
Paper ID #23173

IUSE Computational Creativity: Improving Learning, Achievement, and Re-
tention in Computer Science for CS and non-CS Undergraduates

Markeya S. Peteranetz, University of Nebraska, Lincoln
Dr. Duane F. Shell, University of Nebraska, Lincoln

Duane Shell is Research Professor of Educational Psychology at the University of Nebraska-Lincoln. His
primary research areas are learning, self-regulation, and motivational influences on behavior and cognition
as these are manifest in education and public health settings. Dr. Shell specializes in multivariate, mul-
tidimensional analyses of complex relationships between motivation, classroom factors, self-regulation,
and learning. He is primary author of the Unified Learning Model. In addition to his primary research, he
has 32 years experience as an evaluator on federal, state, and foundation grands.

Prof. Leen-Kiat Soh, University of Nebraska, Lincoln

Dr. Leen-Kiat Soh is a Professor at the Computer Science and Engineering Department at the University of
Nebraska. His research interests are in multiagent systems, computer-aided education, computer science
education, and intelligent image analysis. He has applied his research to smart grids, computer-supported
collaborative learning, survey informatics, geospatial intelligence, and intelligent systems, and He is a
member of IEEE, ACM, and AAAI.

Dr. Elizabeth Ingraham, University of Nebraska, Lincoln

Elizabeth Ingraham is Associate Professor in the School of Art, Art History & Design at the University of
Nebraska-Lincoln. A Fellow of the Center for Great Plains Studies, she teaches design and computational
creativity at UNL and received the Sorensen Award for excellence in humanities teaching. A sculptor
whose work gives form and voice to lived experience, she won the Thatcher Hoffman Smith Award for
Creativity for her series of life-size sewn fabric ”skins” sculptures. Her recent solo exhibition at the
International Quilt Study Center & Museum showcased the result of more than 9,000 miles of travel across
Nebraska for her project, ”Mapping Nebraska”—a stitched, drawn and digitally imaged cartography of
the state (physical and psychological) where she resides. Her research into computational creativity is
part of her on-going interest in combining the digital (pixels and code) with the digital (the work of the
hand).

Mr. Abraham Flanigan

c©American Society for Engineering Education, 2018

1

IUSE Computational Creativity: Improving Learning,
Achievement, and Retention in Computer Science for CS

and non-CS Undergraduates

Introduction and Project Background

This project is funded through the NSF Improving Undergraduate STEM Education
(IUSE) initiative and seeks to enhance undergraduate computer science (CS) education by
teaching computational creativity in both CS and non-CS courses. The purpose of this paper is to
present the methods used in this project, summarize previous findings, and report new results
related to students’ retention in CS courses. Computational creativity integrates computational
thinking and creative thinking so that each can be used to enhance the other in improving student
learning and performance in class [1]. Whereas computational thinking brings a structured and
analytic approach to problem-solving situations, creative thinking introduces novelty and
innovative, non-standard solutions.

While numerous components of computational thinking have been identified (e.g., [2]),

the focal components within our computational creativity framework are abstraction, algorithmic
thinking, evaluation, generalization, pattern recognition, and problem decomposition. The
theory of creativity that undergirds computational creativity is Epstein’s creative competencies
[3]. Epstein’s four core competencies are broadening, capturing, challenging, and surrounding.
Descriptions of the components of computational thinking and the creative competencies are
given in Table 1.

Table 1. Components of Computational Thinking and the Creative Competencies

Component Description
Computational Thinking

Abstraction Reducing complexity by identifying general rules and principles that involve
only essential elements

Algorithmic
thinking

Generating procedural rules that can simplify a process

Evaluation Testing a solution’s effectiveness
Generalization Applying existing processes and solutions to new problems
Pattern recognition Identifying common characteristics and recurring elements
Problem
decomposition

Breaking down a problem into smaller chunks that can be addressed separately

Creative Thinking
Broadening Building one’s knowledge base beyond one’s discipline
Capturing Preserving ideas and solutions
Challenging Questioning conventions and moving beyond established thinking and behavior

patterns
Surrounding Seeking out and immersing oneself with new social and environmental stimuli

In our project, computational creativity is introduced to undergraduate students through

Computational Creativity Exercises (CCEs). CCEs are collaborative problem-solving tasks that
require teams of students to work together to apply computational and creative thinking to novel
situations. Although the CCEs are heavily steeped in computational principles and were first

2

introduced in CS courses, the exercises do not use any programming code and involve tasks not
inherently connected to CS. For example, in the Storytelling exercise, students write small
“chapters” of a story individually and then after reading each team members’ chapter, they “de-
bug” the whole story by revising their own chapters to make the whole story consistent.

To date, our research team has developed more than a dozen CCEs (see Table 2)—with

numerous variants—that have been implemented in introductory, intermediate, and advanced CS
courses as well as non-CS courses, including a stand-alone Computational Creativity course. The
Computational Creativity course is offered through our University’s School of Art, Art History,
and Design, and in the course students are taught how to combine creative thinking and
computational thinking in problem solving and produce creative artifacts. Students in all these
courses complete the CCEs through an on-line platform that allows for collaborative work and
communication throughout the exercises. Variants of the CCEs can be found at Google’s
Exploring Computational Thinking repository, EngageCSEdu site, and the Project Ensemble’s
Portal. We encourage interested parties to contact us for more information on the CCEs.

