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WIP: A Markov Chain Method for Modeling Student Design Behaviors 
 

Abstract 

Students from a middle school (N=152) and from a high school (N=33) completed the same 

energy-efficient home design challenges in a simulated environment for engineering design 

(SEED) supported by rich design tool with construction and analysis capabilities, Energy3D. As 

students design in Energy3D, a log of all of their design actions are collected. In this work-in-

progress a subsample of the five most engaged students from both the middle and high school 

samples are analyzed to identify similarities and differences in their design sequences through 

Markov chain models. Sequence learning is important to many fields of study, particularly fields 

that have a large practice component such as engineering and design. Design sequences represent 

micro-strategies for developing a design. By aggregating these sequences into a model we aim to 

characterize and compare their design process. Markov chains aid in modeling these sequences by 

developing a matrix of transition probabilities between actions. Preliminary results suggest we can 

identify similarities and differences between the groups and that their design sequences reflect 

important considerations of the design problem. We conclude that Markov chains hold promise 

for modeling student practices. 

 

Keywords: engineering design, Markov chains, large learner data, research methods 

 

Introduction 

Learning skills or practices in many domains often involves learning the strengths and weaknesses 

of taking actions in different temporal order, which is sometimes called sequence learning1. This 

type of learning is particularly applicable in fields that are practice-oriented such as design. Studies 

of experts and students suggest that distinct stages of design at a high level might be thought of as: 

problem scoping, information gathering, idea/alternative generation, modeling, analysis, iteration, 

implementation, and others2-3. Other studies have investigated time spent in each of these stages, 

comparing freshmen and senior college students4 and comparing students to professional 

designers2. Breaking design stages into smaller units, or at a finer resolution results in design 

operations5 that typically happen within stages. This work-in-progress aims to aggregate beginning 

designers’ design operations into a comprehensive matrix of sequences in order to develop models 

of their overall design process. These sequences are like micro-strategies representing more or less 

useful chains of actions and therefore can aid us in understanding how designers navigated a design 

challenge. We use Markov chain analysis, a method for analyzing series of states or actions, to 

develop the model and then apply to two distinct groups of beginning designers to test its ability 

to elucidate similarities and differences in students’ design processes.   

 

Markov chains model the probability of moving to some new system state determined by what 

state the system currently is in. The order of a Markov chain refers to how many previous states 

are used to estimate a new state. For instance, a first-order Markov chain takes into account the 

present state for estimating the next state that will occur.  In applying this technique to design it is 

important to recall that design is an ill-structured6-7, highly iterative8-9 and evolutionary activity10 

which therefore makes it challenging to compare across students or teams’ approaches even as 

they work on the same design challenge. By chaining designers’ actions into sequences we are 

able to model their collective actions as a matrix of transitions between action-states or what is 

called a transition matrix in Markov chains11. A transition matrix for a first-order Markov chain, 



is simply an n x n matrix where n is number of unique states and each cell contains the probability 

of going from one state to another. Thus, Markov chains and their sequences can model designers’ 

actions in way that can easily be compared across individuals or groups for similar design 

activities.   

 

The two groups of beginning designers compared in this study completed a design challenge in 

which they designed an energy efficient home using a computer simulation tool that logged their 

design operations. Beginning designers are people with minimal experience in design12. More 

specifically, the two groups were 8th grade middle school students in a lower financial and 

technology resourced district and 9th grade high school students in a higher financial and 

technology resourced district. While the age difference between them is small, the context of their 

schools and levels of support and resources make them distinct groups. In analyzing the similarities 

and differences between the students we seek to inspect if there is a spectrum or distribution in 

design processes across beginners.  

 

Research Questions 

 

This research seeks to understand: 

RQ1:  What are the common design patterns (seen through operation sequences) of middle school 

students engaged in the engineering design project? 

RQ2: What are the common design patterns (seen through operation sequences) of high school 

students engaged in the engineering design project? 

RQ3:  What are the similarities and differences in operation sequences between middle and high 

school students? 

 

These research questions are addressed by using Markov chain constructs to represent the 

sequential pattern of student design behaviors.  

