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Assessing Problem-Solving Strategy Use by Engineering Undergraduates 
 
Abstract 
 
Problem-solving strategies are the deliberate mental steps that a person takes to proceed in 
specific ways at various points during problem solution in order to analyze, solve, and reflect on 
a problem.  Engineering undergraduates enrolled in physics and thermodynamics reported the 
frequency of use of problem-solving strategies, confidence in their ability to solve problems, and 
answered demographic questions. Measures of performance included course grades.  Factor-
analytic methods that were applied to students’ reports of strategy use identified three types of 
strategies, which were labeled Execution, Planning and Looking Back, and Low Confidence in 
Ability. The three factors were significant predictors of course performance, based on correlation 
and regression methods that were applied to the data. The study provides evidence that using 
problem-solving strategies improves course performance and that low confidence is a hindrance 
to successful performance.  Differences in the roles of problem-solving strategies for engineering 
students in physics compared to thermodynamics suggest that students use these strategies 
differently in those courses. 
 
1.0 Introduction 
 
Learning to solve problems is possibly the most prevalent skill that engineering students practice 
[1] [2] during undergraduate training.  Especially in the first few years of undergraduate 
education, students spend considerable time observing instructors solve problems in the 
classroom, studying worked examples in textbooks, and solving problem sets for homework. 
Because solving basic computational problems is considered a foundation for subsequent 
professional preparation – e.g., capstone projects in the senior year – and because students often 
transfer out of science and engineering majors because of difficulties with solving problems, 
considerable effort has been directed towards helping students become proficient problem 
solvers.  To assure that problem-solving skills are mastered, problem solving has become a core 
element in engineering curricula.  In U.S. engineering education, ABET (Accreditation Board for 
Engineering and Technology) criteria for accrediting instructional programs treat problem 
solving as one of the critical learning outcomes to be achieved throughout curricula and is 
directly addressed in ABET Outcome 3.1 an ability to identify, formulate, and solve complex 
engineering problems by applying principles of engineering, science, and mathematics  
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-
programs-2019-2020/#GC3.  This ABET criterion rightly specifies the outcome students should 
achieve regarding problem-solving ability, and it leaves questions about the curriculum that will 
get them there to institutional discernment and discretion, including selection of textbooks, the 
nature of instruction, and the organization of the classroom. It is in this diverse and varied 
context that we pose the present questions of psychological processes, specifically of thinking 
and reasoning associated with problem solving, which are the focus of this paper.  
 
On current views, skilled problem solving involves “a systematic approach…including complete 
and well-conceived problem formulation, generation of a solution, and careful assessment of the 
solution” [3].  It involves selecting appropriate problem-solving steps, using diagrams as solution 
aids, and planning and monitoring the process of finding a solution [4].  In this paper, we refer to 



the mental steps that a person takes to analyze, solve, and reflect on textbook problems as 
problem-solving strategies. Through the application of strategies, students think conceptually and 
critically about the problems they are solving. The identification of strategies that students use to 
solve problems, and the effects of applying strategies on problem-solving performance, are the 
topics of the present research. The engineering research literature also stresses student 
confidence [5] [6] [7] [8], therefore problem-solving confidence is also assessed.  Finally, prior 
knowledge [9] and interest [10] are also known to affect student engagement, therefore students’ 
familiarity and interest in the course material are also assessed. 
 
The research questions are as follows: 

 How frequently do students apply problem-solving strategies when solving textbook 
problems? 

 Do the strategies cluster into types of strategies? 
 Does frequent application of strategies correlate with better course performance? 
 Do confidence, familiarity, and interest affect course performance? 

 
2.0 Background and Literature Review 
 
One of the most influential models for problem-solving is Polya’s [11] 4-step model: 1) 
Understand the problem, 2) Develop a plan, 3) Carry out the plan, and 4) Look back. Polya’s 
further elaboration of the steps depicted an active and inquisitive problem solver. Polya proposed 
visually representing the problem (“Draw a figure”), clarifying the problem (“What is 
unknown”), applying strategies (“Try to think of a similar problem”), and reflecting on the 
outcome (“Can you derive the solution differently?”).   
 