Table 2. Computational Creativity Exercise Descriptions
Name Brief Description
Everyday
Object

Identify an “everyday” object (such as nail clipper, a paper clip, Scotch tape) and
describe the object in terms of its inputs, outputs and functionalities.

Cipher Devise a three-step encoding scheme to transfer the alphabet letters into digits and
encode questions for other teams to compete to decode.

Story
Telling

Develop a chapter (100-200 words) individually and independently in week 1 and
work as a team in week 2 to resolve all conflicts or inconsistencies.

Exploring Explore sensory stimuli at a particular site (sounds, sights, smell, etc.) and
document observations.

Simile Poses “simile” descriptions and participate in team-to-team Q&As to solicit guesses
and descriptions relevant to a particular object.

Machine
Testing

Devise ways to test a black-box mysterious machine without causing harm to
humans while attempting to reveal the functionalities of the machine.

Calendar Build a calendar for a planet with two suns, four different cultural groups with
different resource constraints and industrial needs.

Path Finding I Create a step-by-step instruction on drawing lines to create a quilt pattern on a n x n
grid and identify similar structures in other teams’ quilt patterns.

Path Finding II Use rotation, reflection, and loop to generate a more complex quilt pattern based on
simpler base pattern.

Marble Maze I Each team member creates a sub-structure allowing a marble to travel at least for n
seconds in week 1 and the team puts all sub-structures together to make a super-
structure in week 2.

Marble Maze II Teams are broken up and now must adapt their own sub-structure to work with
other sub-structures in their new teams.

Marble Maze III All teams bring together their super-structures and build a mega-structure.

Big Five
Profiles

Revises a text snippet such that at least one the text snippet’s Big Five profile
changes significantly

Dividing
Alphabet

Finds a rule to divide up the alphabet letters based on some sample data points on
how some initial letters are divided.

3

Method Summary

 Over several semesters, we have collected data in classes where the CCEs were
implemented as well as control classes that did not include the CCEs. When CCEs are
implemented, they are used to supplement instruction and do not replace other homework
assignments or learning activities. Initially, the research team facilitated the CCEs and graded
students’ work, but in more recent semesters, course instructors have had greater responsibility
in the implementation. Students have reacted positively to the full inclusion of the CCEs in the
courses and increased alignment in timing between the CCEs and instruction on relevant topics
[4]. In all classes, students complete surveys at the beginning, middle, and end of the semester
that assess their motivation, strategic regulation, affective reactions to the course, and, in the
implementation classes, reactions to each of the CCEs. The end-of-semester survey includes a
13-item test of core CS concepts and computational thinking that is used to compare students’
CS knowledge across classes [5]. Students also have the option of giving us permission to obtain
their course grades and grade point average (GPA) at the end of the semester and course
enrollment for three semesters after the semester during which they participated in the study.

Summary of Previous Studies

Previously reported findings [4],[6]–[11] provide evidence that CCEs can improve
undergraduate students’ learning and performance in CS classes at all course levels. In [6]–[7]
we reported a “dosage effect” that indicated student learning in introductory CS increased
linearly with each additional CCE completed. Miller et al. [8] replicated this finding with a
sample that comprised students in introductory, intermediate, and advanced CS courses. And,
findings reported in [9] indicate the effect of the CCEs is independent of students’ general
academic achievement, motivation, engagement, and strategic self-regulation.

Quasi-experimental investigations of engineering students in introductory CS have

yielded similar results [4],[9]–[10] . In two studies [9]–[10], we compared CS knowledge test
scores of engineering students in introductory CS taught with the CCEs to the scores of
engineering students in introductory CS taught without the CCEs during a different semester.
Students in the classes taught with the CCEs scored higher on the CS knowledge test than
students in the control sections, indicating the CCEs contributed to learning in the introductory
CS course.

This finding was replicated with two more rigorous quasi-experimental studies that used

propensity score matching to equate the implementation and control groups on motivation
variables [4],[11]. In one study [11], CCEs were implemented in lower- and upper-division CS
courses, and students in those courses were matched with students in the same courses when the
CCEs were not implemented. Students in the implementation group had higher grades and scores
on the CS knowledge test, and these effects were similar in lower- and upper-division courses. In
the other study [4], CCEs were implemented in one of two sections of the same introductory CS
class for engineers taught during a single semester. The instructors of the two sections
coordinated and synchronized their lecture topics, shared their lecture notes throughout the
semester, and met weekly—with their shared teaching assistants—to discuss issues related to
student learning and course activities. Additionally, the two sections shared laboratory sections

4

and used the same graded assignments and tests. Results of this study again showed that students
in classes with CCEs score higher on the CS knowledge test than students in non-CCE classes,
further supporting the hypothesis that CCEs contribute to learning core CS concepts.