  

Literature Review 

 

Sequential learning is a topic that has been studied extensively by psychologists and educational 

psychologists1,13-14. Researchers in these fields have argued that sequences are essential to human 

cognition across a variety of abilities and skills1,14,15. Given that much of this work examines 

general cognitive functions such as memory15, implicit and explicit processing16-18, and learning 

channels1, 14, many of the sequences studied represent general tasks instead of learning context 

specific sequences. Nonetheless, becoming proficient in some field often requires learning key 

skills and techniques, which are often sequential in nature19, particularly when fields have a strong 

practice component such as design or engineering more broadly.   

 

Markov models, including Markov chains have seen a limited but growing application in the study 

of design. Researchers have used Markov models for empirical studies of design behavior5,20--21, 

to analyze the actions of an intelligent agent that models cognitive and memory functions in a 

design context22 and for other empirical studies in domains related to design including innovative 

thinking23. For example, McComb, Cagan & Kotovsky20 used first-order Markov chains to identify 

beneficial operation sequences in a truss and home cooling system design challenge. The authors 

then simulated the behavior of non-sequenced actions and first-order Markov chain design teams 



with Cognitively Inspired Simulated Annealing Teams (CISAT) framework (see McComb, Cagan 

& Kotovsky24), an agent-based modeling approach. Comparison of the final performance of the 

simulated teams’ artifacts for both design scenarios revealed that the first-order Markov chain 

outperformed the non-sequenced teams, indicating that sequenced behavior lead to better design 

solutions than strictly independent behavior.  

 

Following past researchers, we employ Markov chains to study a new population, beginning 

designers and connect this work to the learning and use of sequences in design. 

 

Research Methods 

 

Research Participants & Classroom Context 

This study was conducted in two separate locations, a middle school and high school. The middle 

school study involved four classrooms of 8th grade students (ages 13-14) in a Midwest urban setting 

for a total sample of N=152 students. The high school study involved 2 classrooms of 9th grade 

students (ages 14-15) in a New England urban setting for a total sample of N=33 students. It is 

important to note that despite there only being a one-year difference between the middle school 

and high school students their school contexts are markedly different which likely accentuates 

students’ preparedness for complex tasks like design projects. The high school is a heavily 

resourced school in wealthy district with below national average free or reduced lunch rates and 

many advanced classes and curriculum whereas the middle school is an under-resourced school in 

a less wealthy district and higher than national average free or reduced lunch rates that does not 

have as many advanced classes or curriculum. Therefore, we believe the institutional differences 

between the school sharpen the contrast in academic preparedness between the two groups.   

 

Students at both schools participated in an in-class design project using Energy3D 

(http://energy.concord.org/energy3d/), a CAD simulation environment25.  Energy3D is developed 

by the Concord Consortium as “a computer-aided engineering tool for designing, analyzing, and 

constructing green buildings and power stations that utilize renewable energy”. The user-friendly 

software works in a way that allows students to see the effects of each design and specifications 

they choose to their overall design specifics. It offers a simple 3D graphical user interface for 

drawing buildings, and evaluating their performance using cost and energy (solar and heat) 

simulations (see Figure 1, below).   

 

Over the course of approximately two weeks, students at both schools participated in the same 

design challenge. At both schools, the challenge was formally introduced through a presentation 

that discussed engineering design in general and the challenge in specific. Students were then given 

time to learn the software through free-play or a small design challenge. When it came time to 

begin the design challenge, all students were given two-page design specifications sheet that 

summarized the details from the presentation. For the challenge students were asked to use 

Energy3D to create single-family homes that (1) minimized energy consumption, (2) minimized 

construction cost, while (3) designing a house large enough for a family of four, and (4) 

maintaining an attractive appearance.  

 

Data Sources & Feature-Based Action Schema 

http://energy.concord.org/energy3d/)


While designing in Energy3D, each student operation was recorded in the background of the 

program in JSON files. These operations, detailed in Table 1, along with a timestamp of the 

operation allow a full reconstruction of each student’s design activity. Energy3D captures atomic 

actions or the smallest actions that may affect a design or designer. For example, actions such as 

add a wall, add a solar panel, or conduct a daily energy efficiency analysis are all recorded with 

timestamps and metadata like position or kilowatt hour consumed. A full schema of the actions 

Energy3D records can be found at Energy3D’s website26.   