Early attempts to sketch out didactic methods for engineering instructors for promoting the 
development of problem-solving skill were undertaken by Woods [6], Wankat and Oreovicz [7], 
Stice [12], and others. Wankat and Oreovicz drew on Woods’ work, as well as on the extensive 
problem-solving literature available to them, in order to develop a problem-solving method that 
all students could apply. More recently, Gray and colleagues [13] authored a textbook that 
implemented a structured approach that students could use in order to solve any problem they 
encountered in statics and dynamics. The benefits of structured problem-solving approaches have 
been documented using tests of problem-solving skills, course grades, student perceptions of 
learning, and success after graduation, e.g., [14] [15]. Other research has examined the cognitive 
processes that students actually apply when solving problems, e.g., [16].  Griggs and Benson [1] 
developed an elaborate coding scheme to analyze problem-solving deficiencies in first-year 
students.  Several of the categories in their coding scheme are identical to those in earlier 
didactic models: Planning, Evaluating, Monitoring, Revising. A survey that includes a number of 
the strategies of interest in the present study, but which are situated in the context of physics 
problem solving, is the Colorado Learning about Science Survey [17]. 
 
How does problem-solving skill emerge? Early in skill development, when students lack insight 
or knowledge in a problem, they fall back on general heuristics that are applied to superficially 
similar situations [18]. These heuristics have been described as a purely rote strategy [4], a plug 
and chug method [3], and working backwards [2] [14]. Zajchowski and Martin [19] describe 
working backwards as “the use of specific formulae or algorithmic procedures with little 



understanding” (p. 460). Working backwards involves a mental search for equations that will 
solve the problem, but with little conceptual understanding of the nature of the problem, little 
strategic decision-making, and little metacognitive self-reflection and regulation of the solution 
process. Wasson [20] described plug-and-chug as “a traditional engineering teaching model in 
which students Plug a value into an equation and Chug out an answer.” Truax [21] suggests that 
“The plug and chug approach to completing assignments does not require the student to really 
understand what they are doing, and even protects their limited knowledge of the subject from 
being exposed.” 
 
The present study was motivated by the question of whether and when engineering 
undergraduates apply strategies that involve conceptual understanding, that is, whether students 
take time to understand a problem before trying to solve it, whether they engage in regulation of 
the solution process when generating and solving equations, and whether they reflect on the 
solution after they solve the problem. This question was addressed by identifying and testing 
problem-solving strategies discussed in the engineering education literature. 
 
In summary, solving problems is a ubiquitous academic activity that is used for developing skill 
and competence in engineering. Can undergraduate students get by with simply applying rote 
strategies, or are they aided by thinking conceptually and critically about the textbook problems 
they regularly solve? The identification of strategies that students use in solving problems and 
the effects of strategy use on course performance are the topics of the present research. 
 
3.0 Selecting and Developing the Problem Solving Strategies  
 
The selection of strategies to include in the survey was strongly influenced by Polya [11] and 
followers, who laid out a basic framework of planning, executing, checking, and reflecting back.  
Engineering educators have filled in the details of how that might be carried out by engineering 
students by prescribing methods to be taught and practiced.  A review and consideration of the 
problem-solving steps in Woods [5] [6], Stice [12], Gray et al. [13], Litzinger et al. [16], Wankat 
and Oreovicz [7], and Mettes et al. [15], provided a rich base from which to select strategies for 
the present survey.  The consistency in recommendations across these sources aided in the 
selection of potentially relevant and significant strategies. Confidence, although not a strategy 
per se, has been a point of emphasis in discussions of problem-solving in the engineering 
education literature [5] [6] [7] [8]. One of the members of the present research team, an 
instructor in physics, noted that students more readily expressed anxiety over problem solving, 
rather than confidence.  Therefore the three items in the survey that were ultimately classified as 
related to confidence, are phrased in terms of helplessness and anxiety. The instructors and 
researchers in the present study drafted and discussed multiple versions of the survey before 
settling, through consensus, on the version tested here. The selection and phrasing of questions 
was guided by related questions in the Colorado Learning about Science Survey [17]. Several 
additional questions were included in the questionnaire at the end of the present survey, 
including one related to familiarity with the course topic (cf., Table 1 Q25) and one related to 
interest in the course topic (cf., Table 1 Q26), which were included on the recommendation of 
the physics instructor in the present study. There was also a question about overall GPA for 
science courses (cf., Table 1 Q29) and a question about the student’s expected final grade in the 
course (cf., Table 1 Q32).  GPA for science courses tested the generalizability of strategy use 



beyond the courses in which strategy use was measured in this study. Students’ expected course 
grade tested the correlation between students’ judgments of their course grade and actual grade. 
 
