
Paper ID #21209

Translating the Instructional Processor from VHDL to Verilog

Dr. Ronald J. Hayne, The Citadel

Ronald J. Hayne is an Associate Professor in the Department of Electrical and Computer Engineering at
The Citadel. He received his B.S. in Computer Science from the United States Military Academy, his
M.S. in Electrical Engineering from the University of Arizona, and his Ph.D. in Electrical Engineering
from the University of Virginia. Dr. Hayne’s professional areas of interest include digital systems design
and hardware description languages. He is a retired Army Colonel with experience in academics and
Defense laboratories.

c©American Society for Engineering Education, 2018



Translating the Instructional Processor from VHDL to Verilog 
 

 

Abstract 

 

An Instructional Processor has been developed for use as a design example in an Advanced 

Digital Systems course.  The system was originally modeled in VHDL and was simulated using 

Xilinx design tools to demonstrate operation of the processor.  The design model can also be 

synthesized and implemented in hardware on a field programmable gate array (FPGA).  The goal 

of this project was to translate the Instructional Processor into the Verilog hardware description 

language, while maintaining the same operational characteristics. 

 

VHDL and Verilog are IEEE standard languages used for the development and testing of 

hardware designs.  Used correctly, these languages describe hardware constructs, which can be 

implemented using computer aided design tools.  These synthesis tools have their own design 

guidelines, which align modelling techniques with standard library modules such as multiplexers 

and registers.  The process of translating the Instructional Processor from VHDL to Verilog has 

also resulted in several key insights and lessons learned.  These range from correct use of signal 

types and library functions to important differences in simulation versus synthesis tools.   

 

The Instructional Processor has been successfully translated from its original VHDL to an 

equivalent Verilog model.  By focusing on describing each hardware component, rather than just 

revising syntax, the design maintained its functional integrity.  The hardware synthesized by the 

Xilinx tools was very consistent in both device utilization and system timing.  The project was a 

success and the Instructional Processor continues to be a valuable instructional tool, now 

available in two languages. 

 

Introduction 
 

Teaching digital design involves use of many examples including counters, registers, arithmetic 

logic units, and memory.  The design of a computer processor combines these components into 

an integrated digital system.  An Instructional Processor has been developed for use as a design 

example in an Advanced Digital Systems course at The Citadel [1] - [3].  The simple architecture 

provides sufficient complexity to demonstrate fundamental programming concepts.  The entire 

system is modeled in VHDL and can be simulated to demonstrate operation of the processor.  

Memory-mapped I/O provides the external interfaces necessary to demonstrate an example 

microcontroller application, when synthesized to an FPGA. 

 

VHDL and Verilog are IEEE standard languages used for the development, verification, 

synthesis, and testing of hardware designs [4], [5].  While their language reference manuals 

specify the formal syntax used to model designs, they should not be mistaken for simple 

programming languages.  Some language constructs should only be used for simulation, while 

others are only suitable for synthesis [6], [7].  Used correctly, these languages describe hardware 

constructs, which can be implemented using computer aided design tools.  These synthesis tools 

have their own design guidelines, which align modelling techniques with standard library 

modules such as multiplexers, decoders, registers, and memory [8]. 



The goal of this project was to translate the Instructional Processor into the Verilog hardware 

description language, while maintaining the same operational characteristics.  While there are 

language translation tools available, these mainly convert syntax between the languages and only 

support a subset of the overall language constructs [9], [10]. These tools still require significant 

human intervention to produce a functional result.  The approach taken here was to focus on 

modelling hardware constructs, rather than simply looking at variations in syntax.  The resulting 

design model replicates simulation results for a range of test programs, while also maintaining 

the same hardware timing constraints for the FPGA implementation. 

 

Instructional Processor Architecture 

 

The instruction set architecture of the example processor has been designed to illustrate multiple 

operations and basic addressing modes.  It is based on a three-bus organization of a 16-bit data 

path with a four-word register file (REGS) [11].  Key registers include:  program counter (PC), 

instruction register (IR), memory data register (MDR), and memory address register (MAR).  

The most recent update includes a subroutine STACK and a higher capacity, 4K word by  

16-bit, MEMORY [2].  The complete data path and memory map are shown in Figure 1. 

