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Assessing the reliability of a chemical engineering problem-

solving rubric when using multiple raters 
 

Abstract 

 

This evidence-based practice paper discusses the preliminary validation of a project modified 

version of the Promoting Problem Solving Proficiency in First Year Engineering (PROCESS). 

The full rating plan required four raters to use the PROCESS to assess the problem-solving 

ability of ~70 engineering students randomly selected from two undergraduate cohorts at two 

Midwest universities. The many-facet Rasch measurement model has the psychometric 

properties to determine if there are any characteristics other than problem-solving that influence 

the scores assigned to students, such as rater bias or differential item functioning. Prior to 

implementing the full rating plan, the analysis examined how raters interacted with the six items 

on the modified PROCESS when scoring a random selection of 20 students’ solutions to one 

textbook homework problem. Follow up inter-rater reliability meetings enabled rater discussion 

of rationale for discrepancies observed in the ratings. Differences in conceptions of the latent 

construct of problem-solving were resolved by recourse to the theoretical framework that 

informed the development of the PROCESS. This iterative process resulted in substantial 

increases in construct validity and measurement reliability when raters completed another round 

of assessment. Evidence indicated that raters increased their understanding of how rating scale 

categories related to levels of the latent construct. This paper describes the impacts and benefits 

this method of psychometric evaluation of rater-mediated assessments hold for the 

implementation of the full rating plan of student outcomes, as well as for the field of engineering 

education more broadly. 

 

Introduction 

 

Engineers require precision and reliability in the tools they use to conduct research. For instance, 

the optimal design of planning vessels that transport goods around the world relies on the 

consistency of repeated particle image velocimetry measurements of flow characteristics around 

a ship [1, 2]. Yet much work is still required to develop tools for use in engineering education 

that meet the same rigorous standards of accuracy and repeatability when it comes to the 

assessment of student outcomes [3-5]. 

 

The attempts in engineering education to meet the demands of accountability and to provide 

assurances in the assessment of student knowledge have been marked by several components. 

There are institutes and committees comprised of engineering professors from across the country 

who develop and validate cognitive/declarative knowledge exams that serve as summative 

course assessments [6]. In response to the call for more robust learning outcomes, many science 

and engineering departments have integrated professional development programs that bolster 

faculty familiarity with course evaluation concepts [7, 8]. Incorporating multiple types of student 

assessment in classroom instructional design has been found to increase proficient practice in the 

field [9]. 

 

Methods of student assessment often incorporate rater-mediated assessment [10-13]. These 

methods of assessing student knowledge move beyond traditional notions of student grades that 



are just the calculation of correct responses divided by total possible items on a formative test. In 

rater-mediated assessment, student performance on a given task (e.g. presentation, homework 

solution, concept paper) is judged by a rater along any number of domains through the use of a 

rating scale [14]. The inclusion of these additional components provides the prospect of more 

nuanced and detailed student assessments, but also the threat of greater inconsistency. Efforts 

need to be made to ensure that the rubric used for rating students represents the intended 

construct. This task necessitates the development of a continuum where students can be placed 

according to their possession of less or more of the latent construct attempted to be measured 

indirectly through their performance on the given task. Rating scales need to distinguish between 

distinct levels of performance. Raters need to be consistent in their use of the rating scales. 

Figure 1 provides a model of rater-mediated assessment of problem-solving. This model shows 

that students are placed along the continuum of problem-solving ability by raters using rating 

scale judgments of student performance on a set of tasks.  

 

 
Figure 1. A model for rater-mediated assessment. Adapted from [14]. 