 

 
Figure 1. Energy3D example design and analysis 

 

 

 

 



Table 1. Energy3D Collapsed and Removed Action Schemas  

Schema 1 

Categories Summary of Included Actions Removed from Schema 

Building Move/Rotate/Remove 

Building, Add Components 

None 

Door Add/Edit/Remove Door 

Floor Add/Edit/Remove Floor 

Foundation Add/Edit/Paste/Remove 

Foundation 

Roof Add/Edit/Remove Different 

types of Roof, Convert to 

Gable, Resize overhang 

Solar Panel Add/Edit/Paste/Remove/Rotate 

Solar Panel, Change Cell 

Efficiency, Change Micro-

Inverter 

Wall Add/Edit/Remove Wall, 

Change Type of Wall 

Window Add/Edit/Paste/Remove 

Window 

Schema 2 

Façade Color Change for House 

Components, Texture Change 

Camera 

Human Add/Edit/Paste/Remove 

Human 

Numeric Analysis Daily/Annual Analysis, 

Remove or Show past data 

curves 

Sensor Add/Edit/Remove Sensor 

Tree Add/Edit/Paste/Remove Tree 

Visual Analysis Heliodon, Animate Sun, 

Shadow, Daily Cumulative 

Radiation 

Schema 3 

Insulation Change Solar Heat Gain 

Coefficient, Change U-Value 

Spin View, Top View, Zoom 

 

An initial review of student data logs showed 95 and 121 distinct student actions captured in the 

process data at the high school and middle school, respectively. Any resulting n x n matrix resulting 

would have over 9000 or over 14000 cells many of which would be sparsely populated. In order 

to make the matrices amenable to analysis, researchers reviewed each of the lists of actions to 

determine how to classify individual actions into categories of actions. For example, the actions of 

“Move Building,” “Resize Building,” and “Rotate Building” were categorized into one family of 

“Building”. Energy3D allows users to add five different types of roofs and also allows edits to 

those roofs so the family of “Roof” is comprised of 17 unique actions. The process of developing 

the current action scheme involved multiple iterations to determine which actions served similar 



functionality, e.g. a series of actions related to altering roofs, both in Energy3D and with student 

design intent. Table 1 captures the cumulative changes to the schema over 3 iterations. The first 

column displays the names of the categories sets of actions were grouped into while the column 

beside it displays a summary of the actions that fall into the category. Note the schemas are 

cumulative so iteration 3 incorporates the categories from iteration 1 and 2. The third column lists 

actions that were removed from the sequence analysis. These actions primarily involved view 

controls within the software and tended to be high in number while having only an ambiguous 

connection to designer’s intentions. None of these actions transformed the design in a lasting way. 

The researchers therefore determined they could be safely removed, allowing for sequences to 

bypass or ignore them. Lastly, some meaningful actions within the schema that were not collapsed 

into categories include note-taking and viewing artifact information on the graph tab, which are 

not in Table 1. 

 

Table 2. Summary of Key Characteristics from Two Datasets 

 Middle School High School 

Number of operation types 121 95 

Student academic level 8th 9th 

Total students in analysis 5 5 

Average operations per 

student 

1723 1104 

 

In this work-in-progress, we selected a subset of the entire dataset for analysis. Our goal for this 

analysis was to first look at students who were very engaged in the design project. We estimated 

a student’s degree of engagement by the activity of their log files and selected the five most active 

students from each school. The average of design actions was 1104 and 1723 from the middle 

school and high school, respectively. Given that the time for the design challenge and learning 

context were kept as similar as possible it is not clear why the average operations are notably 

different between schools. This may reflect different levels of engagement between the high school 

and middle schools’ students or that the high school students felt more comfortable with the 

software and therefore made more design actions. Note that camera and note actions were not 

included in these tallies as both tend to be exceptionally high as an artifact of the logging manager. 

 

Data Analysis 

Students’ Energy3D log files were run through a python script that identified and tallied sequences 

between any two sequential actions students took. These two-action sequences represent a first-

order Markov chain, with one current action followed by the next action taken9. As discussed in 

the data source section, Camera related actions such as rotating or panning the camera are ignored, 

for example, a sequence of Add Solar Panel  Rotate Camera  Add Solar Panel would be 

counted as a Add Solar Panel  Add Solar Panel sequence.  

 

We follow Purzer and Fila23, as we also looked individuals, in calculating the transition 

probabilities between ‘states’ as P(si  sj)  = ∑sij / ∑si or the number of times students went from 

state i to state j divided by the total number of state i sequences. This represents students’ overall 

probability of transitioning from some state or action to another based on their final full set of time 

sequenced actions.    