3.1 Participants 
 
Participants for this study were students enrolled in Principles of Physics II (N = 227) or in 
Engineering Thermodynamics I (N = 233) at a public Research I (Carnegie classification) in 
southwestern U.S.  Both courses are included in the curricula for engineering majors. Principles 
of Physics II typically enrolls engineering majors and is calculus based. In the Mechanical 
Engineering curriculum, enrollment in Principles of Physics II precedes enrollment in 
Engineering Thermodynamics I. Of the 460 participants, 93% indicated that they were majoring 
in engineering, 81% were male, 3% were classified as freshmen, 44% as sophomores, 37% as 
juniors, and 16% as seniors. The mean college credits completed by Physics II students was 
60.85 (SD = 48.41) and by Thermodynamics I students was 66.88 (SD = 24.63). The present 
analyses focused on students beyond their freshman year with the expectation that these students 
had developed at least modest problem-solving strategies. Including the two courses provided a 
range of ability and strategic practices in problem solving, which, in part, would help bolster the 
robustness of the statistical outcomes of the survey analyses, but importantly, could begin to 
reveal changes in development as students advanced deeper into their curricula. 
 
3.2 Materials 
 
The materials consisted of two forms (Form A and Form B) of a paper-pencil survey consisting 
of 22 5-point Likert questions concerning strategies and confidence while solving word problems 
(Q3-Q24), followed by ten background questions (Q25-Q35). The five Likert options were 
Never, Rarely, Sometimes, Most of the Time, Always. The five Likert options for Question 25 
(Familiar) and Question 26 (Interest) were Not at All, Marginally, Somewhat, Very, Extremely. 
The questions are shown in Table 1. Form A and Form B differed only in the random order in 
which the 22 questions were presented. The background questions were always presented at the 
end of the survey and in the same order on both forms. Written instructions at the top of the form 
were as follows: 

INSTRUCTIONS: The purpose of this activity is to learn more about the methods you use to 
solve problems in this course. There are no right or wrong answers. Answer honestly and to 
the best of your ability. Do not answer in a way that you think would please the instructor. 
Rather, answer according to your own problem solving beliefs and practices. 
         Use the bulleted scale provided with each question. Simply put an X through the 
response that best reflects your behavior.  All the items are about solving problems assigned 
in this course, except demographic questions at the end. 
 

Table 1. Survey Questions CFA 
Factors* 

Q3 **Before writing down equations for a homework problem, how often do you 
construct a mental model for the problem – that is, try to visualize in your mind what 
the problem involves? 
Q4  Before writing down equations for a homework problem, how often do you 
consider alternative solution methods or equations? 

 
 
 

F2 
 



Q5  How often do you plan an overall solution strategy? 
Q6  I think about the physical principles associated with the problem, before 
selecting equations for that problem. 
Q7  How often do you start by thinking about real-life situations that relate to the 
problem? 
Q8  When I solve a problem, I start by searching textbook examples. 
Q9  When I solve a problem, I try to imitate the instructor’s examples. 
Q10  How often do you use cues in the problem statement or the problem figure as a 
guide to solving the problem? 
Q11  How often do you monitor your problem solving process – i.e., ask yourself if 
you are on track to solve the problem? 
Q12  I try to explain the problem to myself as I solve it. 
Q13  How often do you check the accuracy of your solution? 
Q14  Do you compare your answer to common sense? 
Q15  Do you trust your calculations more than common sense, when there is a 
conflict? 
Q16  If I can’t find a particular equation needed to solve a homework problem, there 
is not much I can do to come up with it. 
Q17  If I am solving a problem and I am not making progress, I go back and 
reconsider my approach to the problem. 
Q18  I like to set goals while I am solving a problem. 
Q19  How often do you reflect on what you have learned, after you have reached a 
solution to a problem? 
Q20  Do you consider how to solve a problem differently in the future, after you have 
solved it? 
Q21  After you have reached a solution to a problem, how often do you ask yourself 
whether the solution is applicable to other problems? 
Q22  I enjoy solving physics/engineering problems.*** 
Q23  If I get stuck solving a problem, there is no chance, I’ll figure it out on my own. 
Q24  Homework that involves problem solving makes me nervous. 
Q25 How familiar are you with the topic of this course? 
Q26 How interested are you with the topic of this course? 
Q27 Major 
Q28 Completed college credits, including transfer credits. 
Q29 My overall GPA is 
Q31 My GPA for science courses is 
Q32 My expected final grade in this course is 
Q33 Gender 
Q34 Age 
Q35 Ethnicity 