 

The qualitative levels defined by each category on a rating scale represent unequal intervals 

along the latent construct [15]. The conveniently adopted ordinal level ratings given to the 

qualitative categories (e.g. a “score” of 1 for “Inadequate,” “2” for “Acceptable,” etc.) need to be 

converted into linear measures before they can be used in any meaningful way as proxy 

measures of student ability levels. For example, one would be hard pressed to argue that 

“Disagree” minus “Strongly Disagree” equals an integer value of 1. Therefore, each facet of the 

assessment situation as shown in Figure 1, above, becomes a parameter that is estimated in a 

many-faceted measurement approach. Figure 2 describes the many-facet Rasch model (MFRM) 

developed by Linacre based upon the Rasch measurement paradigm [15-17]. This approach 

treats the assigned ordinal ratings in an assessment as the outcomes of the linear combination of 

the parameters. A comparison of the empirical variance encountered during parameter estimation 

with the level of measurement error expected by the model indicates how well the data fit the 

model. Unlike other item response and classical test theory traditions that try to fit measurement 

models to the data, the Rasch model is built on the fundamental measurement property of 

invariance: the measurement of persons must be independent of particular items used for 

measuring (item-invariant person measurement) and the calibration of items must be independent 

of particular persons used for calibration (person-invariant item calibration) [18, 19]. The task of 

measurement in the Rasch paradigm becomes an investigation of how well a particular data set 

adhere to the principles of invariant measurement embedded in an ideal-type model [14, 20]. 

 

 

 



log (
𝑃𝑛𝑖𝑗𝑗𝑘

𝑃𝑛𝑖𝑗𝑘-1
) = 𝐵𝑛 − 𝐷𝑖 − 𝐶𝑗 − 𝐹𝑘 

where: 

Pnijk is the probability of examinee n, when rated on item i by judge j, being awarded a 

rating of k. 

Pnijk-1 is the probability of examinee n, when rated on item i by judge j, being awarded a 

rating of k-1. 

Bn is the ability of examinee n. 

Di is the difficulty of item i. 

Cj is the severity of judge j. 

Fk is the extra difficulty overcome in being observed at the level of category k, relative to 

category k-1. 

Figure 2. Equation for the many-facet Rasch model. 

  

The purpose of this paper is to estimate the reliability of rater-mediated assessments of 

undergraduate engineering student problem-solving. Latent constructs such as problem-solving 

ability and content mastery comprise the domain of learning outcomes and variables of interest 

in the field of education. The MFRM was developed using philosophical principles similar to 

those that underpin the physical measures in engineering. Use of the MFRM can determine the 

fairness and objectivity of the estimations of student problem-solving by accounting for all of the 

aspects of the measurement process that can introduce error into that estimation, such as poorly 

functioning items, ill-defined rating categories, and differing levels of rater severity. Establishing 

reliability in rater-mediated assessments provides evidence that the scores obtained on the test 

actually represent the latent construct instead of being an artifact of rater discrepancies [21]. This 

paper argues that the MFRM provides necessary evidence toward the validity of inferences that 

can be made regarding student learning outcomes in engineering education.  

 

Methods 

 

Participants 

 

A total of 113 students were enrolled in an undergraduate Material and Energy Balance chemical 

engineering course as part of a control cohort (23 students; 22% female) and a treatment cohort 

(93 students; 41% female) at two Midwest Universities. Table 1 shows different distributions for 

highest mathematics courses completed by cohort. This discrepancy can be explained as a 

consequence of the course sequence occurring in the sophomore year for the control cohort (fall 

and spring semesters) compared to the spring semester of the freshmen year for the treatment 

cohort. 

 

Table 1 

 

Highest completed mathematics course by cohort type

Count % Count %

Calculus 1 2 9% 61 68%

Calculus 2 12 52% 11 12%

Calculus 3 7 30% 11 12%

Differential Equation 2 9% 3 3%

> Differential Equation 0 0% 4 5%

Control Treatment



 

Instrument 

 

The PROCESS was used to score students’ homework problem solutions [10]. The PROCESS 

was developed using several theoretical frameworks that consider the conceptual, analytical, and 

phenomenological process demands and cognitive skills involved in problem solving [22]. 

PROCESS was modified to assess the problem-solving process for solved handwritten 

homework problems, which differs from its original use where participants’ solutions were 

collected on tablets and custom software to see erasing and other details [23, 24]. The tool was 

modified to suit material and energy balance problems. The modified PROCESS consists of a 6-

stage rubric assessing: Problem definition, Representing the problem, Organizing information, 

Calculations, Solution completion and Solution accuracy. Each item in the revised PROCESS 

consists of four scaling levels ranging from 0 to 3 with the following categories to rate student 

performance on each of the six the stages of problem solving: missing, inadequate, acceptable, 

and accurate. Any identification regarding group identity was removed prior to scoring and 

replaced with a project-assigned ID number to maintain privacy and to mask group membership 

from raters.  

