
Paper ID #21209

Translating the Instructional Processor from VHDL to Verilog

Dr. Ronald J. Hayne, The Citadel

Ronald J. Hayne is an Associate Professor in the Department of Electrical and Computer Engineering at
The Citadel. He received his B.S. in Computer Science from the United States Military Academy, his
M.S. in Electrical Engineering from the University of Arizona, and his Ph.D. in Electrical Engineering
from the University of Virginia. Dr. Hayne’s professional areas of interest include digital systems design
and hardware description languages. He is a retired Army Colonel with experience in academics and
Defense laboratories.

c©American Society for Engineering Education, 2018

Translating the Instructional Processor from VHDL to Verilog

Abstract

An Instructional Processor has been developed for use as a design example in an Advanced

Digital Systems course. The system was originally modeled in VHDL and was simulated using

Xilinx design tools to demonstrate operation of the processor. The design model can also be

synthesized and implemented in hardware on a field programmable gate array (FPGA). The goal

of this project was to translate the Instructional Processor into the Verilog hardware description

language, while maintaining the same operational characteristics.

VHDL and Verilog are IEEE standard languages used for the development and testing of

hardware designs. Used correctly, these languages describe hardware constructs, which can be

implemented using computer aided design tools. These synthesis tools have their own design

guidelines, which align modelling techniques with standard library modules such as multiplexers

and registers. The process of translating the Instructional Processor from VHDL to Verilog has

also resulted in several key insights and lessons learned. These range from correct use of signal

types and library functions to important differences in simulation versus synthesis tools.

The Instructional Processor has been successfully translated from its original VHDL to an

equivalent Verilog model. By focusing on describing each hardware component, rather than just

revising syntax, the design maintained its functional integrity. The hardware synthesized by the

Xilinx tools was very consistent in both device utilization and system timing. The project was a

success and the Instructional Processor continues to be a valuable instructional tool, now

available in two languages.

Introduction

Teaching digital design involves use of many examples including counters, registers, arithmetic

logic units, and memory. The design of a computer processor combines these components into

an integrated digital system. An Instructional Processor has been developed for use as a design

example in an Advanced Digital Systems course at The Citadel [1] - [3]. The simple architecture

provides sufficient complexity to demonstrate fundamental programming concepts. The entire

system is modeled in VHDL and can be simulated to demonstrate operation of the processor.

Memory-mapped I/O provides the external interfaces necessary to demonstrate an example

microcontroller application, when synthesized to an FPGA.

VHDL and Verilog are IEEE standard languages used for the development, verification,

synthesis, and testing of hardware designs [4], [5]. While their language reference manuals

specify the formal syntax used to model designs, they should not be mistaken for simple

programming languages. Some language constructs should only be used for simulation, while

others are only suitable for synthesis [6], [7]. Used correctly, these languages describe hardware

constructs, which can be implemented using computer aided design tools. These synthesis tools

have their own design guidelines, which align modelling techniques with standard library

modules such as multiplexers, decoders, registers, and memory [8].

The goal of this project was to translate the Instructional Processor into the Verilog hardware

description language, while maintaining the same operational characteristics. While there are

language translation tools available, these mainly convert syntax between the languages and only

support a subset of the overall language constructs [9], [10]. These tools still require significant

human intervention to produce a functional result. The approach taken here was to focus on

modelling hardware constructs, rather than simply looking at variations in syntax. The resulting

design model replicates simulation results for a range of test programs, while also maintaining

the same hardware timing constraints for the FPGA implementation.

Instructional Processor Architecture

The instruction set architecture of the example processor has been designed to illustrate multiple

operations and basic addressing modes. It is based on a three-bus organization of a 16-bit data

path with a four-word register file (REGS) [11]. Key registers include: program counter (PC),

instruction register (IR), memory data register (MDR), and memory address register (MAR).

The most recent update includes a subroutine STACK and a higher capacity, 4K word by

16-bit, MEMORY [2]. The complete data path and memory map are shown in Figure 1.

