
Paper ID #21139

End-of-Semester Control System Design Projects by Senior-level EET Stu-
dents

Dr. Biswajit Ray, Bloomsburg University

Biswajit Ray received his B.E., M.Tech., and Ph.D. degrees in Electrical Engineering from University
of Calcutta (India), Indian Institute of Technology-Kanpur (India), and University of Toledo (Ohio), re-
spectively. He is currently the coordinator, and a professor, of the Electronics Engineering Technology
program at Bloomsburg University of Pennsylvania. Previously, he taught at University of Puerto Rico-
Mayaguez, and designed aerospace electronics at EMS Technologies in Norcross, GA. Dr. Ray is active
in power electronics consulting work for various industrial and governmental agencies.

Mr. Robert Chambers
Nathan Henry, Bloomsburg University
Mr. Paul Michael Karcher

c©American Society for Engineering Education, 2018

End-of-Semester Control System Design Projects
by Senior-Level EET Students

Abstract

This paper presents student-initiated projects as part of a control systems course for senior-level
electronics engineering technology (EET) students. Student outcomes and associated assessment
methodologies as well as general project management concepts are discussed. Two recently
completed control system design projects are reported in this paper: an automatic guitar tuner,
and a ball balancing on a plate. Both projects focused on control system design and
implementation, encompassing sensors and actuators, interface electronics, hardware and
software integration, and control logic implementation in software (LabVIEW or Arduino).
These end-of-semester course projects were carried out during the final four weeks of the
semester, preceded by ten weeks of structured lecture/laboratory session.

Introduction

The ability to conduct and design experiments is rated as one of the most desirable technical
skills of engineering and engineering technology graduates1. Specifically, the referenced survey
indicates that employers want graduates with an ability to integrate hardware and software, and
to formulate a range of alternative problem solutions. Additionally, potential employers of our
EET graduates are primarily in the control and automation, and automated manufacturing and
testing sectors of the industry, providing additional motivation for a control systems course
embedding design projects that integrate hardware and software. The senior-level control
systems course consists of two hours of lecture and three hours of laboratory per week. The first
ten weeks of the fourteen-week semester are devoted to structured lecture and laboratory
sessions. Topics include system modeling, steady state and dynamic response, system stability,
controller design using root locus and frequency response techniques, and control system design
and simulation using MATLAB/SIMULINK. The final four weeks are dedicated to student-
initiated end-of-semester design projects2, emphasizing problem-based3 and project-based
learning4-5, open-ended problem solving6, teamwork7-8, and project management9. This paper
focuses on a general approach to implementing end-of-semester course projects, and assessment
of the associated student outcomes for this project experience. Technical details of two sample
control system design projects, an automatic guitar tuner and a ball balancing on a plate,
implemented by students during the spring-2017 semester are also presented. Students taking
this senior-level control systems course are expected to be conversant with LabVIEW
programing/data-acquisition hardware, Arduino microcontroller hardware/software, and linear
signals and systems concepts via prerequisite courses. Project experience gained in this course
serves as a stepping-stone for the students taking the semester-long capstone design course the
following semester.

Student outcomes for the end-of-semester project experience

After completing the end-of-semester control system design projects, students will develop the
ability to:

• identify and seek information relevant to problem solution without guidance,

• select and design-in appropriate sensors and actuators,
• consider and assess multiple methods and approaches to design,
• update solution approach based on hardware and software testing,
• implement a design solution and prototype functional hardware within time and cost

constraints,
• use project management techniques including the Gantt chart,
• recognize individual responsibility and fulfill their role to ensure team success, and
• document and disseminate project goals and outcomes via written report and oral

presentation.

The above student outcomes are based on the established EET program assessment
methodology, and are assessed using both direct and indirect measurement instruments. The
assessment methodology and results are reported herein in a later section.