 



 

Results & Discussion 

The results have three components: 1) the four most frequent actions for each student in this 

sample, 2) the general frequency and transition probabilities of repeat actions or within-action 

matrix components for core construction, analysis, information seeking and note taking behaviors 

and 3) the across-action sequences that included the same set of behaviors as 2). Probabilities 

represent a student’s project-wide likelihood of going from state i to state j. Within-action 

probabilities are of interest because they reflect sequences when students were focused on 

particular subsystems of the house or tools (e.g., roof to roof). In contrast, across-actions represent 

transitions between various subsystems and/or tools. For the final component of the results, we 

used two criteria for inclusion of sequences: the base action of the sequence needed 20 or more 

instances and the particular sequence of interest needed to be at least 20% or more of the total 

sequences starting with the same action. Only cases that meet his criteria are reported to avoid 

cases that are too small or may represent primarily noise.   

 

In what follows we first present the results for the sub-sample of Middle School, followed by the 

sub-sample of High School and close the section with a comparison of the two. 

 

Middle School Students 

 

RQ1:  What are the common design patterns (seen through operation sequences) of middle school 

students engaged in the engineering design project? 

 

Turning to left part of Table 3 first, which shows the most common actions for each of the highly 

active middle school students, a few points become apparent. Four out of five students had a high 

emphasis on solar panels, which suggests they were trying to increase energy production to get 

their house to meet net-zero energy. Four out of five students also had a high emphasis on windows 

or trees, which suggests they were trying to use passive solar improve the energy efficiency of 

their design. Only two students had a high level of wall manipulations suggesting there was less 

emphasis in the group on manipulating the size and shape of the house. Most students (4/5) had a 

high amount of notes. 

 

The right section of Table 3 displays any across-action transitions that included numeric or visual 

analysis, note-taking or information seeking (primarily the graph tab). Three of the five students  

 

Table 3 Middle School Students’ Top Four Design Actions and Across-Action Sequences 

Student 

ID 

1st 2nd  3rd  4th  Across-Action Sequence(s) Prob. 

A001 Note 347 S. Panel 245 Tree 239 Wind.73 numeric analysis  tree .33 

A003 Wall 168 S. Panel 153 Tree 138 Build. 120 numeric analysis  graph tab .49 

visual analysis  numeric analysis .23 

B013 Note 367 S. Panel 270 C. Time 236 Tree 161 numeric analysis  graph tab .26 

B031 Note 347 Build. 220 Wall 185 Wind. 118 visual analysis  numeric analysis .30 

save  numeric analysis .21 

D15 Note 480 Build. 232 C. Date 168 S. Panel 

107 

visual analysis  save .23 

graph tab  numeric analysis .43 



had some connection between either graph tab and numerical analysis, suggesting that information 

seeking and analysis were a common sequence. Two students had some connection between visual 

analysis and numeric analysis, suggesting they sought out different levels of analytical feedback 

in tandem.   

 

Next, Table 4 displays the within-action transition probabilities for the subset of middle school 

students. Note that shaded cells indicate that less than 20 actions happened for that category. A 

common pattern is that many of the construction-related actions pertain to sub-systems of the 

house (e.g. walls or windows). This seems to make sense as we might expect students to focus 

their work on a specific sub-system at a time. Numerical analysis and Graph tab generally showed 

lower levels of within-action transitions. This seems to be a positive pattern as analysis should 

happen between construction, note-taking and information gathering behaviors. Visual analysis 

seems to show higher levels of within-action transitions, however. There are not any sequences 

going from insulation to insulation and generally students in the middle school did not have many 

sequences with insulation. This limits their designs as insulation can be a critical factor on reducing 

energy consumption. 

 

High School Students 

RQ2: What are the common design patterns (seen through operation sequences) of high school 

students engaged in the engineering design project? 

 

Turning first to the left side of Table 5 which displays the most common actions for the high school 

students subsample we see all of them had solar panels as one of their top actions, suggesting they 

all put an emphasis on energy production. Three of the five students manipulated windows or trees 

heavily, suggesting these students had a balance of emphasis on energy production and passive 

solar strategies, such as using tree shading to reduce solar radiation through windows. The two 

students who do not have as many passive solar actions both had a larger number of wall actions, 

suggesting they put more of an emphasis on construction and manipulating the shape/size of their 

building. One student put a heavy emphasis on change date and visual analysis which may reflect 

spending time performing different kinds of visual analysis such as analyzing shadows and 

animating the sun to view shadow patterns over a day. 