Figure 1. Data Path and Memory Map for the Instructional Processor.

I/O

Data

Program

MEMORY

000

007

008

07F

080

FFF

STACK

REGS

A1

IR

PC

A2

2
1

2

ALU R

A

B

12

BUS CBUS BBUS A

N Z

STATUS

MDR

MAR

MEMORY

12

M
U

X
M

U
X

The control unit for the Instructional Processor uses a step counter to generate a sequence of up

to eight time steps. These time steps are used to determine the order of the control signals issued

to the data path for the fetch and execute sequences. Decoding of the instruction is accomplished

by four decoders (DCD) connected to specific fields of the IR. The organization of the control

unit is shown in Figure 2.

Figure 2. Control Unit Organization for the Instructional Processor.

VHDL and Verilog Models

Keeping the focus on modelling hardware, rather than variations in syntax, VHDL and Verilog

are more similar than different. Concurrent combinational logic, such as an arithmetic logic unit

(ALU) or multiplexer (MUX), can be implemented using language specific signal assignment

statements. Both languages can also model clock triggered sequential logic, such as a register or

counter, using process or block statements. In addition, both VHDL and Verilog support design

abstraction using behavioral or structural modelling constructs.

The Verilog version of the text that the Instructional Processor was designed to support contains

a list of important guidelines to model and synthesize hardware [12]. Some of these include:

 If possible, use concurrent assignments (assign) to design combinational logic.

 It is possible to use procedural assignments (always blocks) to design either

combinational logic or sequential logic.

 When procedural assignments (always blocks) are used for combinational logic, use

blocking assignments (e.g., ‘=’).

 When procedural assignments (always blocks) are used for sequential logic, use non-

blocking assignments (e.g., ‘<=’).

 Do not mix blocking and non-blocking statements in an always block.

As an initial example of translating a VHDL model into Verilog, consider the 4 x 16 Register

File shown in Figure 3. The first part of the VHDL model is the entity, which describes the

input/output interface, shown in Figure 4. The equivalent Verilog module is shown in Figure 5.

Each model defines both the size and direction of all external signals.

3

Step Counter

Step DCD

8

Encoder

8

OP DCD
3

8

FN DCD
3

4

SRC DCD
2

3

DST DCD
2

STATUS

N

Z

IR

Clear
Control

Signals

Figure 3. REG4: 4 x 16 Register File.

entity REG4 is

 port(CLK, REGS_Read1, REGS_Read2, REGS_Write: in std_logic;

 Addr1, Addr2: in std_logic_vector(1 downto 0);

 Data_In: in std_logic_vector(15 downto 0);

 Data_Out1, Data_Out2: out std_logic_vector(15 downto 0));

end REG4;

Figure 4. VHDL Entity for REG4.

module REG4(CLK, REGS_Read1, REGS_Read2, REGS_Write,

 Addr1, Addr2, Data_In, Data_Out1, Data_Out2);

 input CLK, REGS_Read1, REGS_Read2, REGS_Write;

 input [1:0] Addr1, Addr2;

 input [15:0] Data_In;

 output [15:0] Data_Out1, Data_Out2;

Figure 5. Verilog Module for REG4.

The internal function of the VHDL model is specified using the architecture shown in Figure 6.

It defines the internal register array and the synchronous and asynchronous behavior of the

signals. The equivalent Verilog model is shown in Figure 7. It also models the timing behavior

of the signals as well as the use of tri-state buffers, indicated by high-impedance Z.

architecture Behave of REG4 is

 type RAM4 is array (0 to 3) of std_logic_vector(15 downto 0);

 signal REG4: RAM4 := (others => X"0000");

begin

 process(REGS_Read1, REGS_Read2, Addr1, Addr2) -- async read

 begin

 if REGS_Read1 = '1' then

 Data_Out1 <= REG4(conv_integer(Addr1));

 else

 Data_Out1 <= (others => 'Z'); -- high impedance

 end if;

 if REGS_Read2 = '1' then

 Data_Out2 <= REG4(conv_integer(Addr2));

 else

 Data_Out2 <= (others => 'Z'); -- high impedance

 end if;

 end process;