 

A complete rating plan was proposed where four raters would use the PROCESS tool to score all 

solutions submitted by all students from both cohorts. The four raters consisted of one chemical 

engineering faculty member, one high school science teacher, and one graduate and one 

undergraduate student in chemical engineering. All students completed ten traditional textbook 

problems during the respective courses. 

 

Analyses 

 

Initial inter-rater reliability was assessed in line with best practices as a means to evaluate how 

consistently raters measured student problem-solving ability [25]. The first assessment involved 

the PROCESS scores that five raters assigned to 20 randomly selected students for one textbook 

problem. An additional chemical engineer faculty member joined the four raters above to provide 

a benchmark reference point. Figure 3 presents a portion of the problem that was purposefully 

selected for piloting the use of the rubric. This specific problem was chosen in part because the 

research team decided it was of average difficulty and representative of the ten textbook 

problems assigned.   

 

 
 

Figure 3. Example of the textbook problem used to rate student problem-solving ability 



 

The FACETS [16] computer program was used to produce parameter estimates for the facets 

involved in the rater-mediated assessment (rating scale function, rater severity, item difficulty, 

etc.). Subsequently, qualitative focus group meetings were conducted where raters deliberated 

rationale for their ratings and their understanding of the underlying continuum of problem-

solving. Discrepancies in ratings were resolved by recourse to the theoretical framework of the 

problem-solving cycle that informed the development of the PROCESS [22, 26]. Raters were 

then rescore that problem in light of their refined understanding of the latent trait and function of 

PROCESS. Those results were then analyzed in the same manner as before using the FACETS 

program to estimate parameters. The resulting logit scores were rescaled to conform to the 

original scale of 0 points (a rating of “missing” for all six PROCESS items, representing the 

lowest problem-solving ability level) through 18 points (a rating of “accurate” for all six 

PROCESS items, representing the highest problem-solving ability level).  

 

These interval level measures were then used to calculate Cohen’s kappa and intraclass 

correlation coefficients as extra measures of inter-rater reliability in addition to the standard 

errors and fit statistics provided by FACETS.  Several types of descriptive statistics were 

calculated to assess the inter-rater reliability of the four raters using the PROCESS. The goal was 

to ensure that all of the raters used the rating scale consistently so that differences in student 

performance can be attributed to different problem-solving abilities and not a result of receiving 

a rating from a more or less severe rater. 

 

Results 

 

The problem-solving continuum developed by FACETS as a result of the parameter estimations 

of rater severity, student ability level, item difficulty, and rating scale function are displayed in 

Figure 4. Students with higher scores indicate more advanced problem-solving skills, such that 

student 4835 was identified as exhibiting the most advanced problem-solving skills and student 

1874 as the least advanced. For the PROCESS Item column, the higher the item is on the “ruler,” 

the more difficult it is for students to answer it correctly. Therefore, “Final Solution Accuracy” 

was the most difficult item, with “Representing the Problem” and “Final Solution Completion” 

being the easiest items (i.e. students scored the highest on these items). The Rater column places 

the more severe raters (i.e. gave the lowest scores—Raters 3 and 5) higher on the ruler and the 

more lenient raters (i.e. awarded the highest scores—Rater 4) lower on the ruler. 

 



 
Figure 4. Yardstick representation of student ability level, produced in FACETS  

 

Figure 5 provides more descriptive statistics regarding the estimation of the rater severity 

parameter. The raters are ordered in rows from most to least severe, with their overall measure 

being reported in the fifth column. Of particular interest is the Strata statistic of 2.48 (highlighted 

in yellow). This indicates that there were two distinct groups of raters, a more severe group and a 

more lenient group.  

 

Several types of rater agreement could be achieved [16]. If the desire is to have raters agree 

exactly with each other then we would expect the third to last column in Figure 5 (Exact Agree. 

