
Paper ID #21623

Single-board Computer Used for Network Streaming Audio Player TFT Touchscreen-
based Application

Dr. David Border, Bowling Green State University

David A. Border, Ph.D., holds a principle research interest in electronic information systems. This field
includes digital communication and networking and intelligent networked devices. His work includes
wireless sensor networks. Prior research included work on signal bandwidth compression and signal
specific data encoding techniques. His technology application interest includes networked systems. Typ-
ical teaching duties include junior- and senior-level courses in the Electronics and Computer Engineering
Technology (ECET) program. Within this course set are the curriculum’s networking and communication
courses. As is true with his ECET faculty colleagues, Border supports the program with teaching assign-
ments, as needed, in freshman- and sophomore-level courses offerings. Examples of these include the
sophomore level electric circuits and digital electronics courses. Border teaches a digital communication
graduate course within a Ph.D. Consortium Technology Management program, as well as other graduate
level courses at BGSU.

Border served as interim department chair of the Engineering Technologies department. He served as
chair of the university Faculty Senate curriculum and academic affairs committee. He is chair of the
University Faculty Senate.

c©American Society for Engineering Education, 2018

Single Board Computer used for Network Streaming Audio
Player TFT Touchscreen-based Application.

New microcontrollers have become widely available that far exceed the capabilities of microcontrollers
marketed a decade ago. Because of increased bus sizes that boost memory addressing and data transfer
rates, the new microcontrollers are capable of hosting an OS system. Thus, they have transitioned from
hosting dedicated applications to hosting many applications. Often these devices are referred to as
single board computers.

The physical product created herein was a network streaming audio player on a single board computer.
The hardware platform chosen was an Odroid-C1. The board features a multicore RISC architecture
ARM processor. Like other single board computers of its class, it features much RAM, as well as
eMMC memory which acts as “disk” memory. The base unit features an abundant array of connections
to the outside world, including 40 GPIO pins, four USB ports for keyboard, mouse, WiFi USB device,
plus separate RJ45 Ethernet jack, plus micro-USB and micro-HDMI ports. Odroid markets a platform
compatible 3.2” TFT touchscreen display for use with the C1. In this project, the programmed
touchscreen provides a user-friendly kiosk-like interface. The HMDI port acts as the streaming audio
output port.

Project software development intentionally sought to leverage the strengths of a fast and lightweight
Ubuntu Linux variant, Lubuntu. QtCreator is the software Integrated Development Environment (IDE)
for programming, chosen for its Graphics User Interface (GUI) programming reliability. As a whole,
the completed project integrates diverse software development tasks, from program scripting, to work
with windowing systems, to event-driven software. The skill sets needed by the project are
enumerated. The implementation of a network streaming audio player was not a strenuous task. The
working product is reliable and user-friendly. Two different course sections received a lecture on the
completed work. The students were surveyed and the survey results were analyzed.

I. Introduction

Faculty who must deliver upper-level microcontroller/microprocessor curriculum content have relied
on producing component level skills and aptitudes in the students. It matches well with the subject
matter and presentation of knowledge in textbooks. Reliance on developing electronics and computer
component level knowledge to the exclusion of other knowledge has its critics [1].

Broadly said, this work addresses, in part, the program's electronics and computing faculty concern that
the program must make room for "timely content" in our semester length
microcontroller/microprocessor curriculum. It must reach for a theme that could not be reached by
simply gluing component skills together. It must exercise “integrating skills” helpful to success in
senior projects and internships. It must not consume too much class time or laboratory resources.

The general theme of the work is a kiosk-style music player. The player's "interface" is touchscreen-
based; powered by a microcontroller-based single-board computer. Table 1 lists the desired attributes
of a single board computer and its operating system.