REG4

A1 A2

2

1

2

16

16

16

22

Addr1 Addr2

REGS

Read1

REGS

Read2

REGS

Write

Data

Out1

Data

Out2

Data

In
MEM4K

1616

12

Addr

MEM

Read

MEM

Write

Data

Out

Data

In

(a) (b)

 process(CLK)

 begin

 if rising_edge(CLK) then -- synchronous write

 if REGS_Write = '1' then

 REG4(conv_integer(Addr2)) <= Data_In;

 end if;

 end if;

 end process;

end Behave;

Figure 6. VHDL Behavioral Architecture for REG4.

 always @(REGS_Read1, REGS_Read2, Addr1, Addr2) // async read

 begin

 if (REGS_Read1)

 Data_Out1 = REG4[Addr1];

 else

 Data_Out1 = 'bZ; // high impedance

 if (REGS_Read2)

 Data_Out2 = REG4[Addr2];

 else

 Data_Out2 = 'bZ;

 end

 always @(posedge CLK) // synchronous write

 begin

 if (REGS_Write)

 REG4[Addr2] <= Data_In;

 end

endmodule

Figure 7. Verilog Behavioral Module for REG4.

For the design of the data path, the REG4 component is mapped to the data and control signals

using a structural model for both VHDL and Verilog. These very similar constructs are shown in

Figures 8 and 9. Of special note is the use of the wire type in Verilog for modeling

combinational logic connections to the output ports of the register file.

 signal IR : std_logic_vector(15 downto 0) := X"0000"; -- Instruction Reg

 signal REGS_Read1 : std_logic := '0'; -- Register File

 signal REGS_Read2 : std_logic := '0';

 signal REGS_Write : std_logic := '0';

 signal BUS_A : std_logic_vector(15 downto 0) := (others => 'Z'); -- Buses

 signal BUS_B : std_logic_vector(15 downto 0) := (others => 'Z');

 signal BUS_C : std_logic_vector(15 downto 0) := (others => 'Z');

 alias SRC_REG : std_logic_vector(1 downto 0) is IR(10 downto 9);

 alias DST_REG : std_logic_vector(1 downto 0) is IR(6 downto 5);

begin

-- Data Path

 -- Register File

 REGS : REG4 port map (CLK, REGS_Read1, REGS_Read2, REGS_Write, SRC_REG,

 DST_REG, BUS_C, BUS_A, BUS_B);

Figure 8. VHDL Structural Model for Register File.

 reg [15:0] IR; // Instruction Register

 reg REGS_Read1; // Register File

 reg REGS_Read2;

 wire [15:0] Data_Out1;

 wire [15:0] Data_Out2;

 reg REGS_Write;

 reg [15:0] BUS_A; // Buses

 reg [15:0] BUS_B;

 wire [15:0] BUS_C;

 wire [1:0] SRC_REG = IR[10:9];

 wire [1:0] DST_REG = IR[6:5];

// Data Path

 // Register File

 REG4 REGS (CLK, REGS_Read1, REGS_Read2, REGS_Write, SRC_REG,

 DST_REG, BUS_C, Data_Out1, Data_Out2);

Figure 9. Verilog Structural Model for Register File.

As a final example, the encoder from the control unit in Figure 2 is implemented using nested

case statements to model the various decoders. The appropriate control signals are asserted for

each combination of opcode, source addressing mode, and destination addressing mode.

Multiple time steps are used as required to correctly sequence the control signals. The VHDL

and Verilog models for an example execution sequence are shown in Figures 10 and 11.