Recent Findings

 The most recent extension of our project is the investigation of the impact of CCEs on
students’ retention in CS courses. We hypothesize that exposure to CCEs will increase the
likelihood that students will continue to take CS classes. In the present quasi-experimental study,
CCEs were implemented in 100- and 200-level CS courses at a single university during the fall
of 2015. Students in these courses (implementation group; N = 670) consented to having their
course enrollment data collected for the following three semesters (retention semesters). Students
in 100- and 200-level CS courses during the fall of 2014 and spring of 2015 semester also
consented to having their ongoing course enrollment data collected and were used as a
comparison (control) group.

The impact of the CCEs on retention was tested through chi square (χ2) analysis for each
of the three retention semesters. Results indicate students in the implementation semester courses
were more likely than students in the control semester courses to continue taking CS in each of
the three retention semesters (see Table 3), and the effect was even greater when comparing
students who did no CCEs (in either the implementation or control groups) and those who
completed at least two CCEs (see Table 4). Thus, these results suggest that in addition to the
impact CCEs have on achievement, CCEs also increase the likelihood that CS students will
continue to take CS courses.

Table 3. Impact of CCEs on Retention Based on Enrollment in Implementation Courses
 χ2 p Cramer’s V

Semester 1 13.88 <.001 .144
Semester 2 21.87 <.001 .193
Semester 3 12.97 <.001 .153

Table 4. Impact of CCEs on Retention Based on CCE Completion (at least two exercises)

 χ2 p Cramer’s V
Semester 1 18.89 <.001 .175
Semester 2 34.84 <.001 .254
Semester 3 25.87 <.001 .227

Conclusion

 Computational Creativity Exercises have been shown to increase undergraduate students’
achievement in CS courses, and new findings indicate they might also increase the likelihood
that students will continue taking CS courses. The effect on retention is notable. Considering the
ongoing concerns about retaining computer science students, the value of learning activities that
boost achievement and increase retention is considerable. The finding that the retention boost is
significant and lasts at least three semesters sets CCEs apart from other researched instructional
practices because, to our knowledge, no other instructional practices have been shown to
increase retention in CS.

5

References

[1] L. K. Soh, D. F. Shell, E. Ingraham, S. Ramsay, and B. Moore, “Learning through computational creativity,” Commun. ACM, vol. 58, no. 8,

pp. 33-35, Aug. 2015.
[2] J. Wing, “Computational thinking,” Commun. of the ACM, vol. 49, pp. 33-35, Mar. 2006.
[3] R. Epstein, S. Schmidt, and R. Warfel, “Measuring and training creativity competencies: Validation of a new test,” Creativity Res. J., vol. 20,

pp. 7-12, Feb. 2008.
[4] M. S. Peteranetz, A. E. Flanigan, D. F. Shell, and L.-K. Soh, “Helping engineering students learn in introductory computer science (CS1)

using computational creativity exercises (CCEs)”, IEEE Transactions on Education, advance online pulication, pp.1-9, 2018. doi:
10.1109/TE.2018.2804350

[5] M. S. Peteranetz, A. E. Flanigan, D. F. Shell, and L.-K. Soh, “Career aspirations, perceived instrumentality, and achievement in undergraduate
computer science courses,” Contemporary Educational Psychol., vol. 53, pp. 27-44, 2018.

[6] L. D. Miller et al., “Improving learning of computational thinking using creative thinking exercises in CS-1 computer science courses,” in
Proc. IEEE Frontiers Edu. Conf., Oklahoma City, OK, USA, 2013, pp. 1426-1432.

[7] D. F. Shell, M. Patterson-Hazley, L. K. Soh, E. Ingraham, and S. Ramsay, “Impact of creative competency exercises in college computer
science courses on students’ creativity and learning,” presented at the Annu. Meeting of the Amer. Educational Res. Assoc., Philadelphia,
PA, USA, Apr. 3-7, 2014.

[8] L. D. Miller, L. K. Soh, and D. F. Shell, “Integrating computational and creative thinking to improve learning and performance in CS1,” in
Proc. 45th ACM Technical Symp. Comput. Sci. Edu., Atlanta, GA, USA, 2014, pp. 475-480.

[9] M. S. Peteranetz, A. E. Flanigan, D. F. Shell, and L.-K. Soh, “Computational creativity: An avenue for promoting learning in computer
science, IEEE Transactions on Education, vo. 60, no.4, pp. 305-313, 2017.

[10] D. F. Shell et al., “Improving learning of computational thinking using computational creativity exercises in college CS1 computer science
course for engineers,” in Proc. IEEE Frontiers Edu. Conf., Madrid, Spain, 2014, pp. 3029-3035.

[11] M. S. Peteranetz, S. Wang, D. F. Shell, A. E. Flanigan, and L.-K. Soh, “Examining the impact of computational creativity exercises on college
computer science students’ learning, achievement, self-efficacy, and creativity,” in Proc. 49th ACM Technical Symposium on Computer
Science Education, Baltimore, MD, USA, 2018, pp. 155-160.