 

On the right side of Table 5 high school students across-action sequences are displayed.  Only 

three out of five high school students had transition probabilities between their analysis, 

information seeking and note taking behavior high enough to be reported here. Of those 3, two 

showed connections between changes to insulation in their house and numerical analysis. While 

in general a connection between these two is positive, seeing this sequence occur at a high rate 

may represent trial and error behavior between insulation and energy savings. Graph tab and 

numerical analysis also was sequence above the threshold probability for all 3 students, showing 

a connection between information seeking and analysis. One student had a common sequence 

between visual analysis and change date, suggesting they explored patterns of the sun or shadows 

across different days. 

 

Next, Table 6 displays the transition probabilities for repeated actions. A common pattern is that 

many of the construction related actions occur within sub-systems of the house (e.g. windows or 

walls).  Numerical and Graph tab generally had less within-action transitions, suggesting these  
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actions were linked with other types of actions. Visual analysis was not consistent in the group 

with three of the students exhibiting very high repeat action sequences and two with low transition 

probabilities.  The high school students made limited changes to their foundations; only one of the 

five students did a few times. This means for the most part they self-imposed an area constraint on 

themselves. If they had changed the foundation more they could have increased or decreased the 

amount of space their house could occupy, thus affecting energy consumption. 

 

Table 5 Summary of High School Students’ Design Actions 

Student 

ID 

1st 2nd 3rd 4th Across-Action Sequence(s) Prob. 

B06 S. Panel 627 Notes 317 Wind. 218 Build. 203 numeric analysis  note .35 

numeric analysis  save .2 

graph tab  numeric analysis .25 

B07 Wall 335 Notes 315 S. Panel 243 Build. 220 numeric  insulation .28 

insulation  numeric analysis .34 

graph tab  numeric analysis .24 

B08 Wind. 307 C. Date 227 S. Panel 215 V. Anal. 183 None  

D13 Tree 428 Notes 329 Build. 264 S. Panel 254 numeric analysis  insulation .2 

change date  visual analysis .22 

visual analysis  change date .27 

graph tab  numeric analysis .44 

D15 Build. 840 Notes 712 Wall 369 S. Panel 215 None  

 

 

RQ3:  What are the similarities and differences in operation sequences between middle and high 

school students? 

 

Both the high school and middle school students had high levels of within-action sequences for 

construction actions, in general. Middle school students did not interact with insulation much but 

did manipulate the foundation of their houses, unlike the high school students, who manipulated 

insulation but not foundation. Thus, even among these two groups of beginning designers, there 

were differences in how the most active members approached improving the performance of 

their designs. Both groups showed a mix of students who put more emphasis on energy 

production, or a mix of energy production and passive solar. The high school students had more 

positive sequences connecting numerical or visual analysis to other actions beyond information 

seeking, including note-taking, insulation changes or changing the date of analysis.  

 

Conclusions & Future Work 

 

Key take-away points from this pilot study suggest there are differences in how even beginning 

designers approach their design process. We were able to see patterns in design actions, 

providing a view into the similarities and differences among the most engaged students. These 

patterns (i.e. top actions, within-action and across-action analyses) make sense in light of larger 

design actions or principles (e.g. reduce energy, link analysis and graphs, etc.). For example, 

from the across-action results in Table 5, only one student showed a marked connection between 

running analysis and taking notes. It would be unlikely and not preferable that students always 

transition from analysis to notes, but we would expect some connection between analysis and 
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recording information or thoughts as a matter of good design practice. A similar case can be 

made for other across-actions such as relationships between construction and analysis that 

demonstrate regular testing of a system. 

 

Given we can see patterns make sense conceptually, we see promise in the technique of Markov 

chain analysis for both characterizing design patterns and for being able to see similarities and 

differences in how students navigate the design process. We see potential utility in this Markov 

chain modeling technique for researchers in comparing design practices across individuals as 

well as groups. Future work will expand this pilot study through more advanced Markov chain 

analysis (e.g. statistical estimation of Markov chains, higher order chains). We will use these 

models to examine the relationships between students’ design sequences and design 

performance. 
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