 

 
 

Figure 1.  Data Path and Memory Map for the Instructional Processor. 
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The control unit for the Instructional Processor uses a step counter to generate a sequence of up 

to eight time steps.  These time steps are used to determine the order of the control signals issued 

to the data path for the fetch and execute sequences.  Decoding of the instruction is accomplished 

by four decoders (DCD) connected to specific fields of the IR.  The organization of the control 

unit is shown in Figure 2. 
 

 
 

Figure 2.  Control Unit Organization for the Instructional Processor. 

 

VHDL and Verilog Models 

 

Keeping the focus on modelling hardware, rather than variations in syntax, VHDL and Verilog 

are more similar than different.  Concurrent combinational logic, such as an arithmetic logic unit 

(ALU) or multiplexer (MUX), can be implemented using language specific signal assignment 

statements.  Both languages can also model clock triggered sequential logic, such as a register or 

counter, using process or block statements.  In addition, both VHDL and Verilog support design 

abstraction using behavioral or structural modelling constructs. 

 

The Verilog version of the text that the Instructional Processor was designed to support contains 

a list of important guidelines to model and synthesize hardware [12].  Some of these include: 

 If possible, use concurrent assignments (assign) to design combinational logic. 

 It is possible to use procedural assignments (always blocks) to design either 

combinational logic or sequential logic. 

 When procedural assignments (always blocks) are used for combinational logic, use 

blocking assignments (e.g., ‘=’). 

 When procedural assignments (always blocks) are used for sequential logic, use non-

blocking assignments (e.g., ‘<=’). 

 Do not mix blocking and non-blocking statements in an always block. 

 

As an initial example of translating a VHDL model into Verilog, consider the 4 x 16 Register 

File shown in Figure 3.  The first part of the VHDL model is the entity, which describes the 

input/output interface, shown in Figure 4.  The equivalent Verilog module is shown in Figure 5.  

Each model defines both the size and direction of all external signals. 
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Figure 3.  REG4:  4 x 16 Register File. 
 

entity REG4 is 

  port(CLK, REGS_Read1, REGS_Read2, REGS_Write: in std_logic; 

       Addr1, Addr2: in std_logic_vector(1 downto 0); 

       Data_In: in std_logic_vector(15 downto 0); 

       Data_Out1, Data_Out2: out std_logic_vector(15 downto 0)); 

end REG4; 

 

Figure 4.  VHDL Entity for REG4. 
 

module REG4(CLK, REGS_Read1, REGS_Read2, REGS_Write, 

            Addr1, Addr2, Data_In, Data_Out1, Data_Out2); 

  input CLK, REGS_Read1, REGS_Read2, REGS_Write; 

  input [1:0] Addr1, Addr2; 

  input [15:0] Data_In; 

  output [15:0] Data_Out1, Data_Out2; 

 

Figure 5. Verilog Module for REG4. 
 

The internal function of the VHDL model is specified using the architecture shown in Figure 6.  

It defines the internal register array and the synchronous and asynchronous behavior of the 

signals.  The equivalent Verilog model is shown in Figure 7.  It also models the timing behavior 

of the signals as well as the use of tri-state buffers, indicated by high-impedance Z. 
 

architecture Behave of REG4 is 

  type RAM4 is array (0 to 3) of std_logic_vector(15 downto 0); 

  signal REG4: RAM4 := (others => X"0000");   

begin 

  process(REGS_Read1, REGS_Read2, Addr1, Addr2) -- async read 

  begin 

    if REGS_Read1 = '1' then 

      Data_Out1 <= REG4(conv_integer(Addr1)); 

    else 

      Data_Out1 <= (others => 'Z'); -- high impedance 

    end if; 

    if REGS_Read2 = '1' then 

      Data_Out2 <= REG4(conv_integer(Addr2)); 

    else 

      Data_Out2 <= (others => 'Z'); -- high impedance 

    end if; 

  end process; 
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  process(CLK) 

  begin 

    if rising_edge(CLK) then -- synchronous write 

      if REGS_Write = '1' then 

        REG4(conv_integer(Addr2)) <= Data_In; 

      end if; 

    end if; 

  end process; 

end Behave; 

 

Figure 6.  VHDL Behavioral Architecture for REG4. 
 

  always @(REGS_Read1, REGS_Read2, Addr1, Addr2)  // async read 

  begin 

    if (REGS_Read1) 

      Data_Out1 = REG4[Addr1]; 

    else 

      Data_Out1 = 'bZ;  // high impedance 

    if (REGS_Read2) 

      Data_Out2 = REG4[Addr2]; 

    else 

      Data_Out2 = 'bZ;  

  end 

  always @(posedge CLK)  // synchronous write 

  begin 

    if (REGS_Write) 

      REG4[Addr2] <= Data_In; 

  end 

endmodule 

 

Figure 7.  Verilog Behavioral Module for REG4. 

