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Using Decision Trees to Teach Value of Information Concepts
a
 

 
Abstract 

 
Most undergraduate engineering economics textbooks and related curricula include elements of 
decision analysis, and decision trees are often introduced and promoted as a decision making 
tool. The teaching of value of information analysis is less prevalent, notwithstanding the variety 
of potential applications to everyday decisions in engineering practice. This paper addresses this 
gap by providing a detailed demonstration of how decision trees can be used to value 
information. It includes a detailed set of decision trees that guide the student through a decision 
under uncertainty. After definition of a base case, cases are provided for the value of perfect and 
imperfect information. The value of incremental improvement in information is addressed, and a 
probabilistic approach is described and demonstrated. The influence of risk preference is also 
addressed. 

 
Introduction 

 
Most undergraduate engineering economics textbooks and related curricula include chapters or 
modules on decision analysis, and decision trees are often introduced and promoted as a decision 
making tool. The teaching of value of information (VOI) analysis within the decision analysis 
frame is less prevalent, notwithstanding the variety of potential applications to everyday 
decisions in engineering practice. This paper seeks to remedy this gap by providing an accessible 
demonstration of how decision trees can be used to teach important VOI concepts, including an 
analysis of the role of risk preferences.  

 
It is often most efficient to set up and solve VOI problems in a generalized analytical framework, 
and this is often the approach taken in applied research.1-3 But analytical representations of VOI 
problems are not particularly intuitive and can confuse rather than enlighten students. Experience 
in the classroom has shown that decision trees are a more effective vehicle for teaching VOI 
concepts. The graphical representation is appealing and students tend to grasp the concepts rather 
quickly, typically in just one extended lecture.  

 
This paper provides a detailed set of decision trees that guide the student through a decision 
under uncertainty. After definition of a base case, cases are provided for the value of perfect and 
imperfect information. The value of incremental improvement in information is addressed, and a 
probabilistic approach is described and demonstrated. The influence of risk preference is also 
addressed. The case is targeted at upper level undergraduates in project economics and 
engineering statistics.  
 

The Base Case 

 
We first examine a risk-neutral utility maximizing decision-maker with a utility function given 

by * + XuXU ?$ , where u is the unit of utility.b The base case is depicted in Figure 1. The 

decision-maker faces a choice between investing in a project or doing nothing. If he invests, the 
unconditional probability of success is estimated to be 0.15 with a payoff of $500. The 
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unconditional probability of failure is estimated to be 0.85 with payoff of -$100. If he does 
nothing, the payoff is $0. The expected utility of node B is computed as follows: 

* + * + * + * + * + uuuUUBEU 1010085.050015.0100$85.0500$15.0 /?/-?/-? . The certainty 

equivalent of -10u equals -$10. In this case, the decision-maker chooses to do nothing and earns 
a payoff of $0. In the base case, the project has no value. 

 
Next, we consider a case of perfect information. That is, if the decision-maker receives 
information that perfectly indicates whether the project will be a success or failure, how does this 
change the decision? This case is depicted in Figure 2. If we assume that the unconditional 
probabilities of success and failure estimated above are in fact accurate (i.e. they represent the 

true state of nature), one can compute * +BEU  by examining each potential investment decision 

in isolation. Regardless of what the perfect information indicates, the decision-maker faces the 
same investment decision. The difference is that the outcome of the invest option is now known 
with certainty. In the case where the information indicates that the investment will be a success, 
it is clear that at node A1 the decision will be made to invest, the payoff will be $500, and the 
utility will be 500u. In the case where the information indicates that the investment will be a 
failure, the decision at node A2 will be made to do nothing, the payoff will be $0, and the utility 
will be 0u. Therefore, the expected utility of node B is computed as follows: 

* + * + * + .75085.050015.0 uuuBEU ?-?  The certainty equivalent equals $75. In this case, the 

perfect information results in an increase in the expected value of the project. The expected value 
is the maximum willingness to pay (WTP) for the information.  