Project management

Early in the semester, students start developing potential end-of-semester project topics with
appropriate feedback and guidance from the instructor, leading to a pre-proposal with two project
ideas for each team of two students. The required preproposal is due by the eighth week of the
fourteen-week semester. Upon discussion, modification, and approval of the pre-proposal, each
team is required to submit a formal proposal for the approved project topic by the ninth week of
the semester. The required proposal is quite detailed as it includes project implementation ideas
supported by major outcomes and design specifications, control platform selection,
hardware/software integration, I/O interface drawings, relevant circuit schematics, parts list with
vendor and price information, and a four-week project completion schedule including a Gantt
chart. For implementation of the projects, students are responsible for selecting the necessary
sensors, actuators, and control platform (typically LabVIEW with myDAQ hardware, or Arduino
microcontroller). Students are also given access to a well-equipped departmental shop for
fabrication and metal/wood work, including SolidWorks-supported 3-D printers. Each team of
two students is allocated a nominal budget of $150 for purchasing project-specific parts not
typically available in the laboratory. Project deliverables include a functioning control hardware
prototype along with supporting documentation (pre-proposal, proposal, mid-point design review
summary, and final report) and a formal presentation. Prototype hardware, student presentations,
and final reports are archived for use as part of the display materials for future accreditation
visits. Project management skillsets developed in this course contribute to student success in the
semester-long capstone design course offered the following semester.

Sample student project: Automatic guitar tuner

The goal of this project was to design and implement an automatic guitar tuner. The system
design is based on closed-loop feedback from an oscillating guitar string to obtain a desired
frequency from the string. Through manipulation of string tension using a servo motor, the
frequency of the string is adjusted to match a predetermined frequency set within the application.
This is repeated for all six strings of a conventional guitar and each string frequency is calibrated
to conventional guitar tunings.

A block diagram representation of the automatic guitar tuner system is shown in Figure 1, and a
pictorial view of the system is shown in Figure 2. In order to tune the guitar using servo motors,
several parts were designed using SolidWorks, including a tuning station and an attachment for
the servo motor that would fit over the tuning pegs of the guitar. The LabVIEW software with
myDAQ10,11 hardware was used in implementing the closed-loop system. The design allows the
user to select the string to be tuned and the frequency to tune the string to. After selecting which
string to tune, the user can pluck the string on the guitar, and the tuning peg on the guitar is
turned automatically using a servo motor, which loosens or tightens the string to achieve the
desired frequency. In terms of control, signal from the guitar pickup is fed into the DAQ board
and the frequency of the signal is sampled. If the frequency of the signal coming from the guitar
is lower than the desired frequency, the continuous rotation servo motor12 tightens the string until
the desired frequency is obtained. If the frequency of the signal is higher than the desired
frequency, the servo motor loosens the string until the desired frequency is reached. The
measured percent error in frequency tuning for each string, shown in Table I, is within 0.5%.

Reference
Frequency

(Selectable)

DAQ Board
(PWM signal)

Servo
Motor

Frequency of
Audio Signal

Audio
Input

Tuned
String

Frequency

Figure 1: Control block diagram of the automatic
 guitar tuner system.

Figure 2: A pictorial view of the
 automatic guitar tuner system.

Table I: Measured percent error in frequency tuning for each string.

E (E2)
82.41 Hz

A (A2)
110.00 Hz

D (D3)
146.83 Hz

G (G3)
196.00 Hz

B (B3)
246.94 Hz

e (E4)
329.63 Hz

0.18% 0.16% 0.00% 0.34% 0.46% 0.06%

In terms of filtering, frequency ranges were determined that would pass through center
frequencies of each string while eliminating outside harmonics and noise, since a guitar string
has a number of frequencies at which it will naturally vibrate. For instance, the fundamental
frequency of string E2 is 82.41 Hz. When this string is plucked, the output is a mix of the

fundamental frequency and its harmonics (164.82 Hz, 247.23 Hz and so on). Accordingly,
bandpass filters were designed with a default bandwidth of 20 Hz, providing ample bandwidth to
capture the center frequencies while filtering out the harmonics and noise. This bandwidth
selection was done so that an allowable frequency range could be compared without picking up
the next closest string.

Another design objective was to eliminate frequency overshoot due to varying tensions within
each string by adjusting the servo settings for each string. Each string on a standard guitar varies
in gauge and the type of material used. Due to this fact, when tuning with the same servo settings
on different strings, the varying tensions caused potential overshoot. To remedy this, since there
was no obvious mathematical approach to use, a trial and error approach was used and servo
speeds were set individually for each string. The servo is controlled by a 50 Hz signal, with a
center duty cycle corresponding to the stop status of 7.37%. Its speed and direction of rotation
are controlled by increasing or decreasing the duty cycle. For example, a duty cycle of 6.70%
and 7.8% can be used to tighten and loosen a string, respectively.

