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Motivation Building Strategies of Mathematics Instruction for 

Undergraduate Students in Mechanical Engineering   

 

 

Abstract 

 

One of the biggest challenges in teaching upper level mathematics-oriented courses such as Fluid 

Dynamics or, Aerodynamics to mechanical engineering students today is the lack of focus and 

motivation. The advantages offered by computing tools today have simultaneously created new 

challenges at the undergraduate instructional level regarding understanding and absorption of 

theoretical modeling concepts. To compound the picture even more, lack of time and career 

goals have modified educational priorities in our students and pose difficulties in integrating 

mathematics with engineering. This paper discusses methods to overcome such barriers without 

compromising the mathematical rigor in learning concepts of applied mathematics. This research 

is supported by implanted strategies in a sequence of courses leading to and culminating in an 

upper level course in computational fluid dynamics.  

There are many alternate outcomes posed by a flipped classroom structure adopted by many 

professors. Past ten years of observed data do not demonstrate deeper understanding of logical 

and analytical models for several reasons which are discussed in the paper. Therefore, this paper 

focuses on motivation building aspects to offer connectivity and slow absorption of applied 

mathematical tools. This research identifies the primary needs of building conceptual inventories 

and contrasts their differences from the theories of learning mathematics. In practice, delivering 

mathematical theories necessary at the upper undergraduate level in mechanical engineering is 

not well executed and some adjustments are necessary primarily at the lower levels. Scaffolding 

with conceptual inventories must be completed with enough time for sufficient reinforcement. 

The results realized in teaching at upper levels are derived from mathematical concepts and 

identifiers reinforced during core courses in mechanical engineering. The paper demonstrates 

such measured steps together with motivation builders as the prescription required in teaching 

calculus and boundary value problems to mechanical engineering students. 

 

Introduction 

 

On a recent examination in Dynamics given to 60 students in two sections team-taught by two 

different instructors, the following question was posed (Figure 1). The question tests the rigid 

body kinematics area covering dynamical concepts of fixed axis rotations in belt drives. The 

mathematically relevant part of the solution requires a simple integration with proper separation 

of variables using the definition of angular acceleration to obtain (t). All formulae from the 

textbook necessary to solve the questions were provided on a single formula sheet copied from 



the inside cover of Hibbeler [1]. Figure 1 also shows on the right the expected solution. For this 

discussion, only part (a) of the question is presented below. 

 

Figure 1. Dynamics question (with solution) requires use of the separation of variables 

 

Figure 2 shows samples of incorrect responses given by more than 80% of students. While 60% 

of students did not perform a proper separation of variables before integration (as seen from the 

answers of eight students), 20% of students used the (equally inapplicable) constant acceleration 

formula.  



 
Figure 2: Typical student responses to the mathematical integration posed on Figure 1 

 

Answers such as the ones presented above are typically received in many engineering programs 

today. Such failures may be blamed in part on the current advances in technology. However, in 

our program we collect and document identifiable data which probe deeper into the causes of 

failure [2], [3], [4]. Both instructors had reviewed and reinforced the relevant mathematical 

concepts in their respective classes because this weakness is a known area of focus in our self-

assessment process [3], [5]. In this research feedback we discuss a procedure which helps 

retention of such mathematical concepts. 

Our Mechanical Engineering (ME) curriculum tracks examination performance of students from 

freshman through junior levels using a carefully redesigned curriculum of engineering science 

core courses (ESCC) and a blended set of applied laboratories. ESCC consists of six core courses 

taught by teams of ME faculty with clearly set educational objectives and managed by a 

coordinator and trained teaching assistants. Though essay type examination questions can 

demonstrate positive learning outcomes, multiple choice questions are better to pinpoint areas of 

conceptual difficulties. After designing and adopting ESCC in 2006, faculty agreed that carefully 

designed multiple choice questions should form an integral part for all examinations in core 

classes. We frequently discuss performance data on conceptual questions and archive them with 

their question banks annually. The details of ESCC are given in [5], [6]. Reference [5] recently 

summarized the performance and recommendations in the solid mechanics sequence.  Thermo-

fluids sequence focuses more on the different approaches to mathematical modeling and aspects 

of competency-based learning, some of which were also described in references [4], [6]. 