Rugged Hardware Low Cost

No Hardware Modifications
Required

Rich Development Environment

Rich Device Management

Table 1. Desired Machine Attributes

The hardware platform chosen was an Odroid-C1 [2]. It was a single-board computer and worked at
room temperature with no heat sink or fan. Like competitors products [3, 4, 5, 6] in academic use, it
was low cost, under $120 with touchscreen included. No hardware modifications were needed. Its
four USB ports, one HDMI port, one mini-USB port and one RJ45 Network jack allowed ample I/O.

The audio theme seemed tailored to the Odroid as the C1 onhand had successfully been tested playing
audio streams, (however it was less than a total success with video media players). The board features
a multicore RISC architecture ARM "microcontroller family" processor.

Its Linux kernel and Lubuntu distribution proved a productive development environment and the
device management (Linux device manager “udev”) handles all needed peripherals. From prior work,
the Linux distribution exhibited good system “responsiveness” during web-browsing (providing video
streaming was avoided!), and during use of desktop applications, such as office suite software.

The work of the project divides into four tasks, shown in Table 2. Subsequent sections examine each
task.

Identification of Student Knowledge Set (Needed Knowledge)

Creation of Network Streaming Audio Device

Consideration of Placement of Work into existing
Microcontroller/Microprocessor Course

Presentation of Work to Students

Table 2. Project Tasks

The goals of the work are straightforward. The project equipment should be found suitable for
laboratory work. The skill sets needed by the project should be enumerated. The implementation of a
network streaming audio player should not be a strenuous task. The working product should be reliable
and user-friendly. The demonstrated product should appeal to students.

II. Needed Knowledge

What knowledge is needed to complete the project? What is likely known by students? What is likely
unknown by students? These are questions Table 3 addresses. Remedies, where needed, are cited.

Potential Knowledge Categories Known
by
Students?

If Yes, Explain If No, Cite Remedy

Connecting peripheral devices Yes General
knowledge

Installation of OS on Odroid, TFT
Touchscreen Support, etc.

No Pre-install OS on eMMC
memories

Installation of Applications on OS No Pre-install applications on OS

Use of Linux configuration files No Provide examples and references
for the few configuration files
needed in the project

Use of Linux automatic program
startup

No Provide reference on how to cause
auto program startup

Use of Linux scripting No Provide instruction in lecture

Knowledge of the Linux
Command Line Interface

No Provide information in class;
information can be modest.

Knowledge of Linux Device
Naming and File Systems

No Provide information in class;
information can be modest.

Knowledge of Media Players Yes Gen. Knowledge

Knowledge of Window managers No Provide instruction in lecture

Use of GUI designers No Instruct students. Also make
comparisons to Microsoft Visual
Studio, National Instruments
Circuit Designer, and Altera
Quartus II Block Editor FPGA
designers seen in prior courses.

Use of C programming inside
GUI designer

Yes Introductory
C++ course /
Microsoft Visual
Studio

Table 3. List of Knowledge of Potential Importance

As indicated in the table, a prerequisite for the existing microcontroller/microprocessor course is an
introductory course on C++ programming. The course textbook used is Gladdis’ “Starting Out With
C++ from Control Structures to Objects.” The students make use of Microsoft’s Visual Studio
development integrated development environment (IDE). This IDE-based work should be adequate
preparation for students to write code in the GUI designer. However, the students have no prior course
navigating the designer. Instead, they have general experience navigating the National Instruments
Circuit Designer and Alteris Quartus II FPGA designer. Success using the GUI designer will require a
modest amount of classroom student instruction.

Since Linux distributions include a user-friendly GUI desktop environment, the table 3 entries
concerning the “Linux Command Line Interface” and “Device Naming and File Systems” represent
somewhat limited knowledge bases. Linux configuration files, automatic program startup, and Linux
scripting are contextually in proximity to one another. Each speaks to the "unobserved" way in which a
Linux Developer gets useful work done. The number of configuration files discussed in this work is
small.