The LabVIEW front panel, shown in Figure 3, includes features besides a string selector. It
displays a numerical value of the frequency, a meter to show how far out of tune the string is—
sharp or flat—or if it is in the target frequency range, a graphical display of the frequency, a
servo motor selector, and a string winding and de-winding feature.

Figure 3: LabVIEW front panel of the automatic guitar tuner.

The LabVIEW programming was designed using several loops; however, the first loop shown in
Figure 4(a) is where most of the decision-making is done. The incoming audio signal from the
guitar is read through the audio input channels on the DAQ board. Once the signal is read, it goes
through a software band-pass filter with different parameters depending on which string is
selected. Once the unwanted frequencies are filtered out of the signal a function in LabVIEW is
used to extract information about the signal and the actual frequency is extracted from its tone
information. Once the frequency of the signal is acquired, it is compared to a range of values that
were selected depending on which string is selected. If the frequency detected in the signal is out
of the range on the lower end then it will set a duty cycle for the PWM signal going to the servo
that will make the servo tighten the string. If the frequency detected in the signal is out of the
range on the higher end it will set a duty cycle for PWM signal going to the servo that will make
the servo loosen the string. If the frequency detected is within the desired range then it will set a
duty cycle that will cause the servo to stop.

In the second loop, shown in Figure 4(b), a PWM signal of 50 Hz with an amplitude of 5 V is
created and sent to the analog output channel on the DAQ board. This signal is used to control
the speed and direction of the continuous rotation servo. The duty cycle of this signal is variable
and depends on the cases in the first loop. Tasks for setting up the analog and digital inputs and
outputs were set up individually instead of using the DAQ Assistant function in LabVIEW in
order to have more control over the tasks, contributing to an efficient program.

The test data acquired from LabVIEW while each string was being tuned are shown in Figure 5.
The amount of frequency overshoot captured varied depending on the string being tuned;
however, the settling time was negligible for all strings since 2% of the target frequency was
reached rather quickly. On average, the rise time was in the 2 – 3 seconds range, which was
dependent on the tuning servo speed. The rise time could have been reduced further but at the
expense of having more overshoot due to the increased speed of the servo motor. No overshoot
in frequency occurred while tuning the G string; however, because of its placement on the guitar
being closer to the center of the neck, results in less tension on the string, which caused some
oscillation near the target frequency. In addition, the G string being of a lighter material than the
other strings has an effect on this as well; this is also true for the B string. It is to be noted that it
is commonly known among musicians that the G and B strings are the two most difficult strings
to keep in tune. It can be noticed that no overshoot in frequency occurred when strings A and E
were tuned; this was due to the thickness tension factor of the strings. A lower frequency string is
heavier but it does not have to be tightened as much to reach the desired frequency.

(a) String selection and frequency filtering, and PWM duty cycle generation

(b) Task to output a PWM signal on the analog channel

Figure 4: Partial LabVIEW programming for the automatic guitar tuner system.

(a) e-string tuning data

(c) G-string tuning data

(e) A-string tuning data

(b) B-string tuning data

(d) D-string tuning data

(f) E-string tuning data

Figure 5: Test data acquired from LabVIEW while each string is tuned

(Brown color: string reference frequency; Blue color: string frequency during tuning).

Sample student project: Ball balancing on a plate

The objective of this project was to create a system that will balance a ball on a flat surface or
plate. A resistive touchscreen was used as the flat surface to generate signals for the location of
the ball for both the X and Y directions. Additionally, two servo motors were used to adjust the
angle of the plate, one for each axis. A pushbutton was used to let the user sequence through four
different set points: center position, potentiometer controlled positioning, elliptical motion, and
figure eight motion. An Arduino UNO13 microcontroller was used as the controller and
proportional-derivative-double derivative14 (PDD2) concepts were used to control the position of
the ball. A combination of wooden pieces and 3D-printed plastic parts were used to create the

physical structure. A one-inch diameter steel ball was used for the system, creating enough force
to activate the touchscreen at all times. Figures 6 and 7 show the control block diagram of the
system and a pictorial view of the prototype, respectively.