 
Perfect information rarely will be available in practice. Instead, decision-makers employ 
imperfect information. A case of imperfect information is depicted in Figure 3.  We assume that 
performance statistics are available for the source of imperfect information based on results from 
past performance in similar circumstances. For example, the source predicts success with a 
probability of 0.60, and when the source predicts success, he is correct with a probability of 0.20 
and incorrect with a probability of 0.80. The remaining probabilities are defined in Figure 3. To 
compute the expected utility of node D one must examine each potential prediction, again by 
means of backward induction. The expected utility of node B1 is computed as follows: 

* + * + * +1 0.20 $500 0.80 $100 20EU B U U u? - / ? . The certainty equivalent equals $20 and the 

decision at node A1 is to invest given a prediction of success. The expected utility of node B2 is 

computed as follows: * + * + * + uUUBEU 55100$925.0500$075.02 /?/-? . The certainty 

equivalent equals -$55 and the decision at node A2 is to do nothing given a prediction of failure 
(yielding 0u and $0). Finally, the expected utility of node D is computed as follows: 

* + * + * + uuuDEU 12040.02060.0 ?-? . The certainty equivalent equals $12. This value is the 

maximum WTP for the imperfect information. The imperfect information is worth less than the 
perfect information, but still delivers value to the decision-maker. Again, we assume that the 
unconditional probabilities of success and failure have not changed.c 

 
The structure of Figure 3 enables a clear assessment of the value of incremental improvement in 
information accuracy. For example, assume the performance statistics for the source of imperfect 
information improved so that when the source predicts success, he is correct with a probability of 
0.30 (not 0.20) and incorrect with a probability of 0.70 (not 0.80). Assume the conditional 
probabilities associated with prediction of failure remain constant. First, recognize that when the 
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conditional probabilities change, the unconditional probabilities of the two predictions also 
change because the unconditional probabilities of success and failure are constant. This detail is 
easy to overlook and will lead to incorrect assessments. The updated structure is depicted in 
Figure 4 with updated values shaded for emphasis. In this case, one must solve for the new 
unconditional probabilities of each prediction as follows: 

* + * +* + * +* +* +
* +

Pr 0.15 Pr 0.30 1 Pr 0.075 ;

Pr 0.33.

Success Prediction Success Prediction Success

Prediction Success

? ? ? - / ?

? B
 

The expected utility of node B1 is computed as follows: 

* + * + * +1 0.30 $500 0.70 $100 80EU B U U u? - / ? . The certainty equivalent equals $80 and the 

decision at node A1 is to invest given a prediction of success. The certainty equivalent at node 
B2 has not changed and equals $0. The expected utility of node D is computed as follows: 

* + * + * + uUUDEU 67.260$67.080$33.0 ?-? . The certainty equivalent equals $26.67. When 

comparing the two cases of imperfect information, one can compute the change in value 
attributable to the improvement in accuracy: $26.67 - $12 = $14.67. This figure represents the 
WTP, or marginal benefit, of the improvement. If the improvement can be obtained for less than 
this amount, it should be pursued.  
 
Sensitivity Analysis 

 
A sensitivity analysis on the value of information and the WTP for improvement in information 
accuracy is readily performed. The results of such an analysis can be compared to the marginal 
cost of delivering improvement, thus determining the optimal level of investment.3,4 When there 
are multiple cases or uncertainty in the payoffs, the WTP can be evaluated in the same manner. 
The results of the analysis in this case are depicted in Figure 5. Observe that the positions of the 
curves in the two cases where the success payoff is less than the base case are higher and lower 
than the base case. Also, in the case where the success payoff equals $200, the initial 
improvement in accuracy from 0.2 to 0.3 has no value. In performing these computations, one 
must be careful to account for potential effects in other parts of the decision tree. Although not 
depicted here, a similar analysis can be performed on node B2 (in isolation, or simultaneously 
with the analysis on node B1). 

 
Probabilistic Analysis 

 
This case is also amenable to teaching probabilistic methods for estimating the value of 
information. The probabilities and/or payoffs can be random variables defined by probability 
density functions, and simulations can be used to develop probabilistic representations of the 
value of information. This approach is useful in cases where decisions are being made to invest 
in improving information accuracy when the potential improvements are not known with 
certainty. This is often the case in engineering practice  Extending the case of imperfect 
information as depicted in Figure 4, we can examine a case where the decision-maker expects to 

improve the * +Pr |Success Prediction Success?  from 0.2 to X, where * +~ 0.4, 0.05X N o u? ? . 