 

For the design of the data path, the REG4 component is mapped to the data and control signals 

using a structural model for both VHDL and Verilog.  These very similar constructs are shown in 

Figures 8 and 9.  Of special note is the use of the wire type in Verilog for modeling 

combinational logic connections to the output ports of the register file. 

 
  signal IR : std_logic_vector(15 downto 0) := X"0000"; -- Instruction Reg 

  signal REGS_Read1  : std_logic := '0'; -- Register File 

  signal REGS_Read2  : std_logic := '0'; 

  signal REGS_Write  : std_logic := '0'; 

  signal BUS_A : std_logic_vector(15 downto 0) := (others => 'Z'); -- Buses 

  signal BUS_B : std_logic_vector(15 downto 0) := (others => 'Z'); 

  signal BUS_C : std_logic_vector(15 downto 0) := (others => 'Z'); 

  alias SRC_REG  : std_logic_vector(1 downto 0) is IR(10 downto 9); 

  alias DST_REG  : std_logic_vector(1 downto 0) is IR(6 downto 5); 

begin 

-- Data Path 

  -- Register File 

  REGS : REG4 port map (CLK, REGS_Read1, REGS_Read2, REGS_Write, SRC_REG,  

                        DST_REG, BUS_C, BUS_A, BUS_B); 

 

Figure 8.  VHDL Structural Model for Register File. 

 



  reg [15:0] IR;  // Instruction Register 

  reg REGS_Read1;  // Register File 

  reg REGS_Read2; 

  wire [15:0] Data_Out1; 

  wire [15:0] Data_Out2; 

  reg REGS_Write; 

  reg [15:0] BUS_A;  // Buses 

  reg [15:0] BUS_B; 

  wire [15:0] BUS_C; 

  wire [1:0] SRC_REG = IR[10:9]; 

  wire [1:0] DST_REG = IR[6:5]; 

// Data Path 

  // Register File 

  REG4 REGS (CLK, REGS_Read1, REGS_Read2, REGS_Write, SRC_REG,  

             DST_REG, BUS_C, Data_Out1, Data_Out2); 

 

Figure 9.  Verilog Structural Model for Register File. 

 

As a final example, the encoder from the control unit in Figure 2 is implemented using nested 

case statements to model the various decoders.  The appropriate control signals are asserted for 

each combination of opcode, source addressing mode, and destination addressing mode.  

Multiple time steps are used as required to correctly sequence the control signals.  The VHDL 

and Verilog models for an example execution sequence are shown in Figures 10 and 11. 
 
-- Control Unit 

Control : process(STEP, IR, STATUS, PC) -- Control Signal Encoder 

begin 

  case OP is  -- Execute 

    when MOVE | INV | SHL | ASHR => -- 1-Operand 

      case SRC_MODE is -- Addressing Modes 

        when M0 =>  

          case DST_MODE is 

            when M0 =>  -- OP Rs,Rd 

              case STEP is 

                when T3 => 

                  REGS_Read1 <= '1'; 

                  ALU_OP <= OP; 

                  Load_STATUS <= '1'; 

                  REGS_Write <= '1'; 

                  Clear <= '1'; 

                when others => 

                  null; 

              end case; 

 

Figure 10.  VHDL Behavioral Model for Control Signal Encoder. 
 

// Control Unit 

always @(*)  // Control Signal Encoder 

begin 

  case (OP)  // Execute 

    MOVE, INV, SHL, ASHR:  // 1-Operand 

      case (SRC_MODE)  // Addressing Modes 

        M0:  

          case (DST_MODE) 

            M0:  // OP Rs,Rd 



              case (STEP) 

                T3: begin 

                      REGS_Read1 = 1; 

                      ALU_OP = OP; 

                      Load_STATUS = 1; 

                      REGS_Write = 1; 

                      Clear = 1; 

                    end 

                default: 

                  ; 

              endcase 

 

Figure 11.  Verilog Behavioral Model for Control Signal Encoder. 