Obs. %) to be greater than 90%. This would mean that raters were agreeing on exact scores for 

student performance on individual PROCESS items greater than 90% of the time. As can be 

seen, in this instance this is not the case. Of greater concern to most measurement contexts is the 

determination of similar leniency/severity in rater assessments. This is reported by the 

‘Reliability (not inter-rater)’ statistic, highlighted in red in Figure 5, and calculated by taking [1 – 

Separation Reliability], [1 – 0.72 = 0.28], with numbers closer to 0 being best. While there are no 

hard and fast guidelines, 0.28, in conjunction with other evidence, suggests that the raters were 

rating with different levels of severity. Similarly, the null hypothesis for the “Fixed (all same) 

chi-square tests” shown in the third row from the bottom of Figure 5, assumes that all raters are 

rating the same. The significant statistic chi-square value (highlighted in green, Figure 5) 

indicates that we must reject this null hypothesis, providing further evidence that raters are rating 

with different levels of severity and therefore the raters are bringing different interpretations of 

the rating scale into their scoring of student problems 

 



 
Figure 5. Descriptive statistics for parameter estimation of rater severity. 

 

Figure 6 models the discrepancy in rater severity by plotting the range of precision in the 

estimation of rater scores (calculated as Rater Measure ± (2 x S.E.)). This shows that Rater 5 

when most lenient was still significantly more severe than Rater 4 at their most severe. This 

indicates that assessment of student problem-solving in this initial example was influenced by 

measurement error introduced as a result of different levels of rater severity or, rather, different 

interpretations by raters of what constituted each level of the rubric. Thus, a student would get a 

different problem-solving ability score dependent on which rater assessed their assignment. 

 

 
 

Figure 6. Calculation of the range of rater severity from FACET parameter estimation 

 

Further diagnosis revealed some of the overarching areas of disagreement. For example, Table 2 

reveals statistically significant bias regarding how Rater 5 scored the first PROCESS item, 

“Identify the Problem,” and Rater 3’s rating of the second item, “Represent the problem.” The 

scores the raters gave on those respective items across all 20 students they rated were statistically 

significantly lower than expected by the model given the estimated student problem-solving 

ability level and item difficulty. The t-statistics were computed to test the hypothesis that there 

was no bias present in the ratings besides what was to be expected by measurement error. This 

analysis indicated bias in how these raters scored these particular items; specifically, they were 

harsher when scoring these items compared to other PROCESS items.  
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Table 2 

Bias in rater interaction with PROCESS items 

 
 

Comparisons between how pairs of raters scored specific items can lead to fruitful conversations 

regarding the characteristics of responses that belong to each rating category on the items, i.e. 

“What does an answer to Item 1, Identify the problem, need to look like to be considered in the 

acceptable category (score of 2)?” The data in Table 3 suggest that the raters employed different 

understandings of item 1, “Identify the problem.” This was the greatest source of disagreement 

leading to different levels of rater severity. For example, row 1 reports that Rater 1 (overall 

severity estimate of -0.48 logits on item 1) has a statistically significantly more lenient 

understanding/rating of item 1, Identify the problem when compared to Rater 5’s (0.84 logit) 

more strict position on that item, t (35) = -2.55, p =.015. This indicates that a student solution 

that was assessed by Rater 5 was likely to receive a significantly lower score on the “Identify the 

problem” item than if that same solution was assessed by Rater 1.  

 

Table 3 

Pairwise comparison of rater discrepancies in scores assigned to PROCESS items 

 
 

The qualitative meeting between raters examined the discrepancies highlighted above, in 

addition to those found in the raw scores raters provided to some of the students, displayed in 

Table 4. Highlighted cells show areas of considerable discrepancy in ratings that could 

potentially represent different understandings of the underlying construct and its measurement. It 

can be seen that the majority of the ratings provided by the raters were similar across the 

PROCESS items for most of the students. The solution provided by student 4036, a moderate 

performing student, provided difficulties that led to fruitful conversations about the different 

characteristics of responses in the “inadequate” and “acceptable” rating scale categories. The 

meeting offered the opportunity for the raters to clarify any fundamental disagreements or 

misunderstandings pertaining to the latent construct of problem-solving ability. 