 

Mathematics based flow modeling was the only recourse to learn fluid mechanics for much of 

human history. Till the advent of high speed computers, the only means to verify the models 



were by extensive experimentation. With the help of computational fluid dynamics (CFD) 

expensive experimentation has been cut to a minimum even at research levels [7, 8]. Alternate 

methods of optimizing productivity have been developed with the introduction of design of 

experiments [7]. At the education level, computer graphics and supercomputing brought the most 

significant impacts [9], [10]. Problems which could not be conceived as solvable before are 

being routinely completed with machines which may be held in the palm of a human hand. The 

enhanced usage and comfort however produced some new challenges at the undergraduate 

instructional level [4]. Today Internet, I-phones, I-pads, and social media steal much more time 

from our conventional undergraduate education system [11]. In this paper we focus only on the 

challenges in absorption and retention of mathematical concepts, whereas the engineering 

concept inventory will be presented elsewhere. In the past three decades educational research 

developed many thinking and learning theories [12] – [15], [16] – [18]. In engineering education, 

Self-directed competency-based learning (CBL) is quite popular today. We discuss here a blend 

of CBL [15] with conventional pedagogy and suggest a scaffolding process for ME students to 

retain mathematical concepts at the undergraduate level.  

 

Various motivation building strategies have been practiced by our teams with different modes of 

delivery over the years [4], [6], [19] - [21].  These attempts achieved positive results with group 

incentives and cooperative learning strategies [6]. But current challenges [4] require a wider, 

more organized team approach and discussions in an open forum. This paper first identifies 

through examples the areas where mathematical rigor is necessary. Then it presents the emphasis 

on select topics and the advantages and drawbacks of specific pedagogy. Finally, a blended and 

extended approach is suggested as a hopeful remedy for better absorption of mathematical 

concepts. The steps proposed must start from the freshman level and reinforced through the 

senior level, and measured outcomes must be realizable before graduation from the BS program.  

 

Approach 

 

ESCC provides an approach to gather examination data as a direct evidence of learning using 

carefully designed conceptual questions. Together with this, we collect inputs from faculty 

advisors and teaching assistants to provide further proofs of identifying difficult conceptual areas 

from a student’s viewpoint. We quote a few of these areas of mathematics which are critical 

from an engineering student’s needs (cf. Figures 3, 4). Previously ESCC approach was focused 

on curricular improvements through accurate testing methods and collaborative improvement in 

pedagogy. Our approach discussed here is different from a standard mathematics course in 

differential and integral calculus presented to students of mathematics. Instead ours is an 

application-oriented gaged method of reinforcement with incentives. It connects mathematical 

concepts necessary to understand, operate and design an engineering application. For example, in 

the previous question from Dynamics (cf. Figure 1), the vacuum cleaner mechanism was blended 

on purpose with the testing of calculus, together with the point of focus (whether students know 

how to separate variables correctly before integration). But our experience revealed much more 

information about the recent study patterns of our students prompting the preparation of the 

current approach. 



 

A typical flow example may be seen on figure 3. This question was posed as a part of question 1 

on the second midterm examination in Fluids II, which is an upper level elective course. 

 

 
Figure 3: Failure to identify correct order of mathematical operations 

 

80% of the class interpreted the above velocity profile as u(y) = (y – y2)/0.2 instead of the way 

the question intended. In the past five years such errors have received a new attention from 

ESCC faculty. 

 

We continued with velocity profiles and asked students to evaluate shear stress on boundaries 

(Figure 4). We suspected such efforts would fail because most students do not connect to the 

velocity profiles and the information built in them. In this question students mainly struggled 

with the parts (c) and (d) trying to enforce the  =  
𝑉

ℎ
 formula for Couette flows, which they 

had learnt from the prerequisite course taught by a different instructor. The flipped class 

structure adopted by the other instructor apparently worked well in retaining the Couette flow 

shear formula. A similar inapplicability issue was observed before (cf. Figure 1). A few of the 

students also struggled with the units and got incorrect answers. The question demonstrates what 

is typically overlooked from a mathematician’s viewpoint but is very important from the ME 

stand point. The units error emerges from the fact that the numbers 8 and 0.3 in the velocity 

profile have different units but when derivatives are evaluated the stress expression would 

emerge in N/m2 (or Pa) without converting the units on . 