In Table 3, two "knowledge-based" skills necessary for project completion are not class content
material. Hidden from the student is specialized preparation work on the master eMMC memory
modules (Figure 1 shows an eMMC module plugged into the Odroid). The module preparation is:

a) Install the Linux distribution. It is an “inflate and install” process.
b) Add specialized software applications needed for programming.
c) Add hardware drivers and configuration needed for specialized hardware.

Note: In practice two eMMC modules needed preparation. One module for
code-development work (items a&b, above), the other for the actual “target”
kiosk device (items a&c, above). The later eMMC module will have the 3.2”
TFT touchscreen hardware drivers installed, and the OS configured to treat
the screen as the “main” system monitor.

Figure 1. Linux Distribution eMMC Module Plugged in the Odroid Single Board Computer

III. Creation of Network Streaming Audio Device

QtCreator [7] is the GUI designer chosen for the project. It is a stable cross-platform application that is
both versatile and mature. The design was laid out rapidly to establish the inputs and outputs for the
front-end graphic as it is the operator’s interface for the network streaming audio application. Shown
in Figure 2 is the design layout. Placing the “pushbutton” components design buttons onto the window
is a drag and drop operation. The layout uses seven "pushbuttons."

Figure 2. GUI design

The QtCreator “Widgets” design application builds the various files for the project. Figure 3 shows the
components.

Figure 3. Project Files within a Widgets-based QtCreator Project

The "mainwindow.pro" file, the "mainwindow.h" file, the "main.cpp" should not be hand-edited by the
programmer. The mainwindow.pro file tells the compiler which files are source files, headers, and so
forth. The mainwindow.h file references each container's graphic-objects (so-called "public slots"). All
are "pushbuttons" for this work. The mainwindow.ui file is coded indirectly by the programmer. Its
contents result from the designer's "drag and drop" work. The programmer edits the mainwindow.cpp
program file. It has the handles for the pushbutton events, such as "button press."

The mainwindow.cpp content customizes the GUI. A series of flowcharts were drawn to direct the
program coding. Figure 4 shows the flowchart for the coding of Pushbutton “PB” (refer to Figure 2,
for the location of PB).

Figure 4. Flowchart for Pushbutton PB

Each flowchart block needed implementation in C. A few of the flowchart blocks use the "system"
function call (found in "stdlib.h"). Since the work implements a pushbutton-navigated user interface,
there are coding commonalities throughout the work. Table 4 shows sample C language instructions
used.

Command Function

ui→ pushButton →setEnabled(false); Turn off pushbutton PB (disables and dims).

ui → pushButton_7 → setEnabled(true); Turn on pushbutton PB7 (enables and
brightens).

sleep(1); One second delay. Programmatic delays are
sometimes necessary when interacting with a
user-operator.

system(“sudo -u odroid mplayer -loop 0 -playlist
http:// (etc., etc.)”);

Start mplayer. Play audio stream from given
URL. Loop on “reconnect” if connection is lost.

system(“killall -9 mplayer&”); Kill any instance of a mplayer

system(“sudo – u odroid pianobar&”); Start pandora application (run in background)

system(“sudo -u odroid echo -n ‘s’
>/home/odroid/.config/pianobar/ctl&”);

Send command to pandora control file to force
change of station dialog.

system(“sudo -u odroid echo ‘0’
>/home/odroid/.config/pianobar/ctl&”);

Send command to pandora control file to send a
zero (in the context of selecting station “0”).

Table 4. Sample C Language Commands used to Implement Streaming Logic

Pianobar, the Pandora executable program, was tested separately before writing the QtCreator design.
The pianobar configuration file (i.e., /home/odroid/.config/pianobar/config) was edited to contain the
proper connection information including the username, password, and the web client security string
that must match the security string at the Pandora server. Also, the operation of the fixed FM station
was tested separately using mplayer. Tests used the Linux command line interface.

QtCreator program coding is written into mainwindow.cpp to handle object events. The application
determines the required initial conditions. For this work (1) the fixed FM station button and the
Pandora Service button are initially enabled, and (2) remaining buttons are initially disabled. See
Figure 6. After program start, the event-handling code determines work dynamics. The event handling
actions for all pushbutton events were coded. Chief features used are pushbutton enable/disable
(brighten/dim). The project was debugged and tested. The coding work was successful.