Position
Reference

PDD2

Controller
Servo

Tilt

Position
Feedback

(Touchscreen)

Position
of Ball

Arduino Microcontroller

Figure 6: Control block diagram of the ball

 balancing on a plate system.

Figure 7: A pictorial view of the ball
 balancing on a plate system.

A four-wire resistive touchscreen15 was used to sense X and Y positions of the steel ball under
control. The analog touchscreen, shown in Figure 8, has a two-layer structure consisting of
polyester film with an indium-tin-oxide (ITO) membrane and sheet of glass. The surfaces of top
and bottom electrodes have a uniform resistive film, with one electrode in the X-axis and the
other in the Y-axis. When pressure is applied, it changes the resistance value between X1 and
X2 and between Y1 and Y2. For reading the X-axis position: X1 is biased at 5 V, X2 is
grounded, Y2 floats, and Y1 is the analog input to the system for the position of the ball. Biasing
of the X and Y pins of the touchscreen needs to be reversed to read the Y-axis position
information.

(a) Pictorial view

(b) Two-layer structure

(c) Biasing for position sensing

Figure 8: Four-wire resistive touchscreen.

In terms of physical construction, a piece of plywood was used as the base of the system. As
shown in Figure 7, a thin 3D-printed plate supported the resistive touch screen. Clamps were 3D-
printed to hold the touch screen to the support plate. A 3D-printed column with a ball joint on
top was used to support the center of the support plate. Two servo motors were mounted on the
plywood base with arms reaching the plate support. All pieces were bolted to allow the system to
be disassembled easily.

An Arduino UNO microcontroller was chosen for the control implementation primarily due to
ease of controlling the high torque metal-geared servo motors16. Additionally, the bidirectional
analog I/O pins of Arduino UNO work very well with the resistive touch screen position sensing
unit since only one axis can be read at a time. The input-output functionality of the pins
alternates as the axis being read alternates. In terms of implementation, the first goal of the
project was to successfully control the position of the ball in the X-axis. This was accomplished
by creating a guiderail that kept the ball centered on the Y-axis; therefore, adjustments were only
needed on the X-axis. After the system successfully positioned the ball in the X-axis, similar
controller gains were used for the Y-axis. Once the initial control parameters were established,
the system successfully balanced the ball with no guiderails. The system was then extensively
tested and PDD2 gains were adjusted to optimize the system performance.

As shown in the control block diagram of Figure 6, the position reference, error calculations, and
PDD2 controller are all handled by the Arduino. In this implementation, Arduino calculates a
new position point of the ball in each axis at 50 Hz. Each time the new position is calculated, the
current velocity and acceleration of the ball are also calculated. The calculated values of velocity
and acceleration are in reality the average velocity and acceleration since the previous position
reading. The current position, velocity, and acceleration values each contribute to the servo
angle adjustment. A PDD2 controller configuration was used, instead of the standard PID
configuration, since the system in this application is very dynamic and highly nonlinear as the
gravity causes the ball to accelerate when the plate is tilted.

Key sections of the Arduino code are shown in Figure 9. The definition of the input and output
modes of relevant Arduino digital pins as well as biasing of the 4-wire resistive touchscreen
interface for reading the X-position of the ball are shown in Figure 9(a). Averaging of the X-
position data is shown in Figure 9(b), and implementation of the PDD2 controller using position,
velocity, and acceleration information of the moving ball to calculate the desired servo angle is
shown in Figure 9(c). In terms of user interface, a pushbutton was used to incorporate a few
predefined ball trajectory control features. Accordingly, the set point of the system is determined
by the number of times the pushbutton is pressed, with the default ball position being the center
of the plate. At the first push, the set point is determined by the position of the external
potentiometers. After the second push, the set point changes to an ellipse, and after the third push
the set point changes to a figure eight. This cycle repeats with subsequent pushbutton presses.