F2 
F1 

 
F2 

 
 
 

F1 
 

F1 
 
 
 

F1 
 
 

F3 
 

F1 
 

F2 
 
 

F2 
 

F2 
 
 

F3 
F3 

 
 
 
 
 
 
 
 
 
 
 

Notes. *See Sections 4.1 and 4.2 for more details on these factors: F1: Execution Strategies; F2: 
Planning and Looking Back Strategies; F3: Low Confidence in Ability. **Q1 and Q2 were filler 
questions; Q3 – Q24 are the 22 questions in the survey. *** “physics” was used for students in 
Physics II; “engineering” was used for students in Engineering Thermodynamics I. 

 



3.3 Procedure 
 
The survey questions were presented to students in Physics II as an online homework assignment 
near the end of the semester. Online distribution of homework was the typical way that the 
instructor distributed weekly homework assignments to those students. Students in 
Thermodynamics I completed a paper-pencil version of the survey as an attachment to a test near 
the end of the semester. Students in both courses received comparable credit for completing the 
survey. The respective instructors recommended the chosen methods in order to encourage full 
class participation in the survey through a method consistent with typical course operation. 
 
4.0 Statistical Methods 
 
All completed surveys were used for the analyses reported here. The survey responses were 
analyzed using several statistical methods.  Separate analysis of each of the 22 questions for each 
course would be difficult to interpret. Forty-four separate statistical outcomes would also inflate 
the possibility of Type I statistical error when testing the association of students’ use of strategies 
with their course performance. Therefore, data reduction methods were applied first, specifically, 
exploratory factor analysis followed by confirmatory factor analysis. The purpose of factor 
analysis was to identify strategies that clustered together into factors (i.e., types). Factor analysis 
allowed the elimination of redundant questions and questions that did not clearly fit into a type. 
The factors that were extracted from these analyses were used to assess the associations between 
students’ use of strategies and their course performance (Tables 4-7) using standard correlation 
methods.  Finally, correlation analyses examined the association between familiarity with the 
course topic, interest in the course topic, and expected course grade with actual course 
performance (Tables 8-9). 
 
Factor analyses were carried out using the statistical package MPlus version 7 [22]. The data 
were analyzed in two steps: 1) categorical Exploratory Factor Analysis (EFA) on the 22 strategy 
questions, and 2) categorical confirmatory factor analysis (CFA). The purpose of the EFA was to 
identify the latent structure in students’ responses. The purpose of the CFA was to confirm that 
the latent structure found in the EFA was not due to chance and had good construct validity. To 
carry out the EFA and CFA, the data were randomly split in half (n = 230). A sample size of 230 
is well above the minimum sample size of 110, based on Streiner [23], of 5 times the number of 
variables being tested. It was determined that both Bartlett’s test of sphericity was significant for 
both datasets, and the Kaiser-Meyer-Olkin measure of sampling adequacy was above the cutoff 
level of .5 [24] [25] for both datasets. These results suggested that both datasets were appropriate 
for factor analysis. Significance was based on an alpha of .05. 
 
4.1 Exploratory Factor Analysis 
 
Exploratory factor analysis was applied to the first set of 230 randomly-selected responses using 
oblique rotation. The scree-plot suggested that a three-factor model should be retained, and this 
was verified by a parallel analysis conducted in R using the Psych package [26].  The parallel 
analysis plot is shown in Figure 1. The rotated factor loadings are shown in Table 2. To maintain 
simple structure, variables Q3, Q8, Q9, Q12, Q13, Q15, Q19, and Q22 were eliminated from 
further consideration. These variables did not meet the inclusion criteria. For a variable to have  



Figure 1 

 
been chosen for further consideration in the CFA it must have had a rotated loading of .45 or 
above on one and only one factor in the EFA. A loading of .45 was chosen because it is 
considered the cutoff of a fair loading by Comrey and Lee [27]. The three-factor solution also 
made theoretical sense due to the factors being easily describable. Factor 1 could be described as 
involving Execution Strategies (Q6, Q10, Q11, Q14, Q17). Factor 2 relates to Planning and  
 



Reflecting-Back Strategies (Q4, Q5, Q7, Q18, Q20, Q21). Factor 3 is best described as Low 
Confidence in Ability (Q16, Q23, Q24). 
 