Figure 6. Starting Point for Operation, 5 Pushbuttons “Not Enabled”

Work included making the player available via a "clickable" desktop text file. The network streaming
audio application was then successfully started on a "mouse button click." That same desktop text file
was copied to the"/.config/autostart" system directory. Application desktop text files in that directory
automatically start after boot. The system was rebooted and tested. The network streaming audio
player's operation from boot worked well.

IV. Consideration for Placement of Work into existing Microcontroller/Microprocessor Course

It is likely that most microcontroller/microcontroller courses teach the Serial Peripheral Interface (SPI).
Teaching the Odroid's 3.2" TFT touchscreen in depth means teaching SPI. The LCD touchscreen
module uses the well known Iliek driver chip. The Iliek chip uses SPI [8]. Figure 8 shows interface
specifications. For classroom illustration, captures and dumps of SPI data traffic going from the
touchscreen to the OS can be shown using a Linux command line program.

Figure 8. SPI Touchscreen/Driver Interface to Odroid GPIO Lines

Based on the hardware used, student instruction on small consumer electronics communication
peripherals is possible. For example, the network streaming audio device uses an HDMI monitor as the
audio output device. A consumer electronics HDMI video/audio splitter module splits project output
audio to, (1) a speaker set or, (2) a Bluetooth transmitter. Instruction concerning the design of the
HDMI/splitter would be a good course topic; many microcontroller/microprocessor courses include the
digital to analog converter (DAC) (the heart of the HDMI audio splitting work) in their course outlines.
If a Bluetooth module transmitter is used to transmit audio, course instruction in the basics of Bluetooth
might also have value.

Hardware/Software topic mix would also be of interest. Typical students are unaware of events in the
past decade that have resulted in microcontrollers evolving from machines running code to machines
running an operating system. With microcontrollers crossing from 16-bit architecture to 32-bit
architect, the address space, and so forth, became appropriate to host Linux distributions. Instruction
on Linux topics has value. The Internet of Things [9] and the Internet of Everything is making more
room for Linux powered concepts.

The software topic alone is an interesting topic to explore. While Linux can host the spectrum of
computer language tools, spanning scripting, interpretive, and compiled languages, in this work coding
centered on the use of the system function call. It was used to start and kill applications (Table 4).
However, widening the scope of the project work widens the depth of student software work.

Figure 9. Data Collection and Analysis Opportunities

Consider the data collection (data logging) and analysis opportunities in the project (Figure 9). An
active music feature (e.g., mplayer) produces text data that contain pertinent system information.
Mplayer returns metadata about the current music by song artist and song title. Pandora (pianobar)
returns, playlist, artist, song and station system information. Pushbutton event action handling in the
GUI code provides the opportunity to record the current state of the device, such as “mplayer in use” or
“Pandora in use.” Given that the network streaming audio program is named “XYZ,” invoking the
capture of mplayer and pianobar output is done with a simple output redirect in the program startup
command:

XYZ &>> ./music_log &

All mplayer and Pandora information is in the log file. The data can be programmatically analyzed. A
possible companion task is to code a GUI program to display parsed data as current and recent song
information.

V. Presentation of Work to Students

Two different course sections received a lecture on the completed work. The first was a junior level
course section in microprocessors. The second was a freshman level “survey” course section in

electrical/electronic systems. The presentation included a slide-based lecture, a short demonstration of
the QtCreator GUI designer tool and operation of the network streaming audio player.

The lecture divided into four themes, with themes shown in Table 5. Figure 10 shows the hardware for
the demonstration. The hardware used was the Odroid C1 with WiFi, HDMI to analog audio converter
module and external speakers. A remote desktop protocol (RDP) connection between the classroom
computer/projection equipment allowed the Linux desktop environment to be displayed. The
demonstration included QtCreator. Table 6 shows the Survey tool for the guest lecture. The tool used a
five-point Likert Scale; see Figure 11. The student surveys outcomes are in Figure 12 and Figure 13.
Surveys are analyzed the next section titled "Conclusion."