The designed system was tested under dynamic conditions along X-axis, Y-axis, and X-Y axes.
Figure 10(a) shows the step response of the system along the X-axis as the normalized position
was changed from 4.25 units to 2.5 units. During this test, the ball experienced an overshoot of
approximately 23%, with a settling time of approximately 4 seconds and a damped oscillation
frequency of approximately 0.45 Hz. Similarly, step response in Y-position is shown in Figure
10(b). It shows a slightly decreased overshoot and a slightly increased settling time, and
includes subharmonic noise in the dynamic response. System response due to multiple step
changes in X-position is shown in Figure 10(c). It can be observed that the system responded
relatively quickly and always adjusted to the new reference position. System response to
simultaneous step change in X and Y positions are shown in Figure 10(d), in this case the ball
was commanded to move from a corner in the plate to its center position.

(a) Biasing the 4-wire plate, and
reading X-position

(b) Averaging the X-position reading

(c) Calculating servo angle using PDD2

controller

Figure 9: Key sections of the Arduino code for ball balancing on a plate system.

An elliptical trajectory was defined within Arduino, using parametric equations 𝑥𝑥(𝑡𝑡) = [2.5 +
cos(2.75𝑡𝑡)] and 𝑦𝑦(𝑡𝑡) = [2.5 + 0.75 sin(2.75𝑡𝑡)]. The corresponding system response is shown in
Figure 10(e). Similarly, the trajectory for a figure eight was defined using 𝑥𝑥(𝑡𝑡) = [2.5 +
sin(1.75𝑡𝑡)] and 𝑦𝑦(𝑡𝑡) = [2.5 − 0.75 sin(3.5𝑡𝑡)], and the corresponding system response is shown in
Figure 10(f). Due to mechanical imperfections of the system, the Y position constantly lagged
behind the set point. This resulted in the ball position shifted in the negative Y direction and
slightly in the positive X direction. This shifting error is primarily due to error in the flat angle
set point in the system. However, the root cause of this error is due to mechanical imperfections
in prototyping the system as well as misalignment between X and Y axes servos. To resolve this
issue in the future, a tilt sensor could be added to the system to recalculate the flat angles of the
servos each time the system is initialized.

(a) X-position: Step input

(c) X-position: Multiple step inputs

(e) X-Y position: Tracking an elliptical
trajectory

(b) Y-position: Step input

(d) X-Y position: Step input from corner
position

(f) X-Y position: Tracking a ‘figure
eight’ shape

Figure 10: Experimental step response and trajectory tracking data for the ball balancing on a

plate system (Brown color: reference trajectory; Blue color: measured ball trajectory).

Assessment of student outcomes for the end-of-semester project experience

Direct assessment of student outcomes for the project experience was conducted using several
instruments including the project proposal, project evaluation rubric, final report rubric, and
project presentation rubric. These assessment data were evaluated to generate action items to be
implemented during the next offering of the course project experience. This feedback process is
part of the EET program’s continuous improvement cycle that directly improves student
learning. Example action items generated based on spring-2017 control systems project
experience are: explicitly specify requirements for the project proposal, emphasize the
importance of effective teamwork for project success, include a weekly progress report
requirement, and include a timed practice presentation before the formal presentation. These
action items will be implemented during the spring-2018 offering of the course.

In addition to direct assessment, student outcomes for the end-of-semester project experience are
assessed indirectly via student feedback. Results of the indirect assessment for spring-2017
offering are shown below.

Indirect student assessment data (Number of students: 12)

Did the project experience contribute significantly in
developing your ability to:

Definitely Somewhat Not
really

identify and seek information relevant to problem
solution without guidance?

75.0% 16.7% 8.3%

select and design-in appropriate sensors and actuators? 83.3% 16.7% 0%
consider and assess multiple methods and approaches to
design?

83.3% 16.7% 0%

update solution approach based on hardware and
software testing?

91.7% 8.3% 0%

implement a design solution and prototype a functional
hardware within time and cost constraints?

83.3% 16.7% 0%

use project management techniques including Gantt
chart?

75.0% 16.7% 8.3%

recognize individual responsibility and fulfill role to
assure team success?

83.3% 16.7% 0%

document and disseminate project goals and outcomes
via written report and oral presentation?

