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IUSE Computational Creativity: Improving Learning,  
Achievement, and Retention in Computer Science for CS  

and non-CS Undergraduates 
 

Introduction and Project Background 
 

This project is funded through the NSF Improving Undergraduate STEM Education 
(IUSE) initiative and seeks to enhance undergraduate computer science (CS) education by 
teaching computational creativity in both CS and non-CS courses. The purpose of this paper is to 
present the methods used in this project, summarize previous findings, and report new results 
related to students’ retention in CS courses. Computational creativity integrates computational 
thinking and creative thinking so that each can be used to enhance the other in improving student 
learning and performance in class [1]. Whereas computational thinking brings a structured and 
analytic approach to problem-solving situations, creative thinking introduces novelty and 
innovative, non-standard solutions.  

 
While numerous components of computational thinking have been identified (e.g., [2]), 

the focal components within our computational creativity framework are abstraction, algorithmic 
thinking, evaluation, generalization, pattern recognition, and problem decomposition.  The 
theory of creativity that undergirds computational creativity is Epstein’s creative competencies 
[3]. Epstein’s four core competencies are broadening, capturing, challenging, and surrounding. 
Descriptions of the components of computational thinking and the creative competencies are 
given in Table 1. 

 
Table 1. Components of Computational Thinking and the Creative Competencies 

Component Description 
Computational Thinking 

Abstraction Reducing complexity by identifying general rules and principles that involve 
only essential elements  

Algorithmic 
thinking 

Generating procedural rules that can simplify a process 

Evaluation Testing a solution’s effectiveness 
Generalization Applying existing processes and solutions to new problems 
Pattern recognition Identifying common characteristics and recurring elements 
Problem 
decomposition 

Breaking down a problem into smaller chunks that can be addressed separately 

Creative Thinking 
Broadening Building one’s knowledge base beyond one’s discipline 
Capturing Preserving ideas and solutions 
Challenging Questioning conventions and moving beyond established thinking and behavior 

patterns 
Surrounding Seeking out and immersing oneself with new social and environmental stimuli 

 
In our project, computational creativity is introduced to undergraduate students through 

Computational Creativity Exercises (CCEs). CCEs are collaborative problem-solving tasks that 
require teams of students to work together to apply computational and creative thinking to novel 
situations. Although the CCEs are heavily steeped in computational principles and were first 
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introduced in CS courses, the exercises do not use any programming code and involve tasks not 
inherently connected to CS. For example, in the Storytelling exercise, students write small 
“chapters” of a story individually and then after reading each team members’ chapter, they “de-
bug” the whole story by revising their own chapters to make the whole story consistent. 

 
To date, our research team has developed more than a dozen CCEs (see Table 2)—with 

numerous variants—that have been implemented in introductory, intermediate, and advanced CS 
courses as well as non-CS courses, including a stand-alone Computational Creativity course. The 
Computational Creativity course is offered through our University’s School of Art, Art History, 
and Design, and in the course students are taught how to combine creative thinking and 
computational thinking in problem solving and produce creative artifacts. Students in all these 
courses complete the CCEs through an on-line platform that allows for collaborative work and 
communication throughout the exercises. Variants of the CCEs can be found at Google’s 
Exploring Computational Thinking repository, EngageCSEdu site, and the Project Ensemble’s 
Portal. We encourage interested parties to contact us for more information on the CCEs. 
 

Table 2. Computational Creativity Exercise Descriptions 
Name Brief Description 
Everyday 
Object 

Identify an “everyday” object (such as nail clipper, a paper clip, Scotch tape) and 
describe the object in terms of its inputs, outputs and functionalities.  

Cipher Devise a three-step encoding scheme to transfer the alphabet letters into digits and 
encode questions for other teams to compete to decode.  

Story 
Telling 

Develop a chapter (100-200 words) individually and independently in week 1 and 
work as a team in week 2 to resolve all conflicts or inconsistencies.  

Exploring Explore sensory stimuli at a particular site (sounds, sights, smell, etc.) and 
document observations.   

Simile Poses “simile” descriptions and participate in team-to-team Q&As to solicit guesses 
and descriptions relevant to a particular object.  

Machine 
Testing 

Devise ways to test a black-box mysterious machine without causing harm to 
humans while attempting to reveal the functionalities of the machine.  

Calendar Build a calendar for a planet with two suns, four different cultural groups with 
different resource constraints and industrial needs. 

Path Finding I Create a step-by-step instruction on drawing lines to create a quilt pattern on a n x n 
grid and identify similar structures in other teams’ quilt patterns. 

Path Finding II Use rotation, reflection, and loop to generate a more complex quilt pattern based on 
simpler base pattern. 

Marble Maze I Each team member creates a sub-structure allowing a marble to travel at least for n 
seconds in week 1 and the team puts all sub-structures together to make a super-
structure in week 2. 

Marble Maze II Teams are broken up and now must adapt their own sub-structure to work with 
other sub-structures in their new teams. 

Marble Maze III All teams bring together their super-structures and build a mega-structure. 