 

 
Figure 4: Working with velocity profiles 



 

After experiencing such rudimentary failures recently, we now recommend that ESCC courses 

should avoid a flipped structure for the following reasons. The most important flaw - it may 

reinforce incorrect logic and misunderstanding acquired in the self-learning process. This 

becomes much harder to correct later. In a group learning environment, students tend to gravitate 

toward choosing their own friends as teammates. If a functional group is not properly balanced 

with complementary skills, incorrect reasoning, inapplicable formulations and damaging 

shortcuts are learnt. A flipped course structure is excellent for learning mathematical skills at 

lower levels where information may be searched, not necessarily understood. Flipped classes are 

favored by many ESCC instructors today [21]. But at upper levels discussed here, a flipped class 

structure has to be modified considerably [22]. When upper level engineering thoughts develop, 

logic [6] and constraint-based scaffolding [23] must be provided by an experienced instructor. 

We present some examples here to elucidate.  

 

Average ME students do not realize (while recalling the definition of slope) that working with 

u(y) is different from working with f(x) in the calculus class. The slope is measured here relative 

to the ordinate (since the dependent variable, u is represented as abscissa and the independent 

variable, y is represented as ordinate). Discussions of velocity and temperature profiles in Fluids 

II correct and/or reinforce these concepts. Similar examples exist in later uses of need-based 

coordinate systems in dynamics which carry over to fluid mechanics [4]. Considerable effort 

must be made to stop students from memorizing mathematical techniques. Initial attempts to 

achieve this last feat meets some student resistance but eventually the effort develops a nice 

rapport between the instructor and the students.  

 

Today ME faculty stopped testing basic mathematical skills because majority of faculty feels it is 

the task of the mathematics department. Some are so focused on engineering applications that 

they would routinely provide students formulae to use and skip over the relevant mathematical 

concepts. Ironically, some faculty members feel that in the age of computers such analytical 

skills are obsolete! However, ME faculty must admit that unless there is discussion and return to 

the basics, a fluid mechanics problem would be incorrectly solved on tests, or at the very least, 

misunderstood. Forgetting analytical skills results in making engineering and computational 

blunders. Our intention is to strengthen the logical basis of thinking (whenever possible, let 

symbolic computing catch and correct the human processing errors [20]) and we do not wish to 

replace analytical thoughts at any cost. We collected some areas of confusion and presented in a 

table below. This collection came from actual tests and quizzes already tested and reported in [4] 

- [6], [19]. 



 

 

Our experience shows that instead of introducing abstract and generalized theories, these 

examples must be created to serve an engineering courses’ needs. We began data collection on 

mathematics-based courses in 2008 [see reference 6] but in the meantime RIT changed from a 

quarter-based to a semester-based system. Therefore, the ESCC program had to be restructured. 

Recently gathered data will be disbursed among the faculty soon so that a proper focus may be 

created by a gaged process of reinforcement through the engineering courses. Such data would 

be considered by the curriculum advisory committees. This paper proposes one such gaged 

measure and reports the initial feedback. 

 

Learning bottlenecks 

 

After gathering over ten years of data in this manner we have always been seeking better 

solutions. But we are constantly challenged by program changes. The first course in fluid 

mechanics is a prerequisite of the Fluids II course. 25 years ago, we would not allow a student to 

take the first course in fluid mechanics before receiving a satisfactory grade in Dynamics, for 

which Statics is a prerequisite. But now Fluids Mechanics is often taken in conjunction with 

Dynamics assuming that the needs for the Reynolds Transport Theorem would be furnished with 

enough of rigid body dynamics coverage simultaneously. Often this causes a learning bottleneck 

because students may not have seen enough of rigid body dynamics and neither have felt quite 

comfortable with sketching both shear and pressure forces on an isolated fluid control volume 

(CV). While sketching a CV the streamline that has to be sketched separately on the centerline of 

the fluid volume by choosing two points on it, which often gets overlooked by students as a 

requirement to apply the Bernoulli equation. To complete the background necessary for Fluids II, 

a first course in heat transfer is a mandatory co-requisite (or, students who took it before would 