4.2 Confirmatory Factor Analysis 
 
The questions that were retained in the EFA 
were tested using CFA. Loadings were freely 
estimated in the CFA, the variance of all latent 
variables was set to 1, and the factors were 
allowed to correlate. The internal consistency of 
the factors in the model was tested using 
composite reliability (CR) estimators: coefficient 
alpha and coefficient omega. All factors showed 
acceptable reliability (F1 Omega = .79 & Alpha 
= .73, F2 Omega = .75 & Alpha = .70, F3 Omega 
= .73 & Alpha = .71) above .7 [28] [29].     
 
In addition to internal consistency, the model 
also showed good construct validity. First, all 
manifest indicators loaded significantly onto 
their respective latent factors (p < .001 for all 
variables). The proposed model also fit the data 
well according to accepted standards, with both 
RMSEA (RMSEA = 0.059, 90% confidence 
interval = .043, .075) and CFI (CFI = .953) 
showing good model fit [30] [31]. Additionally, 
as suggested by Tomarken and Waller [32], the 
model was compared against a plausible 
nonequivalent competing model in which all 
variables were loaded onto a single factor. In this 
competing model, fit dropped noticeably, with 
CFI = .672, and RMSEA = .154, 90% confidence 
interval = .141, .167, further strengthening the 
claim that the proposed model is valid.  Overall, 
the results of the EFA and CFA verified the 
factor structure in the 22 survey questions.  
 

Factor loadings for the survey questions are shown in Figure 2.  All indicators load significantly 
onto their associated factors. The correlation between F1 (Execution) and F2 (Planning and 
Looking Back) is positive and significant, indicating that individuals high in planning and 
reflection are also high in affirming execution strategies.  In contrast, the correlation between F1 
and F3 (Low Confidence in Ability) is negative and significant, indicating that anxiety and 
helplessness associated with problem solving are associated with lower affirmation of execution 
strategies. The correlation between F2 and F3 was not significant. 
 
In order to rule out the possibility that Physics II had a different factor structure than that derived 

Table 2. Rotated Factor Loadings for all 
Variables Used in EFA for Three Factor 

Solution 
 Factor 1 Factor 2 Factor 3 

Q3 0.358 0.284 -0.140 

Q4 0.064 0.515 -0.054 

Q5 0.240 0.475 0.145 

Q6 0.755 -0.061 -0.017 

Q7 -0.050 0.547 -0.210 

Q8 -0.003 0.196 0.254 

Q9 0.084 0.149 0.302 

Q10 0.674 -0.040 0.007 

Q11 0.558 0.232 0.327 

Q12 0.207 0.284 -0.026 

Q13 0.167 0.421 0.023 

Q14 0.499 0.107 -0.127 

Q15 -0.271 0.174 0.179 

Q16 -0.058 -0.247 0.702 

Q17 0.538 -0.004 -0.152 

Q18 0.008 0.606 0.116 

Q19 0.269 0.397 0.046 

Q20 0.006 0.553 0.000 

Q21 -0.031 0.635 -0.092 

Q22 0.143 0.362 -0.051 

Q23 0.009 -0.203 0.744 

Q24 -0.160 0.006 0.677 



from the combined course, additional EFA analyses were conducted. The results showed that the 
factor structure for Physics II alone was similar to the original structure found across all classes. 
 
Figure 2. Standardized Path Model for the Confirmatory Factor Analysis (Standardized loadings 
are outside of parentheses and standard errors (SE) are inside parentheses.) 

 
 
4.3 Correlation and Linear Regression Analyses with Course Performance 
 
Given the success in identifying reliable factors, analyses were undertaken to assess the strength 
of association between the factors, course performance measures, and science-course GPA.  



Scores for each factor for each student were computed by calculating the mean rating of the 
questions comprising the factor. Descriptive statistics are shown in Table 3. 
 

Table 3.  Means (standard deviation) by Course 
 

Measures Physics II Thermodynamics I 
f 1 3.74 (.60) 3.84 (.60) 
f 2 3.19 (.60) 3.31 (.61) 
f 3 2.58 (.71) 2.78 (.76) 
Science GPA* 3.19 (.49) 3.29 (.47) 
Familiarity 3.22 (.78) 3.14 (.82) 
Interest 3.21 (.99) 3.44 (.90) 
Expected Grade 2.85 (.74) 2.96 (.80) 

Note. GPA is on a 4-point scale. 
 