75.0% 16.7% 8.3%

Student comments
The process of developing, implementing, and testing a project from scratch was a valuable
experience for most students. The majority of students were pleased with the project
management structure, though a few suggested that the project duration within the control
systems course be extended to five weeks (instead of the currently allocated four weeks), to help
them transition into the semester-long capstone design course offered the following semester.
Qualitative feedback from students is presented below through their comments.

 Taking ownership of the project as a team was a great experience
 Liked working with software and hardware integration and testing
 Just getting to do a self-developed lab project was fun

 Developing a working prototype within four weeks was both challenging and rewarding
 Reliance on partner was a problem at times
 Need to allocate more time to the testing phase of the project
 Emphasize the importance of build-and-test as we move along
 Make the students test all new parts during the first week of the project period

Summary

Experience with student-initiated projects within the control systems course was presented. A
few students struggled in defining the structure of their work at the beginning of the four-week
project period. It was also observed that a few of the students did not have prior experience
through coursework in designing, debugging and testing a system with multiple functional
blocks, which contributed to their difficulty in breaking the design into functional modules and
designing and testing them separately before putting them together. Improving student
competence in this area will be a goal for the next offering of the course. Overall, the experience
has been very rewarding and challenging for the students as well as the instructor. Assessment-
generated action items will be implemented for the next offering of the course, and additional
assessment data will be collected from future offerings as part of the program’s continuous
improvement plan.

References

1. J. D. Lang et al., “Industry expectations of new engineers: A survey to assist curriculum designers,”

Journal of Engineering Education, pp. 43-51, Jan 1999.
2. J. S. Dalton et al., “Mini-lab projects in the undergraduate classical controls course,” Proc. ASEE

Annual Conf., 2003.
3. B. Dutch et al., “The power of problem-based learning: A practical how-to for teaching undergraduate

courses in any discipline,” Stylus Publishing, 2001.
4. R. Savage, “A design methodology for empowering project-based learning,” Proc. ASEE Annual Conf.,

2007.
5. W. L. Stone et al., “Project-based learning integrating engineering technology and engineering,” Proc.

ASEE Annual Conf., 2017.
6. R. R. Ulseth et al., “A new model of project based learning in engineering education,” Proc. ASEE

Annual Conf., 2011.
7. K. A. Gibbons et al., “An approach to using undergraduate student teams to develop undergraduate

laboratory experiences,” Proc. ASEE Annual Conf., 2012.
8. E. An et al., “A project-oriented, team-based learning approach,” Proc. ASEE Annual Conf., 2009.
9. P. M. Yanik et al., “A pilot program in open-ended problem solving and project management,” Proc.

ASEE Annual Conf., 2017.
10. NI myDAQ Specifications, http://www.ni.com/pdf/manuals/373061f.pdf (accessed Jan. 22, 2018).
11. NI myDAQ User Guide, http://www.ni.com/pdf/manuals/373060g.pdf (accessed Jan. 22, 2018).
12. Continuous rotation servo, FeeTech FS5103R, Adafruit Product ID 154,

https://www.adafruit.com/product/154 (accessed Jan. 22, 2018).
13. Arduino UNO, http://www.arduino.org/products/boards/arduino-uno (accessed Jan. 22, 2018).
14. M. Ertogan et al., “Application of particle swarm optimized PDD2 control for ship roll motion with

active fins,” IEEE/ASME Trans. Mechatronics, Vol. 21, Issue 2, pp. 1004-1014, April 2016.
15. NKK Switches, 4-Wire Touch Screens (FT Series), http://www.nkkswitches.com/pdf/4-wireTouch-

2.pdf (accessed Jan. 22, 2018).
16. Micro servo, High torque metal gear (MG90S), Adafruit Product ID 1143,

https://www.adafruit.com/product/1143 (accessed Jan. 22, 2018).

http://www.ni.com/pdf/manuals/373061f.pdf
http://www.ni.com/pdf/manuals/373060g.pdf
https://www.adafruit.com/product/154
http://www.arduino.org/products/boards/arduino-uno
http://www.nkkswitches.com/pdf/4-wireTouch-2.pdf
http://www.nkkswitches.com/pdf/4-wireTouch-2.pdf
https://www.adafruit.com/product/1143

