation has an impact on the results of adding more DSes.  

3. Our mini protocol stack source is available on Git Hub 
https://github.com/kiranand/DNP3 and available on request. 
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