Learning mathematics-based ME courses have the following areas of confusion: 

 

1. Confusion due to different terminology, units (cf. Figure 3) 

(e.g., mass flow rate is measured as mass over time, whereas, heat flow rate is measured as 

heat energy over time and area) 

     2.   Recall correctly the order of operations in mathematical expressions (cf. Figure 3) 

     3.   Lack of practice in logical thinking [4][5] 

     4.   Perceptual connectivity of fractions, percentages and decimal numbers [4] 

     5.   Inability to recall essential algebra, geometry and trigonometry from high school 

           mathematics [2][5] 

     6.   Deficiency in pattern recognition of planar figures and mathematical expressions. 

     7.   Lack of connectivity of tangential and cylindrical coordinate systems to Cartesian.  

     8.   Lack of understanding in engineering approximations and assumptions [5] 

     9.   Geometrical meaning forgotten from previously learned mathematical operations in    

           differential and integral calculus. 



also qualify). Thermodynamics is a pre-requisite for Heat Transfer. Thus, the flow of courses 

from Statics and Thermodynamics to Fluids II seems feasible to build a solid foundation for our 

students. Unfortunately, if the CV methods are not learnt well in Fluid Mechanics, development 

of Fluids II differential formulations of fluid and thermal boundary layers suffers a major 

setback. Similarly, if students did not learn the algebraic similarity ideas offered by the 

Buckingham’s -theorem they may find it difficult to understand the flow analogies presented in 

Fluids II, which must provide the basis for the Fundamentals of Computational Fluid Dynamics 

(CFD). A complete review of all fluid flow equations by the CV methods together with 

necessary principles of statics and dynamics is conducted in the first two weeks of the Fluids II 

course. This solves the preparedness check for our dual degree students who choose CFD as their 

terminal elective. The traditional MS students take the sequence of Ideal Flows, Convective 

Phenomena and CFD in their thermal-fluids concentration before thesis work.   

 

Sample results 

 

Here we used a 10-step approach to reach the terminal CFD course in our program. Some 

samples were reported before [6], [19]. The newly organized small steps not only provide 

coherence but have built-in motivational incentives also. They are: 

 

1. Search topics of mathematical significance in the CFD course. 

2. Trace in which engineering science course it was first introduced. 

3. Study mathematical/conceptual preliminaries necessary to understand the topics upon their 

first introduction from a student viewpoint. For example, operations of exponential, logarithmic, 

transcendental, hyperbolic, and inverse functions and their properties would be necessary for 

review to develop connectivity of topics. Refreshing connectivity with geometries help also. 

4. Prepare a set of course notes with complete details of the mathematical preliminaries with 

worked out examples. Students are strongly urged to read these notes along with their textbook.  

5. Discuss course topics that assist recall of related concepts, while offering explanations and 

details where the text may have skipped several steps to achieve the result. 

7. Design examination and quiz questions emphasizing the concepts during reviews. 

8. After grading, promptly return papers to students with comments stressing areas to overview. 

However, do not post solutions yet.  

9. Allow students to brainstorm the missed concepts with the help of instructor provided notes 

and allow them to resubmit the examination or quiz after relearning the topics to obtain better 

grades. Find   average of each new grade and the original grade and replace the original grade by 

the average.  

10. Strictly grade each individual re-submission and expect each answer to be 90 - 100% correct 

mathematically and procedurally. Otherwise grades are unaltered. Then post the solutions with 

your summarized comments to students why some students were not given better grades. 

 

The regrading offer [cf. Appendix] is a great motivator. Although the steps 8 – 10 above take 

extra efforts by the instructor teaching the course for the first time, most students appreciate the 

efforts made by the instructor as pointed out before. Most importantly, the efforts consistently 



improved class averages of over 20% on quizzes and examinations for the past three years. The 

above approach is utilized for our undergraduate program only. However, by tracking students 

who take the graduate Convective Phenomena later we confirmed that they also retained the 

concepts better.  