Themes Work Goals

Comparison of current laboratory hardware and project work hardware

Capabilities of project hardware/software

Developing GUIs with QtCreator

Table 5. Presentation Themes

Figure 10. Demonstration Hardware

Figure 11. Likert Scale used in Surveys

Q1. Prior to this lecture I was aware of “single board computers” such as the Raspberry Pi and
 Odroid.

Q2. Prior to this lecture I was hoping to see lecture and lab content on “single board computer” in the
 program.

Q3. Based on this lecture lab content on “single board computers” should be in the program’s courses.

Q4. I learned from this lecture.

Table 6. Student Survey Tool

Figure 12. Survey Results, Audience: Junior Level Microprocessor Class Section

Figure 13. Survey Results, Audience: Freshman Level Electrical-Electronics Systems Class Section

VI. Conclusion

An Odroid-C1 had been on hand in the academic department office since the summer of 2015. It was
used to run a “welcome center” display. It did that job nicely over a semester, executing a slide show in
continuous mode. So, the device was not a total unknown, but close to it. However, working with the
device in the laboratory proved enjoyable. The device has been in continuous use for two semesters
and is extremely reliable. In code development work with QtCreator, the design application has never
crashed. In development work testing media player applications, neither the application or machine
crashes. When running the network streaming audio player, the only “crash” is at the network-side
beyond the Odroid. Even then, the “-loop 0” switch, used when invoking mplayer, causes mplayer to
patiently attempt a reconnection to the “external source” media server. The Lubuntu OS proved to be
very stable.

During operation of the player, the touchscreen hardware and driver operated flawlessly. The limited
screen-size (3.2”) was no hindrance for the project. There was ample space to place the seven
pushbuttons. Highly user-friendly. For everyday general desktop operation the touchscreen is too
small to be user-friendly. For general work, the Odroid-C1, with USB keyboard and mouse, connects
to a monitor through the HDMI port. For the demonstration of the Odroid “look and feel” to an
audience a remote desktop connection was used to provide a comfortable user terminal. To make the
RDP-based connection, all that is needed is knowledge of the username, password, and Odroid’s IP
address; a small GUI program was built to return the IP address of the Odroid-C1 with just a point and
click.

The program development went quite well. QtCreator builds a very nice GUI form; dropping
“widgets” into the workspace is easy. Working out the needed program logic when processing an
event, such as a pushbutton action, is an interesting exercise. Table 4 illustrated program code
examples used this application. Nothing insurmountable. The code making use of the “system call” is
testable at the Linux command line interface (CLI). The project itself lends itself to an “incremental,”
or iterative development methodology. The Linux command line tested all the media players before
writing hard code. The GUI programming can initially implement just a few features; troubleshoot
features; then recode for greater functionality. At no point in the project development was there
scrapping of hardware, software, or OS distribution, or contacting vendors, because the project had hit
a block.

The demonstration of the project to students was without difficulties. As expected, both
demonstrations had no equipment failures. Both lectures had good attendance. Lecture material was
identical for both presentations. As stated earlier, one presentation was to a freshman level class; the
other was to a junior level class. Here are some relevant facts about the audiences:

Students were in mandatory program courses.
Students in the freshman course include non-majors.
Students in the junior level class should have already completed one semester-length internship.

Both classes indicate they learned from the demonstration/lecture (Q4). However, the classes show
differences in their Q1, Q2, and Q3, responses. The junior level class response indicates nearly all
students were aware (Q1) of single-board computers. The freshman class response indicates just over
half the class were not aware (Q1) of single-board computers. Question Q2 rates a “program
expectations” statement about single-board computers; a strong majority of the junior level class

indicates that share the “given” expectation. Whereas, the ambiance of Q2 for many in the freshman
class is very evident.