These computations can be performed using any software that has random number generation 
functionality (e.g. MS Excel). Results can be reported using a histogram and cumulative 
distribution functions. Results for the case described here using 100 simulations are depicted in 
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Figure 6. It is also possible to simulate uncertainty in other probabilities, the payoffs, or both. 
Figure 7 depicts the results of a simulation where, as above, the 

* +Pr |Success Prediction Success?  is expected to improve from 0.2 to X, where 

* +~ 0.4, 0.05X N o u? ? , and the success payoff is a random 

variable * +~ $500, $100N o u? ? . The resulting probability distributions provide decision-

makers with additional information on which to base an investment decision. 
   

It is also helpful for student understanding to discuss the fact that under certain conditions, 
information may have no value. That is, if the information does not cause the decision-maker to 
change a decision vis-à-vis the status quo, the WTP is zero. If we again examine Figure 3 and 
recall the previous calculations, we observe that when the information indicates success the 
decision is made to invest, and when it indicates failure the decision is made to do nothing. The 
imperfect information has value because it causes the decision-maker to invest when success is 
indicated. If we again hold constant the conditional probabilities associated with decision node 
A2 and examine decision node A1, it is straightforward to compute the probabilities that would 
make the decision-maker indifferent between investing and doing nothing:  

* + * + * +
* +* + ).100$(Pr1

500$Pr01

/?/

-???

USuccessPredictionSuccess                        

USuccessPredictionSuccessuBEU
 

Solving for the unknown probability, * + .61Pr ?? SuccessPredictionSuccess  Therefore, when 

this probability is less than 1/6, the decision is made to do nothing, and the information has no 
value. The concept of an information value threshold is an important learning objective. A 
common intuition among students is that information always adds value, and this simple example 
clearly demonstrates that this is not always the case. Information can only have value when it 
changes a decision.5 
 

Accounting for Risk Preferences 

 
The identical framework is employed to assess the value of information for a non-risk neutral 
decision maker. Here, we depict a case where the decision maker is risk averse. The decision 

maker’s utility function is defined as follows: * + 2$ 75 1.6 0.0015 ,  U X X X u? - /  

for 100 500X/ ~ ~ .d The following results will be required in several places below: 

* + * + * +$500 500 ;  $0 75 ;  $100 100U u U u U u? ? / ? / . Referring to the base case of Figure 1, the 

expected utility of node B, * +EU B , is computed as follows: 

* + * + * + * + * + uuuUUBEU 1510085.050015.0100$85.0500$15.0 /?/-?/-? .  

The certainty equivalent of -15u equals -$53.56 (recall, 100 500X/ ~ ~ , so this is the relevant 

root). Therefore, the decision-maker chooses to do nothing and earns a payoff of $0. 
 

In the perfect information case of Figure 2, the expected utility of node B is computed as 

follows: * + * + * + * + * +0.15 $500 0.85 $0 0.15 500 0.85 75 138.75 .EU B U U u u u? - ? - ?  The certainty 

equivalent equals $41.45. In this case, the perfect information results in decision-maker response 
(investing when success is indicated) and a positive value of the perfect information. 
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The case of imperfect information is again depicted in Figure 3.  The expected utility of node B1 
is computed as follows:  

* + * + * + * + * + uuuUUBEU 2010080.050020.0100$80.0500$20.01 ?/-?/-? . 

The certainty equivalent equals -$33.33. Therefore, the decision at node A1 is to do nothing 
given a prediction of success. The expected utility of node B2 is computed as follows: 

* + * + * + * + * +2 0.075 $500 0.925 $100 0.075 500 0.925 100 55EU B U U u u u? - / ? - / ? / . The 

certainty equivalent is -$75.86, and the decision at node A2 is to do nothing given a prediction of 
failure. The investment decision is not conditional on the information and therefore the imperfect 
information has no value. This result contrasts with the risk-neutral outcome where the value of 
imperfect information was positive. This result demonstrates that information value is a function 
of risk preferences, and that making the simplifying assumption of risk-neutrality can lead to 
erroneous estimates. Also, while not demonstrated here, the degree of risk aversion will also 
affect information value, although the relationship is not necessarily monotonic.9   