-- Control Unit

Control : process(STEP, IR, STATUS, PC) -- Control Signal Encoder

begin

 case OP is -- Execute

 when MOVE | INV | SHL | ASHR => -- 1-Operand

 case SRC_MODE is -- Addressing Modes

 when M0 =>

 case DST_MODE is

 when M0 => -- OP Rs,Rd

 case STEP is

 when T3 =>

 REGS_Read1 <= '1';

 ALU_OP <= OP;

 Load_STATUS <= '1';

 REGS_Write <= '1';

 Clear <= '1';

 when others =>

 null;

 end case;

Figure 10. VHDL Behavioral Model for Control Signal Encoder.

// Control Unit

always @(*) // Control Signal Encoder

begin

 case (OP) // Execute

 MOVE, INV, SHL, ASHR: // 1-Operand

 case (SRC_MODE) // Addressing Modes

 M0:

 case (DST_MODE)

 M0: // OP Rs,Rd

 case (STEP)

 T3: begin

 REGS_Read1 = 1;

 ALU_OP = OP;

 Load_STATUS = 1;

 REGS_Write = 1;

 Clear = 1;

 end

 default:

 ;

 endcase

Figure 11. Verilog Behavioral Model for Control Signal Encoder.

Key Insights and Lessons Learned

During the process of translating the Instructional Processor from VHDL to Verilog, several key

insights became apparent along with lessons learned from refinement of the models. The first

minor note is that all signal assignments in an always block must use the reg data type, even if

modelling combinational logic. This often results in a confusing mix of reg and wire

declarations like those shown in the example in Figure 9. Several iterations were required to

ensure the correct signal types were used to model specific hardware.

The next lesson learned occurred using standard libraries. Verilog has a robust set of file I/O

functions; however, these functions did not necessarily perform the same during different phases

of the design process. For example, a memory module was initialized from a binary file using

the following function:

 initial $readmemb("program_pwm.bin", MEM4K); //Initialize Memory

The correct contents and performance of the memory were verified via simulation. During

synthesis of the model to an FPGA, an innocuous warning message reported that the 4K memory

was only partially initialized and, therefore, initialization was ignored. The resulting failure of

the hardware implementation was difficult to trace, but was readily corrected by adding

thousands of zeros to the end of the binary file.

Finally, achieving the same hardware timing optimizations required very precise modelling

techniques to force the synthesis tools to recognize specific design elements. For example, the

bus connections were intended to use tri-state buffers instead of multiplexers. This would use

less FPGA resources and improve system timing. In VHDL, the buses can be forced to tri-state

buffers with the following simple initialization at the beginning of the control process:

 Control : process(STEP, IR, STATUS, PC) -- Control Signal Encoder

 begin

 BUS_A <= (others => 'Z');

 BUS_B <= (others => 'Z');

In Verilog, however, a signal can be initialized to a one or a zero, but not high-impedance.

Assigning this default value to the buses required use of a default case statement buried within

the control encoder. Due to the multiple nested case statements, several iterations were required

to find the correct placement that would be recognized by the synthesis tool.

 default:

 begin

 BUS_A = 'bZ; // Synthesize tristate buses

 BUS_B = 'bZ;

 end

 endcase

Once the correct modelling construct was found for the target hardware, the synthesis tool was

able to replicate the desired bus structure and device utilization.

Results and Conclusions

The VHDL and Verilog models were compiled using the Xilinx ISE design tools and behavioral

simulations were performed using Xilinx iSim [13]. Signal values were traced in the simulations

to verify correct operation of the data path and control unit as test programs were run. Both the

VHDL and Verilog models exactly replicate all register transfers and timing for multiple test

sequences. From a simulation perspective, the results show that the two models are equivalent.

The VHDL and Verilog models were next synthesized to the target FPGA using Xilinx XST [8].

Device utilization was characterized by the number of 4 input look-up tables (LUTs) used by the

design. From a timing perspective, the worst-case propagation delay was used to determine the

maximum clock frequency for the FPGA. The synthesis results are summarized in Table 1.