Assuming the students read the question correctly, Question Q3 measures the persuasiveness of the
demonstration. It, Q3, can be read in conjunction with Q2; using Q2 as the "before" case and "Q3" as
the “after” case (see Figure 14). Based on the lecture contents, over half of the students in freshman
class agreed that single-board computer content should be in the program. The junior class also
contains the "Q2 to Q3" shift. All junior level students agreed that single-board computer content
should be in the program.

Figure 14. Student Audience Response for Q2/Q3 Question Pair

As a result of this work, we have all the necessary material for a regular one-class lecture in the
freshman and sophomore courses mentioned. The next step will be to create a lab class experiences for
each course. This project work is appropriate junior laboratory material. By subtracting the audio
work and transposing the GUI interface into a “pushbutton” exercise, the work can be fitted easily into
the freshman level course. The metadata and record of user pushbutton actions, mentioned in Figure 9,
provides a real opportunity to have students code data collection and data analysis programs. Since the

Odroid can support web servers (e.g., Apache), any data synthesis or operational analysis work
performed (and stored) could be made accessible to remote client devices. By extending the work and-
or modifying the premise of the “network streaming audio” player work, a student could invent a new
work proposal suitable for a senior project.

References

1. Chu, P. P., & Yu, C., & Hamlen, K. R. (2017, June), Board # 23 : Integrating Computer Engineering
Lab Using Spiral Model Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus,
Ohio. https://peer.asee.org/27810

2. Roy, R., & Bommakanti, V., Odroid-C1 User Manual. Odroid Magazine, August 2015.
https://magazine.odroid.com/wp-content/uploads/odroid-c1-user-manual.pdf

3. Husseini, N. S., & Kaszubski, I. (2017, June), Incorporating the Raspberry Pi into laboratory
experiments in an introductory MATLAB course Paper presented at 2017 ASEE Annual Conference &
Exposition, Columbus, Ohio. https://peer.asee.org/28514

4. Gilreath, J. W., & Bou-Saba, C. (2015, June), An Advanced Streaming Internet Radio Player with
Raspberry Pi Paper presented at 2015 ASEE Annual Conference & Exposition, Seattle, Washington.
10.18260/p.23509

5. Sobota, D., & Karlovits, S. W., & Khan, A. S. (2017, June), Senior Project Design: A Smart Pantry
System Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio.
https://peer.asee.org/28820

6. Basu, D., & Purviance, J. S. G., & Maczka, D. K., & Brogan, D. S., & Lohani, V. K. (2015, June),
Work-in-Progress: High-Frequency Environmental Monitoring Using a Raspberry Pi-Based System
Paper presented at 2015 ASEE Annual Conference & Exposition, Seattle, Washington.
10.18260/p.25103

7. Vernier, M. A., & Wensing, P. M., & Morin, C. E., & Phillips, A., & Rice, B., & Wegman, K. R., &
Hartle, C., & Clingan, P. A., & Kecskemety, K. M., & Freuler, R. J. (2014, June), Design of a Full-
Featured Robot Controller for Use in a First-Year Robotics Design Project Paper presented at 2014
ASEE Annual Conference & Exposition, Indianapolis, Indiana. https://peer.asee.org/20260

8. Chu, P. P. (2017, June), Integrating Computer Engineering Labs with "Video Theme" Paper presented
at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/28549

9. Mullett, G. J. (2016, June), Teaching the Internet of Things (IoT) Using Universally Available
Raspberry Pi and Arduino Platforms Paper presented at 2016 ASEE Annual Conference & Exposition,
New Orleans, Louisiana. 10.18260/p.26053

https://peer.asee.org/27810
https://peer.asee.org/28549
https://peer.asee.org/20260
https://peer.asee.org/28820
https://peer.asee.org/28514

	Single Board Computer used for Network Streaming Audio Player TFT Touchscreen-based Application.