 
The sensitivity analysis and probabilistic analysis demonstrated above can be repeated for the 
case of risk aversion, although this is not reported here. Also, it is possible to compute the 
threshold for positive information value. If we again hold constant the conditional probabilities 
associated with decision node A2 and examine decision node A1, it is straightforward to 
compute the probabilities that would make the decision-maker indifferent between investing and 
doing nothing (recall, doing nothing yields $0 and 75u):  

* + * + * +
* +* +

1 75 Pr $500

1 Pr ( $100).

EU B u Success Prediction Success U

                           Success Prediction Success U   

? ? ? -

/ ? /
  

Solving for the unknown probability, * + 29.0Pr ?? SuccessPredictionSuccess . Unless this 

probability exceeds this value, the decision remains to do nothing, and the information has no 
value.  
  
Conclusion 

 
Experience in the classroom has demonstrated that decision trees are a more effective vehicle for 
introducing VOI concepts than analytical presentations. This paper provides a detailed set of 
decision trees that guide the student through a decision under uncertainty. The following key 
teaching points were emphasized: 

 

‚ Information can only have value when it changes a decision; 

‚ Sensitivity and probabilistic analyses on the WTP for information can inform optimal 
investment decisions regarding information improvement; 

‚ Risk preferences influence the value of information; 

‚ The degree of risk aversion affects information value, although the direction of the effect 
is specific to the utility function and nature of the payoffs and probabilities. 

 
Potential applications of VOI analyses in engineering practice are widespread, although they are 
not always be recognized as such. There are obvious applications in the geosciences, mining and 
petroleum engineering, and geotechnical engineering. An example of a less obvious application 
is in R&D. For example, research can be initiated to improve the accuracy and/or precision of a 
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measurement, but one should also estimate whether or not such improvements actually increase 
value vis-à-vis decisions based on the subject measurement. Ignoring such calculations can lead 
to over- and underinvestment in information improvement. When students are sensitized to VOI 
thinking early in their education, they will examine such investments more critically in their 
coursework and as practicing engineers. 
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Figure 1. Base Case 
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Figure 2. Willingness to Pay for Perfect Information 

A’: Obtain 
Perfect 

Information?

$0
No

Yes 

B

Pr(Success)=0.15 Pr(Failure)=0.85

$500 -$100

A1: Invest? $0
No

A2: Invest? $0
No

Yes Yes

P
age 13.1335.9



 

Figure 3. Willingness to Pay for Imperfect Information 
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Figure 4. Willingness to Pay for Improvements to Imperfect Information  
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Figure 5. The Sensitivity of Willingness to Pay for Improvement to Information: 

Pr(Success|Prediction=Success) at Node B1 
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Figure 6. Probabilistic Willingness to Pay for Improvements to Information: 

Pr(Success|Prediction = Success) at Node B1 (Uncertainty in the Conditional Probability) 
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Figure 7. Probabilistic Willingness to Pay for Improvements to Information: 

Pr(Success|Prediction = Success) at Node B1 (Uncertainty in the Conditional Probability 

and the Success Payoff) 
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a
 The author thanks the referees and students in my undergraduate project analysis and geostatistics courses for 

constructive comments. The author assumes sole responsibility for errors and omissions, and the views expressed 
herein. Electronic versions of this document and the figures are available from the author upon request. 
b A risk-neutral utility function is defined by constant marginal utility. 
c This can be verified by computing the unconditional probability of success as follows: 

* + * + * +
* + * + * + * +

Pr 0.15 Pr Pr

Pr Pr 0.60 0.40 0.15.

Success Prediction Success Success Prediction Success

Prediction Failure Success Prediction Failure 0.20 0.075

? ? ? ? -

? ? ? - ?
 

d
 This utility function satisfies requirements for risk aversion in the interval specified, namely 

2 20 and 0dU dX d U dX@ > , but otherwise it is arbitrary. There is a literature on the empirical estimation of utility 

functions.6-8 
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