 

Multiple pathways to the same solution must be clearly explained. These points are elaborated 

further below (see Figure 5). In this question taken from reference [24] (modified by added 

mathematical notes) students are forced to find and sketch streamlines in (r-) coordinates (for 

realizing the benefits of such a coordinate system over a Cartesian coordinate system). Allow 

students to try both systems. Ask them to apply superposition first using stream functions, and 

then using velocity components. Many students would not know how to add or take derivatives 

of inverse tangent functions. Review these. Also introduce concepts of hodographs as future 

study areas which would come a bit later as students mature. In this way, a single problem may 

review several mathematical concepts. 

 

 
Figure 5. Mathematical ease of using a cylindrical system over a Cartesian system 

 

Continue further with ideal flows and establish a logical thought pattern illustrating the 

differences between rotation in solids and fluids. We use the archived movie Vorticity [25] 

together with class examples for this purpose. The instructor asks students to learn from the 

movie (and the concepts therefrom) very much like what a flipped class would ask. However, 

this happens only after the movie is screened in class with complete explanation of the concepts 

by the instructor. For example, Fluids II syllabus does not cover Crocco’s theorem and Kelvin’s 

theorem. Crocco’s theorem relaxes the stringency to use Bernoulli equation only on a streamline. 

Several types of conceptual idealizations practiced by engineers are also learnt from the movie. 

Discuss with contrasting examples how pressure distribution as obtained from application of 

Bernoulli (or Euler’s equation) would yield the same solution as obtained from the superposition 

of ideal flows. Students must understand the concepts of contrasting experiments depicting the 

shear and rotation behaviors. Therefore, Laplace solution in  or  for low-speed flows which 

bypass solving the nonlinear Euler’s equation may fully be understood with advantage in design 

concepts [9]. Ask students to quote such examples on quizzes and discussions. Extending the 

discussion to volume expansion and geometrically presenting the dilatation completes the picture 

without using the solenoidal jargon or tensors. 



 

We emphasize the Reynolds Transport theorem as the single synthesizer for understanding all 

fluid flow conservation laws (very much like Newton’s laws are the synthesizers for both Statics 

and Dynamics). After developing the differential equations from infinitesimally small CVs, a 

preview is offered to students how these may be utilized for marker and cell techniques in CFD 

problems [6]. Finally, when matrices are introduced in CFD, students truly get the complete 

picture of what we mean by solvability of an engineering question from the beginning to the end 

including realization of assumptions and constraints. All 3 types of formulations (e.g., lumped, 

differential and integral [23]) are completely reinforced in the CFD course. 

 

We recommend the following steps of mathematical rigor to overcome the learning pitfalls: 

 

1. Introduce a complete discussion of the limit process of how to shrink a volume to a point or 

changing a secant to a curve to a tangent line demonstrating orientation of the 𝑑𝑟⃗⃗⃗⃗  vector (so that 

they may understand how 𝑉 ⃗⃗  ⃗  × 𝑑𝑟⃗⃗⃗⃗ =  0⃗   represents a streamline) complete with implications in 

n-t and r- systems. 

2. Details of Taylor Series order of approximations with actual numerical examples when the 

order definition may not hold.  

3. Overview of summation formulae for common transcendental functions, and establish the 

connectivity with compound angles (e.g., how sin (A+B) may be used to yield sin 2A or, sin 3A) 

4. Clearly establish the understanding of a well-posed problem using a lumped, differential or 

integral approach. 

4. Sketch a tiny volume and write conservation laws using first order approximations, then show 

the transition to differential equations including dividing by the volume before limits. As an 

example, each term of Navier-Stokes equation for incompressible flows expresses force per unit 

volume. Continue with simplifications to various applications in two and three dimensions. 

5. Discuss concepts in creation of a boundary condition by using a stretched CV. 

6. Thoroughly review dimensional analysis for algebraic and differential equations.  

7. Discuss regimes of fluid flows beginning each time with the conservation laws.       

 

Do not allow students to make any assumptions that are not necessary. The assumptions 

memorized are not understood. Some instructors state assumptions immediately after starting an 

engineering solution, which should be avoided. If instead students discuss in groups the 

advantages and disadvantages of making assumptions (help them understand the connectivity to 

formulations), assumptions would be remembered and recalled more easily. It is necessary to 

create a few counter examples for this purpose. For example, instead of assuming a fully-

developed flow it is better to assume a parallel flow and use it consistently to simplify continuity 

and momentum equations. Give practical examples of dimensionality and connections to velocity 

components. 