 

Key Insights and Lessons Learned 

 

During the process of translating the Instructional Processor from VHDL to Verilog, several key 

insights became apparent along with lessons learned from refinement of the models.  The first 

minor note is that all signal assignments in an always block must use the reg data type, even if 

modelling combinational logic.  This often results in a confusing mix of reg and wire 

declarations like those shown in the example in Figure 9.  Several iterations were required to 

ensure the correct signal types were used to model specific hardware. 

 

The next lesson learned occurred using standard libraries.  Verilog has a robust set of file I/O 

functions; however, these functions did not necessarily perform the same during different phases 

of the design process.  For example, a memory module was initialized from a binary file using 

the following function: 

 
  initial $readmemb("program_pwm.bin", MEM4K);  //Initialize Memory 

 

The correct contents and performance of the memory were verified via simulation.  During 

synthesis of the model to an FPGA, an innocuous warning message reported that the 4K memory 

was only partially initialized and, therefore, initialization was ignored.  The resulting failure of 

the hardware implementation was difficult to trace, but was readily corrected by adding 

thousands of zeros to the end of the binary file. 

 

Finally, achieving the same hardware timing optimizations required very precise modelling 

techniques to force the synthesis tools to recognize specific design elements.  For example, the 

bus connections were intended to use tri-state buffers instead of multiplexers.  This would use 

less FPGA resources and improve system timing.  In VHDL, the buses can be forced to tri-state 

buffers with the following simple initialization at the beginning of the control process: 

 
  Control : process(STEP, IR, STATUS, PC) -- Control Signal Encoder 

  begin    

    BUS_A <= (others => 'Z');  

    BUS_B <= (others => 'Z'); 

 

In Verilog, however, a signal can be initialized to a one or a zero, but not high-impedance.  

Assigning this default value to the buses required use of a default case statement buried within 



the control encoder.  Due to the multiple nested case statements, several iterations were required 

to find the correct placement that would be recognized by the synthesis tool. 

 
        default: 

          begin 

            BUS_A = 'bZ;  // Synthesize tristate buses 

            BUS_B = 'bZ; 

          end 

      endcase 

 

Once the correct modelling construct was found for the target hardware, the synthesis tool was 

able to replicate the desired bus structure and device utilization. 

 

Results and Conclusions 

 

The VHDL and Verilog models were compiled using the Xilinx ISE design tools and behavioral 

simulations were performed using Xilinx iSim [13].  Signal values were traced in the simulations 

to verify correct operation of the data path and control unit as test programs were run.  Both the 

VHDL and Verilog models exactly replicate all register transfers and timing for multiple test 

sequences.  From a simulation perspective, the results show that the two models are equivalent. 

 

The VHDL and Verilog models were next synthesized to the target FPGA using Xilinx XST [8].  

Device utilization was characterized by the number of 4 input look-up tables (LUTs) used by the 

design.  From a timing perspective, the worst-case propagation delay was used to determine the 

maximum clock frequency for the FPGA.  The synthesis results are summarized in Table 1. 

 

 VHDL Verilog % Difference 

Number of 4 input LUTs 724 725 0.14% 

Maximum clock frequency 60.6 MHz 57.3 MHz 5.4% 

 

Table 1.  Xilinx XST Synthesis Results. 

 

The synthesis results show that device utilization is virtually identical.  Timing results are very 

consistent and much improved once the multiplexer versus tri-state buffer problem was resolved.  

The slight difference (5.4%) can be attributed to varying order of placement and routing of 

components produced by the VHDL and Verilog versions of the synthesis tools.  Both the 

designs meet the timing requirements to run on the FPGA prototype board with a 50 MHz clock 

source. 

 

The Instructional Processor has been successfully translated from its original VHDL to an 

equivalent Verilog model.  By focusing on describing each hardware component, rather than just 

revising syntax, the design maintained its functional integrity.  Simulation results for both 

models exactly replicate all register transfers and timing for multiple test sequences.  The 

hardware synthesized by the Xilinx tools was also very consistent in both device utilization and 

maximum clock frequency.  The project was a success and the Instructional Processor continues 

to achieve its goal as a valuable instructional tool [1], [2], now available in two languages [3], 

[14]. 
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