An examination of Table 3 shows that mean ratings for the measures were comparable for the 
two courses. The measures for f1 (Execution Strategies) and f2 (Planning and Looking-Back 
Strategies are above the neutral rating of Sometimes, and mean ratings for f3 (Low Confidence in 
Ability) is below the neutral rating. Mean Familiarity and Interest ratings are above the neutral 
value of Somewhat.  
 
Summary grades were provided by instructors, however, they were not identical for the two 
courses (Thermodynamics I: weighted course grade; Physics II: average exam grades; final 
exam), therefore, the analyses were conducted separately for the two courses. 
 
In a preliminary analysis, correlations were calculated between f1-f3 and course performance 
measures for Physics II (Table 4) and Thermodynamics I (Table 5). Correlations for f1 were 
positive and significant, indicating that the more frequently students applied Execution Strategies 
the higher was their course performance. Correlation of f2 with course performance was not 
significant for Physics II, but it was positive and significant for Thermodynamics I. Correlations 
for f3 were negative and significant, indicating that students with Low Confidence in Ability had 
lower course performance. 
 
Table 4. Physics II Pearson Correlation Coefficients (p-values in parentheses)  
N = 223 

Factors 
Course Exams 
(excl. Final) Course Final Exam GPA Science Courses 

f 1 .168 (.006) .131 (.026) .297 (.001) 
f 2 -.056 (.203) -.104 (.061) .060 (.185) 
f 3 -.281 (.001) -.259 (.001) -.199 (.001) 
Notes.  One-tailed p-values. Significant correlations are bolded. 

 



Table 5.  Thermodynamics I Pearson Correlation Coefficients (p-values in 
parentheses) N = 216 
Factors Course Grade GPA Science Courses 
f 1 .259 (.001) .216 (.001) 
f 2 .256 (.001) .139 (.021) 
f 3 -.270 (.001) -.230 (.001) 
Notes.  One-tailed p-values. Significant correlations are bolded. 

 

In the next analyses, linear regression was employed in order to control for the interdependence 
between factors. For Physics II (see Table 6), f1 remained a significant positive predictor of 
course performance, based on standardized Beta coefficients. f2 and f3 were both significant and 
negatively related to course performance.  These results suggests that Low Confidence in Ability 
has a detrimental effect on performance, as has already been shown in the correlation analyses. 
Similarly, application of Execution Strategies (f1) aided performance.  However, a surprising 
outcome was the significant negative association between Planning and Looking-Back Strategies 
and course performance, suggesting that applying these strategies was associated with lower 
course performance. We will return to this finding in the Discussion. The results for 
Thermodynamics I (see Table 7) were generally consistent with the correlation analyses in Table 
5. 
Table 6.  Physics II Standardized Beta Coefficients from Multiple Regression 
Analysis (p-values in parentheses) N = 223 

Factors 
Course Exams 
(excl. Final) 

Course 
Final Exam GPA Science Courses 

f 1 .191 (.011) .177 (.019) .317 (.001) 
f 2 -.174 (.018) -.213 (.004) -.106 (.145) 
f 3 -.252 (.001) -.237 (.001) -.133 (.044) 
Notes.  Two-tailed p-values. Significant coefficients are bolded. 

 
Table 7.  Thermodynamics I Standardized Beta Coefficients from Multiple 
Regression Analysis (p-values in parentheses) N = 216 
Factors Course Grade GPA Science Courses 
f 1 .130 (.085) .159 (.042) 
f 2 .171 (.021) .043 (.577) 
f 3 -.233 (.001) -.197 (.003) 
Notes.  Two-tailed p-values. Significant coefficients are bolded. 

 
4.4 Correlations of Familiarity, Interest, and Expected Grade with Course Performance 
 
Using correlation analyses to test the association of familiarity and interest with course 
performance showed significant positive associations for both courses (See Tables 8 and 9). 
Students’ expected course grades were also significantly and positively associated with their 
actual grades.  
 