 VHDL Verilog % Difference

Number of 4 input LUTs 724 725 0.14%

Maximum clock frequency 60.6 MHz 57.3 MHz 5.4%

Table 1. Xilinx XST Synthesis Results.

The synthesis results show that device utilization is virtually identical. Timing results are very

consistent and much improved once the multiplexer versus tri-state buffer problem was resolved.

The slight difference (5.4%) can be attributed to varying order of placement and routing of

components produced by the VHDL and Verilog versions of the synthesis tools. Both the

designs meet the timing requirements to run on the FPGA prototype board with a 50 MHz clock

source.

The Instructional Processor has been successfully translated from its original VHDL to an

equivalent Verilog model. By focusing on describing each hardware component, rather than just

revising syntax, the design maintained its functional integrity. Simulation results for both

models exactly replicate all register transfers and timing for multiple test sequences. The

hardware synthesized by the Xilinx tools was also very consistent in both device utilization and

maximum clock frequency. The project was a success and the Instructional Processor continues

to achieve its goal as a valuable instructional tool [1], [2], now available in two languages [3],

[14].

References

[1] R. J. Hayne, “An Instructional Processor Design using VHDL and an FPGA,” Computers

in Education Journal, ASEE, Vol. 3 No. 2, April - June 2012.

[2] R. J. Hayne and J. I. Moore, “Evolution of the Instructional Processor,” Computers in

Education Journal, ASEE, Vol. 6 No. 4, October - December 2015.

[3] R. J. Hayne, “Design of an Instructional Processor,” in C. Roth and L. John, Digital

Systems Design Using VHDL, Third Edition, Cengage Learning, Boston, MA, 2018.

[Online]. Available: http://academic.cengage.com/resource_uploads/downloads/

1305635140_559956.pdf.

[4] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076, 2000 Edition, IEEE,

New York, NY, December 2000.

[5] IEEE Standard for Verilog® Hardware Description Language, IEEE Std 1364TM-2005,

IEEE, New York, NY, April 2006.

[6] R. Duckworth, “Embedded System Design with FPGAs using HDLs,” Proceedings of the

2005 IEEE International Conference on Microelectronic Systems Education, IEEE, New

York, NY, 2005.

[7] J. Schreiner, R. Findenig, and W. Ecker, “Design Centric Modeling of Digital Hardware,”

Proceedings of the 2016 IEEE International High Level Design Validation and Test

Workshop, IEEE, New York, NY, 2016.

[8] XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices, UG627,

v14.5, Xilinx, Inc., March 2013.

[9] L. Dolittle, vhd2vl. [Online]. Available: http://doolittle.icarus.com/~larry/vhd2vl/,

Accessed: March 7, 2018.

[10] Synapticad, Inc., VHDL2VeriLog. [Online]. Available: http://www.syncad.com/

verilog_vhdl_translator.htm, Accessed: March 7, 2018.

[11] R. J. Hayne, "VHDL Projects to Reinforce Computer Architecture Classroom Instruction,"

Computers in Education Journal, Vol. XVIII No. 2, April - June 2008.

[12] C. Roth, L. John, and B. Lee, Digital Systems Design Using Verilog, First Edition, Cengage

Learning, Boston, MA, 2016.

[13] iSim User Guide, UG660, v14.3, Xilinx, Inc., October 2012.

[14] R. J. Hayne, “Design of an Instructional Processor,” in C. Roth, L. John, and B. Lee,

Digital Systems Design Using Verilog, First Edition, Cengage Learning, Boston, MA,

2016. [Online]. Available: http://academic.cengage.com/resource_uploads/downloads/

1285051076_581158.pdf.

http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf
http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf
http://doolittle.icarus.com/~larry/vhd2vl/
http://www.syncad.com/verilog_vhdl_translator.htm
http://www.syncad.com/verilog_vhdl_translator.htm
http://academic.cengage.com/resource_uploads/downloads/1285051076_581158.pdf
http://academic.cengage.com/resource_uploads/downloads/1285051076_581158.pdf

