
Paper ID #27559

Programming Without Computer: Revisiting a Traditional Method to Im-
prove Students’ Learning Experience in Computer Programming

Mr. S. Cyrus Rezvanifar, University of Akron

S. Cyrus Rezvanifar is a Ph.D. student in Biomedical Engineering at The University of Akron. He has
also served as a research assistant in Cleveland Clinic Akron General since 2016, where he conducts
research on biomechanics of human knee joint and patellar instability. In 2016, he received a doctoral
teaching fellowship from the College of Engineering at The University of Akron. Through this teaching
program, he has served as an instructor for several undergraduate-level courses, and he has conducted
educational research on the effect of various learning techniques on improving students’ self-efficacy and
overall learning experience.

c©American Society for Engineering Education, 2019

Programming Without Computer: Revisiting a Traditional Method to

Improve Students’ Learning Experience in Computer Programming

Introduction

During the past three decades, computer programming has been recognized as an essential skill

and a necessary element in education. Previous studies have reported numerous cognitive

outcomes from learning to program [1]. Feurzeig et al. [2] presented an extensive list of cognitive

benefits of learning computer programming and argued that “the teaching of the set of concepts

related to programming can be used to provide a natural foundation for the teaching of

mathematics, and indeed for the notions and art of logical and rigorous thinking in general”.

Additionally, computer programming is an increasingly required skill in science, technology,

engineering, and mathematics (STEM) fields, and there is a pivotal demand for up-to-date

techniques in its teaching to enhance students’ learning experience and professional competency.

Nevertheless, teaching and learning programming has remained a challenge for both educators and

students of all levels. The differences between expert versus novice programmers, and knowledge

versus strategy approach investigated in the literature [3-5] are among the reasons behind the

foregoing challenge in learning to program. Many studies have thus far investigated challenging

topics in programming from both students’ and educators’ perspective [6] and have introduced

different approaches such as “syntax-free”, “literacy”, and “problem-solving” to address those

issues [7]. In the present study, we have investigated the hypothesis that practicing the knowledge

of programming without computer can substantially improve students’ learning experience with

various core topics of programming such as loops, arrays, and conditional statements.

Method

In our sophomore-level Biomedical Computing course (4800:220), we integrated a “programming

without computer” approach into teaching MATLAB programming. Many students in our class,

as discussed in the literature [6], had issues with basic concepts such as defining variables,

selection structures, and loops. In addition, we noticed that many students were capable of writing

a loop to do a certain task, however, they were often not able to correctly predict the output of a

given program. We believe that such observations are quite common in computer programming

classes, and typically occur due to the memorization of syntax and quasi-templates, as opposed to

deep retention. Hence, we required the students to complete in-class assignments without using

MATLAB and write down the output of a very short program—with MATLAB syntax—on a piece

of paper. These short programs were meticulously designed by the course instructor, each

addressing a specific detail in using a single concept such as loops (Fig.1). For each program, the

students were given a few minutes to write down their responses, with the course instructor and

teaching assistants walking around the class and helping those who were struggling with the

problem.

Figure 1. Example of a "programming without computer" problem. Students were required to

write down the output of this program as an in-class exercise in less than 5 minutes.

The same approach was also incorporated in short quizzes in the beginning of each session. For

each quiz, a free game-based online learning platform (http://kahoot.com) was used to display

three multiple-choice questions on the screen for all students, asking them to use their cell phones

as response remotes and participate in the quiz. Each question consisted of a very short program

followed by potential outputs presented in multiple choices. Students were required to go through

each program and select the correct answer in 30 to 60 seconds—depending on the complexity of

the question—without using MATLAB (Fig.2). Students inserted their names in the online

platform as participants at the beginning of the quiz. After each question, the number of people

who selected each of the choices was revealed. Before moving on to the next question, we

encouraged students to initiate discussions, explain their reasoning for selecting the correct answer,

and discuss why other choices were incorrect. This active learning approach allowed students to

evaluate their retention of the previous lecture material, and also learn about common mistakes

and pitfalls through an interactive and exciting experience. As an incentive for studying before

each class session, students who provided correct answers to all three questions of a quiz received

bonus points toward their final grade.

Figure 2. Example of a multiple-choice quiz/game question (http://kahoot.com)

In both activities, the questions can either focus on lower levels of Bloom’s taxonomy by

addressing basic concepts and syntax, or assess students’ deep learning by questions that require a

http://kahoot.com/

high retention of the core topics, yet can be answered in less than a minute without using the

computer. Of note is the fact that designing the questions in a way that would allow the foregoing

outcomes can be done by the course instructor in a relatively short time and would not demand a

significant amount time or preparation.

We also incorporated the “programming without computer” technique into the midterm and final

exams. In both tests, “Question 1” consisted of three short pieces of programs—similar to the one

demonstrated in Fig.1. The students were given 15 minutes to write down their answers to those

questions without using computer, submit their solutions, and then start working on the rest of the

exam—typically two programming questions with multiple sections—using MATLAB.