 



Table 8.  Physics II Pearson Correlation Coefficients (p-values in parentheses) N = 223 

Questions 
Course Exams 
(excl. Final) Final Exam

How familiar are you with the topic of this course? .272 (.001) .226 (.001) 
How interested are you with the topic of this course? .271 (.001) .225 (.001) 
My expected final grade in this course is _____ .716 (.001) .572 (.001) 
Notes.  Two-tailed p-values. Significant coefficients are bolded. 

 
 
Table 9.  Thermodynamics I Pearson Correlation Coefficients (p-values in parentheses) N = 
216 

Questions 
Course 
Grade 

How familiar are you with the topic of this course? .402 (.001) 
How interested are you with the topic of this course? .339 (.001) 
My expected final grade in this course is _____ .648 (.001) 
Notes.  Two-tailed p-values. Significant coefficients are bolded. 

 
5.0 Discussion 
 
The present study measured the frequency of problem-solving strategy use by undergraduate 
engineering students and assessed the associations of those strategies with course performance 
measures.  Factor analyses identified three factors in the survey, which were consistent with 
strategies identified as being important in the engineering education literature, specifically, an 
execution of solution factor (f1), a planning and looking back factor (f2), and a low-confidence 
in problem-solving ability factor (f3). Although the proposed model fit the data quite well, and 
better than a plausible competing model, it should be noted that there are likely other models that 
may fit the data just as well—for a discussion of model fit see Tomarken and Waller [32].  
 
Overall, the results indicate that Execution Strategies (f1), which are generally those strategies 
directly involved with carrying out the solution to a problem, aided students in both courses in 
achieving higher course grades.  Application of these strategies was also associated with 
students’ science-course GPA (self-reported), suggesting that these basic problem-solving 
strategies, like monitoring a problem solution, generalized to performance in other courses. 
These significant associations confirm the didactic recommendations for problem solving in 
Woods [6], Wankat [7], Stice [12], Gray and Costanzo [13], and Litzinger et al. [16] [33], which 
were a strong inspiration for the present study. 
 
A second effect that was significant for both courses was a negative association between Low 
Confidence in Ability (f3) and course performance, including science-course GPA. Confidence, 
which is an affective factor in problem solving, is rarely mentioned in the engineering education 
literature. However, here it shows very clearly that students with low confidence in their 
problem-solving ability will do more poorly in the course than students with high confidence.  
The effect of confidence contrasts with the findings in Montfort et al. [8] where the researchers 
found that high confidence was in some cases associated with misconceptions in knowledge and 



subsequent weak problem-solving performance. Thus, high confidence may not always be a 
benefit to students.  Confidence, of course, may not be the root source of effects on performance, 
and additional analyses will be required to better understand its role across the engineering 
curriculum.  
 
Planning and Looking-Back Strategies (f2) had different effects in the two courses. In 
Thermodynamics I, f2 was positively associated with course performance, as would be expected 
based on past research [4] [5] [6] [34]. In Physics II, however, planning and looking back predict 
lower course grades.  The present data do not allow a firm explanation for this unexpected result.  
As a matter of speculation, the nature of the course material, the nature of tests, the manner of 
course instruction, among other possibilities, could possibly account for why planning a solution 
or reflecting back on a solution, for instance, could be disadvantageous for course performance.  
 
Overall, the success of the present study motivates further research, particularly on a wider range 
of problem-solving strategies, the effects of the instructor, course organization, and activities and 
tests on strategy use by students.  The difference in f2 effects for the two courses suggests that a 
universal model of strategy types and use may not be feasible. Rather, attention needs to be 
directed towards course differences, and differences in students’ academic level, in order to draw 
reliable conclusions about the role of strategies. Additional research may ultimately lead to 
recommendations for classroom practices and student development. 
 
5.1 Limitations 
 
The present study was based on a limited number of possible problem-solving strategies that 
students might employ. Further, only two cohorts of students were tested, limiting the 
generalizability of these results to students at other academic levels (e.g., freshman and seniors) 
and who are enrolled in other engineering courses. Future research could test a more complete 
set of engineering problem-solving strategies, as well as the generalization of the current 
strategies to other cohorts of students and problem-solving contexts. 
 
6.0 Conclusions 
The present survey is one of the few attempts in the engineering education literature to identify 
students’ applications of problem-solving strategies and to relate strategy use to course 
achievement. Further development and confirmation of the present strategy types may eventually 
aid instructors in identifying group and individual strengths and weaknesses in terms of basic 
problem-solving practices, across a wide variety of courses. 
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