 

Recommendations for ESCC faculty 

 

1. Search which course or courses may reinforce mathematical concepts.  



2. Open a faculty dialog in the program to see if other faculty members teaching elective courses 

may be willing to participate in the reinforcement process. Emphasize that without the 

reinforcement, the topics would be lost soon. 

3. Monitor performance improvements and learning willingness in students (see appendix). 

4. If necessary adjust course grades when students are willing to improve themselves. Re-grading 

requires a willful participation of students to relearn from the distributed resources.  

 

The above process also prepares better future faculty members.     

 

“Rarely, if ever, do we concern ourselves with the process of education, the long-term 

effectiveness of our efforts, the instrument of learning (i.e., the student), and the 

anatomic/physiologic constraints that impede or enhance both the learning and the teaching 

process…”                                                                                              …… [27]                                                                                                         

 

Discussions 

 

In this research we have documented some experiences with different aspects of CBL. We 

blended experiential and team-based learning in our revised approach. Most literature related to 

engineering education practice in the United States overlooks an important fact. For example, 

reference [15] states “in this system of instruction (referring to CBL), students cannot advance or 

be evaluated for a new competency until they have mastered the prerequisite materials. Thus, 

students receive differentiated support based on their pace of learning”. For some time, RIT 

adopted a similar strategy of mathematics instruction. But our experience shows that weak 

students need to understand mathematics more than simply use formulae to solve an engineering 

question. Does it really matter to the average students (who do not have enough time to master 

topics)? We (faculty) must assist students to achieve connectivity and implement self-learning 

practices at the same time. It is therefore important not to overwhelm them. One drawback of 

CBL is compartmentalization. Since learning never happens in a straight line, it is important to 

see the global picture, while understanding why the assumptions are relevant to simplify models. 

A formulation may never be fully understood by picking the correct equation from a set of 

alternates. However, such a form of multiple-choice question is often chosen by some ESCC 

faculty. Our experience shows that students often pick incorrect equations later from ME 

handbooks and the Internet. Instead we recommend that time would be well-spent to train 

students why and how to construct mathematical equations from some simple concepts. In this 

paper we described a scaffolding approach which stretches time and motivates students to 

become self-learners.  

 

Conclusion 

 

The axioms of learning are quite different at the undergraduate from the graduate level. For 

example, research-based exposure may be delivered successfully to highly motivated 

undergraduates with excellent mathematical background. For them, the APOS [16] theory would 

be ideal for describing stages of learning. It is fully researchable for developing instructional 



strategies. On the other hand, Perry’s scheme [23] is not fully describable from an analytical 

viewpoint. But a “nudge is always the best”. From the student perspective, instructional delivery 

expectations and measure of student efforts have become major contributing factors on the 

retention and demonstration of learning [17, 18]. Therefore, the process adopted in this paper is a 

careful blend of pedagogy with mathematical interpretations of fluid mechanics problems and 

connectivity achieved through a time-tested, motivational reinforcement process. We hope that 

students trained using our approach would be less afraid to face any analytical challenges. 
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Appendix 

 

Each quiz or test given in the Fluids II class is designed to test individual proficiency. However, 

over the years while experimenting with group learning [4], [6] we discovered a strong grading 

incentive that works well with students. Therefore, our proposed course structure used an 

effective combination of group learning and specially prepared detailed course notes. After the 

first (background check) quiz the following e-mail (boxed below) was sent to the class giving 

students another opportunity to relearn the topics. The quiz 1 mentioned below was multiple-

choice type. Many students would guess answers on such questions. But the condition for 

regrading such quizzes was they must learn the correct reason/s for each of the missed question 

by reading notes, or by discussions with groupmates or others. This worked very well. In fact, 

our data shows a consistent interest among students. Further tracking some of the students from 

Fluids II to the Convective Phenomena course, we found they retained these relearned concepts 

later, and thus have performed well on the background check quizzes. The e-mail read  

 



 

 
 

 

 

Some samples of student comments from ESCC Course Evaluations after Fluids II: 
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