 

Rater PROCESS Item
Observed 

Score

Expected 

Score

Bias Size (log 

odds units)

Model 

standard 

error

t-statistic d.f. p-value

5 Identify the problem 36 47.2 -0.82 0.25 -3.29 19 0.0038

3 Represent the problem 44 50.8 -0.66 0.28 -2.34 19 0.0302

PROCESS Item Rater Pair Contrast S. E. t-statistic d. f. p-value

Identify the problem
Rater 1 - 

Rater 5
-1.32 0.52 -2.55 35 0.015

Identify the problem
Rater 2 - 

Rater 3
-1.54 0.64 -2.39 33 0.023

Identify the problem
Rater 2 - 

Rater 5
-2.01 0.63 -3.19 32 0.003

Identify the problem
Rater 3 - 

Rater 4
1.73 0.76 2.27 32 0.030

Identify the problem
Rater 4 - 

Rater 5
-2.21 0.75 -2.94 30 0.006



Table 4  

Discrepancies in use of rating scale categories 

 
 

Following the qualitative meeting, the four primary raters were asked to rescore the student 

solutions for the “methanol reactor” problem described above. Inter-rater reliability statistics 

were computed to assess the extent to which the raters understood and scored “problem-solving 

ability” in a consistent manner with each other. The results in Table 5 report the two forms of 

Cohen’s kappa that were calculated. The second column reports the standard Cohen’s kappa for 

absolute agreement. This statistic quantifies how many instances of exact agreement occurred for 

the ratings (e.g. both raters would have to give a particular student the same rating on a specific 

item). This method is best suited to determine absolute level of agreement, essentially treating 

the ratings as binary outcomes, and therefore only has limited applicability here. It is included in 

the present study just to provide a baseline for comparison. Column 3 reports the quadratic 

weighted kappa statistics. These take into account the nature of ordered categories and adjust for 

the fact that adjacent categories are more alike than non-adjacent (i.e. ratings of 0 from one judge 

and 1 from another are more similar than ratings of a 0 and a 3). Moderate levels of agreement 

(kappa statistic in the range of .60 - .79) mark half of the rater relationships; specifically all of 

those relationships that do not involve Rater 3. Table 5 highlights the need to follow up with 

Rater 3 to discuss their understanding of the latent variable and potentially provide additional 

training on their understanding of the rating scale categories that comprise the assessment tool. 

 

Table 5  

Cohen’s kappa coefficient estimates based on recalibrated ratings 

 
 

Pair
κ value 

(absolute)

κ value (quadratic 

weights)

Rater 1 - Rater 2 0.384 0.707

Rater 1 - Rater 3 0.115 0.573

Rater 1 - Rater 4 0.465 0.743

Rater 2 - Rater 3 0.100 0.421

Rater 2 - Rater 4 0.395 0.792

Rater 3 - Rater 4 0.254 0.536



Additionally, intraclass correlation coefficients (ICC) were computed to assess how similar the 

group of raters as a whole (rather than rater pairs) scored problem-solving ability for the student 

solutions. This correlation shows the reproducibility of the measurement of student problem-

solving ability.  Table 6 reports the results of the intraclass correlation coefficient computed 

using the interval level estimates produced by FACETS as the measure. The ICC coefficient was 

calculated using the initial assessment of the raters and then again using the ratings of the second 

round of assessment. Specifically, a two-way mixed effects, multiple-raters model was 

employed. The initial ICC coefficient of .844, indicates good reliability.  Yet, when taking into 

consideration the 95% CI [.570, .973], there was a wide range from very low moderate to 

excellent reliability in the raters’ scores. The ratings from the post-qualitative meeting show 

appreciable increases in reliability and a narrower confidence interval. Provided the raters score 

student solutions with a similar conceptualization of problem-solving ability, then adding more 

student solutions will help reduce the high standard error caused by the relative small sample 

size in this analysis. 