To statistically investigate the effect of this approach on students’ performance and learning

experience, two-way ANOVA along with post hoc Tukey’s tests were conducted to compare

students’ grades in “Question 1” and “Other Questions Combined” (total grade – Question 1 grade)

in midterm and final exams. This subtraction would eliminate the effect of “Question 1” grade on

the overall grade and serve as a control against other influential factors on students’ performance.

Statistical significance level was set at =0.05.

Results

Students’ grades in “Question 1” significantly improved (p < 0.0001) from Midterm (53% ± 23%,

N=24) to Final Exam (79% ± 16%, N=24), while only a slight improvement was observed in

“Other Questions Combined” grades between the two exams (Midterm = 76% ± 11% vs. Final =

86% ± 13%). On the other hand, there was a significant difference between students’ grades in

“Question 1” versus “Other Questions Combined” in the Midterm Exam. However, students

demonstrated an almost equal performance in the two categories of questions in the Final Exam.

Figure 3. Students' average scores (±SD) as a percentage for "Question 1" vs. "Other Questions

Combined" in Midterm and Final Exams. “*” indicates statistically significant difference

*
NS

*

NS

Discussion

The results confirm our hypothesis that the proposed “programming without computer” approach

significantly improves students’ performance and deeper understanding of core programming

topics, without an adverse effect on their learning experience of programming in MATLAB. The

proposed approach agrees well with previously introduced techniques for teaching programming

[3, 4, 6-8]. Although writing computer programs on paper were previously incorporated when

limited number of computers were accessible, it should be noted that “programming without

computer” in class exercises and exams is substantially different from solely writing the same

piece of code on paper. A multitude of students—mostly novice programmers—memorize sections

of code as templates and try to “plug and chug” those templates into different programs without

realizing the fundamental syntax and formulation differences. This method encourages students to

ponder upon each and every question separately and avoid forming unconscious mental patterns

in programming. Consequently, students will learn the fundamentals of each programming concept

in depth, before getting involved with numerous details of syntax. Furthermore, a deep retention

of computer programming as opposed to memorization of syntax and templates would result in

aforementioned cognitive benefits in other courses such as mathematics.

A limitation in our study is that other factors such as a probable difference in difficulty level of the

two exams might have affected students’ performance. Moreover, the effect of “programming

without computer” technique on other programming questions cannot be assessed in isolation

using the currently available data. An independent control group with the exact same conditions

except for the “programming without computer” experience could enable more reliable statistical

inferences. However, since this technique has indicated significant improvements on students’

performance and learning experience, it would not be ethically justifiable to eliminate this

experience in a future course for the purpose of having a control group. Nonetheless, an improved

study design will be incorporated in our future study to more accurately and specifically investigate

the effect of this technique on students’ performance and learning experience in computer

programming.

As a side note, since using cell phones is typically forbidden during class time and exams, allowing

students to use their cell phones as response remotes broke the routine of the class, and made

students excited to take a quiz. We believe that this behavior is rarely observed among college

students and should be considered by educators. In 2002, Guzdial and Soloway [9] referred to

college students of that time as “Nintendo generation”. They argued that wisely implementing

students’ preferences and hobbies into the theme of course syllabus and assignment deliverables

would enhance students’ involvement, motivation, and deep learning. We believe that the current

generation could be referred to as “cell phone generation”. Hence, using cell phones as response

remotes for quizzes, acquiring cell phone sensors data for computing projects, and teaching image

processing and two-dimensional filters in a social media theme are examples of numerous

approaches that would engage students and lead into their deep learning.

Acknowledgment

The author would like to acknowledge the Doctoral Teaching Program in College of Engineering at

The University of Akron for providing teaching fellowships for S. Cyrus Rezvanifar.

References

[1] Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New ideas in psychology, 2(2), 137-168.

[2] Feurzeig, W., et al. (1981). Microcomputers in education. National Institute of Education.

Venezuela Departmentof Health, Education and Welfare.

[3] Robins, Anthony, et al. (2003). Learning and teaching programming: A review and

discussion. Computer science education 13.2. 137-172.

[4] Winslow, Leon E. (1996). Programming pedagogy—a psychological overview. ACM Sigcse

Bulletin 28.3. 17-22.

[5] Davies, Simon P. (1993). Models and theories of programming strategy. International Journal

of Man-Machine Studies 39.2. 237-267.

[6] Milne, Iain, and Glenn Rowe (2002). Difficulties in learning and teaching programming—

views of students and tutors. Education and Information technologies 7.1. 55-66.

[7] Fincher, Sally. 1999. What are we doing when we teach programming? fie. IEEE

[8] Wulf, T. (2005). Constructivist approaches for teaching computer programming.

In Proceedings of the 6th conference on Information technology education. 245-248

[9] Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to

program. Communications of the ACM, 45(4), 17-21.