Big Five 
Profiles 

Revises a text snippet such that at least one the text snippet’s Big Five profile 
changes significantly 

Dividing 
Alphabet 

Finds a rule to divide up the alphabet letters based on some sample data points on 
how some initial letters are divided. 
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Method Summary 
 
 Over several semesters, we have collected data in classes where the CCEs were 
implemented as well as control classes that did not include the CCEs. When CCEs are 
implemented, they are used to supplement instruction and do not replace other homework 
assignments or learning activities. Initially, the research team facilitated the CCEs and graded 
students’ work, but in more recent semesters, course instructors have had greater responsibility 
in the implementation. Students have reacted positively to the full inclusion of the CCEs in the 
courses and increased alignment in timing between the CCEs and instruction on relevant topics 
[4]. In all classes, students complete surveys at the beginning, middle, and end of the semester 
that assess their motivation, strategic regulation, affective reactions to the course, and, in the 
implementation classes, reactions to each of the CCEs. The end-of-semester survey includes a 
13-item test of core CS concepts and computational thinking that is used to compare students’ 
CS knowledge across classes [5]. Students also have the option of giving us permission to obtain 
their course grades and grade point average (GPA) at the end of the semester and course 
enrollment for three semesters after the semester during which they participated in the study. 
 
Summary of Previous Studies  
 

Previously reported findings [4],[6]–[11] provide evidence that CCEs can improve 
undergraduate students’ learning and performance in CS classes at all course levels. In [6]–[7] 
we reported a “dosage effect” that indicated student learning in introductory CS increased 
linearly with each additional CCE completed. Miller et al. [8] replicated this finding with a 
sample that comprised students in introductory, intermediate, and advanced CS courses. And, 
findings reported in [9] indicate the effect of the CCEs is independent of students’ general 
academic achievement, motivation, engagement, and strategic self-regulation. 

 
Quasi-experimental investigations of engineering students in introductory CS have 

yielded similar results [4],[9]–[10] . In two studies [9]–[10], we compared CS knowledge test 
scores of engineering students in introductory CS taught with the CCEs to the scores of 
engineering students in introductory CS taught without the CCEs during a different semester. 
Students in the classes taught with the CCEs scored higher on the CS knowledge test than 
students in the control sections, indicating the CCEs contributed to learning in the introductory 
CS course.  

 
This finding was replicated with two more rigorous quasi-experimental studies that used 

propensity score matching to equate the implementation and control groups on motivation 
variables [4],[11]. In one study [11], CCEs were implemented in lower- and upper-division CS 
courses, and students in those courses were matched with students in the same courses when the 
CCEs were not implemented. Students in the implementation group had higher grades and scores 
on the CS knowledge test, and these effects were similar in lower- and upper-division courses. In 
the other study [4], CCEs were implemented in one of two sections of the same introductory CS 
class for engineers taught during a single semester. The instructors of the two sections 
coordinated and synchronized their lecture topics, shared their lecture notes throughout the 
semester, and met weekly—with their shared teaching assistants—to discuss issues related to 
student learning and course activities. Additionally, the two sections shared laboratory sections 
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and used the same graded assignments and tests. Results of this study again showed that students 
in classes with CCEs score higher on the CS knowledge test than students in non-CCE classes, 
further supporting the hypothesis that CCEs contribute to learning core CS concepts. 

 
Recent Findings 
 
 The most recent extension of our project is the investigation of the impact of CCEs on 
students’ retention in CS courses. We hypothesize that exposure to CCEs will increase the 
likelihood that students will continue to take CS classes. In the present quasi-experimental study, 
CCEs were implemented in 100- and 200-level CS courses at a single university during the fall 
of 2015. Students in these courses (implementation group; N = 670) consented to having their 
course enrollment data collected for the following three semesters (retention semesters). Students 
in 100- and 200-level CS courses during the fall of 2014 and spring of 2015 semester also 
consented to having their ongoing course enrollment data collected and were used as a 
comparison (control) group.  
 

The impact of the CCEs on retention was tested through chi square (χ2) analysis for each 
of the three retention semesters. Results indicate students in the implementation semester courses 
were more likely than students in the control semester courses to continue taking CS in each of 
the three retention semesters (see Table 3), and the effect was even greater when comparing 
students who did no CCEs (in either the implementation or control groups) and those who 
completed at least two CCEs (see Table 4). Thus, these results suggest that in addition to the 
impact CCEs have on achievement, CCEs also increase the likelihood that CS students will 
continue to take CS courses. 
 

Table 3.  Impact of CCEs on Retention Based on Enrollment in Implementation Courses 
 χ2 p Cramer’s V 

Semester 1 13.88 <.001 .144 
Semester 2 21.87 <.001 .193 
Semester 3 12.97 <.001 .153 

 
Table 4.  Impact of CCEs on Retention Based on CCE Completion (at least two exercises) 

 χ2 p Cramer’s V 
Semester 1 18.89 <.001 .175 
Semester 2 34.84 <.001 .254 
Semester 3 25.87 <.001 .227 

 
Conclusion 
 
 Computational Creativity Exercises have been shown to increase undergraduate students’ 
achievement in CS courses, and new findings indicate they might also increase the likelihood 
that students will continue taking CS courses. The effect on retention is notable. Considering the 
ongoing concerns about retaining computer science students, the value of learning activities that 
boost achievement and increase retention is considerable. The finding that the retention boost is 
significant and lasts at least three semesters sets CCEs apart from other researched instructional 
practices because, to our knowledge, no other instructional practices have been shown to 
increase retention in CS. 
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