 

Table 6 

Intraclass correlation coefficient for rater agreement 

 
 

Figure 7 maps the rater-mediated student scores used to calculate the post-qualitative meeting 

ICC coefficient. Data came from six randomly selected students. This plot provides a snapshot of 

how raters differed in the sum scores given to each of the students. It should be noted that Rater 

3 shows significant separation from the other three raters on three of the six assessments (A, C, 

and F), while Rater 2 was drastically lower for the ratings on student B. This provides further 

explanation for the variation in the 95% CI of the ICC coefficient. 

 

 
Figure 7. Plot of the student problem-solving ability level used for the ICC coefficient  

Lower 

Bound

Upper 

Bound
F value df1 df2 Sig

Pre-qualitative meeting 0.85 0.57 0.97 22.57 5 15 < .001

Post-qualitative meeting 0.90 0.69 0.98 34.99 5 15 < .001

Ratings
Intraclass 

Correlation

95% Confidence 



Discussion 

 

This study estimated the reliability of scores from a rubric designed to measure chemical 

engineering problem-solving ability. The analyses mark an important step in the validation of the 

PROCESS itself which has only been validated previously using traditional correlational 

techniques. The many-facet Rasch model (MFRM) was used to explore a set of rater-mediated 

data. This evaluative approach and choice of measurement models was designed to meet the 

increasing demands of accountability in engineering, and in this case specifically chemical 

engineering, education [3, 6, 27]. The models in the Rasch measurement paradigm are 

particularly well suited to the task of evaluating the defensibility of measures pertaining to the 

assessment of student learning outcomes. The demands of specific objectivity, as set out by 

Rasch, require person-free item calibration and item-free person measures [18]. The Rasch 

models also expect the measures resulting from data to meet other requirements similar to those 

maintained for the physical measures that define the field of chemical engineering. Examples 

include the requirements of monotonicity and local independence. These conditions demand that 

items with increasing levels of difficulty require increasing presence of the latent variable in 

order for an individual to succeed on that item/receive a higher rating [28]. 

 

The initial findings show promise for the validity of the measures of problem-solving ability 

produced by the PROCESS. Qualitative meetings discussed the raters’ conceptions of the latent 

construct and how the rating scales mapped progress along the continuum of lower to greater 

levels of the construct. The conversations produced a more stable understanding of the thresholds 

of each of the rating categories, e.g. the hallmarks of an “inadequate” (rating of 1) response to a 

PROCESS item and at what point that response became “acceptable” (rating of 2). Future 

analyses will monitor the function of the rating scale categories as different chemical engineering 

problems are scored. The inclusion of more rater-mediated assessments will make for more 

precise parameter estimations and therefore lead to student assessments that more accurately 

represent actual student ability. Fortunately, the MFRM evaluation process is iterative in nature 

and can (and should) be conducted as assessments are ongoing [25]. This evaluation process can 

identify sources of measurement error in any of the facets estimated, including the parameter of 

rater severity. Discrepancies in use of the rating scale on the PROCESS tool can provide 

opportunities for additional training. These evaluative steps can increase not only the accuracy of 

the scores among the raters, but also the precision of those scores in measuring the latent 

construct, provided the raters maintain fidelity in their use of the rating scale rubric and the 

operationalization of the problem-solving framework. 

 

Reports suggest that there will only be an increase in the call for authentic, meaningful measures 

of student outcomes in engineering programs as the 21st Century proceeds [29]. Novel methods 

of engaging students in the content and methods of engineering appear promising [11, 30, 31]. 

The validity of the pedagogical interventions and the inferences that can be drawn from resulting 

measures will be enhanced through the use of robust measurement and evaluation techniques. 

Engineering educators who demand measures as sturdy as the measures used to build the 

machines that cultivate alternative energy [32] and fuel the next modes of transportation [33] 

need to implement a rigorous system of evaluation of their pedagogical assessments through the 

use of a measurement model that makes such demands on the data. To that end, the 

implementation of Rasch measurement models will provide robust validation for the measures of 



student learning outcomes, which in turn can improve course curricula by accurately targeting 

domains and transferable skillsets critical to the development of this generation’s chemical 

engineers. 
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