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Statistical Analysis and Report on Scale Validation Results for the  

Engineering Ethical Reasoning Instrument (EERI)  

Abstract 

 

As evidenced by the ABET criteria and numerous publications, the growing need to foster ethical 

awareness and judgment in engineering students is pronounced. Despite this, the ability to 

definitively show accreditation boards, such as ABET, that good work is being done is scarcely 

achievable since the most effective methods of evaluation are too time consuming. In an effort to 

standardize at least some means by which ethical reasoning can be measured in engineering 

students, a team researchers developed the Engineering Ethical Reasoning Instrument (EERI) [1]. 

This instrument was based on a second iteration of the Kohlbergian Defining Issues Test (DIT2). 

The EERI was designed to be an adaptation of the DIT2, but with scenarios contextually relevant 

to engineering students. Ideally, the EERI is intended to measure the degree to which participants 

reason “post-conventionally,” described in neo-Kohlbergian theory as a belief that “moral 

obligations are to be based on shared ideals, are fully reciprocal, and are open to scrutiny (i.e. 

subject to tests of logical consistency, experience of the community and coherence with accepted 

practice)” [2]. Since the EERI was developed and first presented at ASEE in 2013, there have been 

ten additional papers presented at ASEE conferences alone which have either been directly about 

the EERI or have used the EERI as an instrument in their methodology. Now, after several years 

of being administered at Purdue and other institutions, there are 2000+ total responses. This paper 

builds on previous validation work to report formal analysis of the aggregated descriptive statistics 

from a sample of the total population of participants. The preliminary results from scale validation 

through partial confirmatory factor analysis of the EERI are presented and discussed. 

Introduction 

 

 In 2000 the Accreditation Board for Engineering and Technology (ABET) released its new 

set of criteria for the turn of the century [3]. Within the criteria were three new and explicit 

references to ethics as an expected part of engineering curriculum. Following this there was a surge 

in publications regarding ethics education at the annual conferences for the American Society for 

Engineering Education (ASEE). A common concern which kept surfacing were questions 

regarding how to measure the effectiveness of new curricular efforts geared towards ethics. As 

noted by a team at Purdue [4], one of the only reliable scales for measuring ethical reasoning 

mechanisms was the current version of the Defining Issues Test (DIT2). The team noted that, 

although the DIT2 was a validated measure for the general population, it may not be sufficient to 

measure engineering-specific aspects of moral judgment [5]. In response to this criticism of the 

DIT2’s appropriateness within engineering education, they developed the Engineering Ethics 

Reasoning Instrument (EERI), which was first published in the proceedings of the 2013 Annual 

Conference for ASEE [4]. 

 

The DIT2 is based upon neo-Kohlbergian theory which suggests that there are three 

primary modes of thinking, or schema, that influence decision making priorities regarding ethical 

dilemmas [2]. These three schemas are: 1) pre-conventional—the degree to which decisions are 

based on reference to the self and how the decision will affect the self (i.e. oriented towards self-

preservation); 2) conventional—the degree to which one prioritizes rules, conventions, and societal 



expectations when making decisions within ethical dilemmas; and 3) post-conventional—the 

degree to which one is willing to question the purpose of rules, normative behavior, societal 

expectations, or self-oriented consequences when making ethical decisions, preferring ideals that 

could benefit society as a whole while being logically coherent.  

 

 The EERI was modeled directly after the DIT2 [6], but with modified scenarios and items. 

Both scales contain six separate scenarios that are designed to have ethically ambiguous and value 

competing components. A participant reads a scenario and is then presented with twelve unique 

items regarding considerations that could affect how an individual might respond to the ethical 

dilemma. The participant is then asked to rate each of the items on a five-point Likert-scale in 

reference to how important they think the item is when considering how to respond to the ethical 

dilemma. After rating each of the items, the participants are then asked to rank the top four items 

which they considered to be most important. This process was carried out for all six scenarios. 

  

Since being introduced to the engineering education community, the EERI has been 

administered many times and referenced in at least ten papers published through the ASEE 

conference proceedings [1] [7] [8] [9] [10] [11] [12] [13] [14] [15]. The EERI was referenced or 

used three times just last year within ASEE proceedings, one of which was purposed towards the 

validation of another instrument [10]. The fact that the EERI is being used within validation efforts 

of other instruments highlights the need to make sure that the EERI itself is validated. The EERI 

currently has over 2000 responses in total. Although initial validation evidence was collected [1], 

it is clear that additional evidence is needed to inform both current use and future improvements 

to the instrument [16]. Additionally, the EERI has primarily been used as an additional measure to 

provide depth alongside ethics education interventions to stimulate added thinking about reasoning 

mechanisms. Although some of the research noted above looks into how different groups of people 

respond differently to the EERI, it is not yet clear whether the EERI is reliably measuring 

something at all, or what exactly it is measuring even if shown to be valid. This gap leads to the 

purpose of this present paper—making progress towards achieving validation thresholds for the 

EERI as a scale. Once this is done, other gaps can begin to be explored. 

Methodology 

 

Partial Confirmatory Factor Analysis 

 

 The EERI has six scenarios, each with twelve items. Each item is designed to map to one 

of the three Neo-Kohlbergian schemas (the latent variables). The first schema is “pre-

conventional”, also referred to as schema-23 (based on two of the six sub-categories from 

Kohlberg’s framework). The second schema is “conventional,” also referred to as schema-4. The 

last schema is “post-conventional,” also referred to as schema-56. Based on this theoretical 

structure, a preliminary analysis of item correlations was conducted to calibrate an understanding 

of how they were interacting (correlation matrix available upon request). This step was primarily 

geared towards identifying whether the intended item interactions were manifested at a surface 

level. Based on that examination, it was concluded that a more robust method of analysis would 

be necessary. A Partial Confirmatory Factor Analysis (PCFA) [17] [18] was chosen as the ideal 

starting point because it acts as a bridge between Exploratory Factor Analysis (EFA) and full 

Confirmatory Factor Analysis (CFA) [19]. If the number of intended factors is known (at least 



theoretically, as is the case with the EERI), a PCFA can allow for unintended factors to be found 

while also running the necessary diagnostics for determining if a full CFA will be more likely to 

succeed. An additional benefit to PCFA is that it folds exploratory factor analysis into the process. 

 

 For factor analysis to be feasible and more reliable, especially when there are many items 

and more than two factors, large sample sizes are needed. This analysis uses a dataset of responses 

from Purdue students enrolled in the EPICS service learning program [20]. In the EPICS program, 

teams of students partner with community organizations to address real design challenges. The 

dataset (after cleaning) has accumulated 1178 responses over the course of several semesters. 

 

 Although the N2 scoring index (developed by Rest et al [25]) used is calculated based on 

item rating results and item ranking results, the structure of item ranking responses does not lend 

itself to factor analysis. Thus, the factor analysis will only be conducted on item rating results. 

Despite this, it is reasonable to suggest that if a consistent set of latent factors are identified as 

being represented by the items, the items then chosen for ranking—being the same items used for 

rating—will also represent the identified latent factors. The obvious limitation being that even if 

three factors are consistently identified, there is no guarantee that the factors being represented by 

the items are the actual target factors (pre-conventional, conventional, and post-conventional). 

 

 The software used to conduct the factor analysis was SPSS. The analysis went through 

three separate refinement cycles wherein problematic items were identified and removed to 

determine which sets of items most effectively represented the intended latent variables (pre-

conventional, conventional, and post-conventional). The PCFA was conducted at the scenario 

level and at the aggregate level. 

 

 For each cycle of refinement, although three factors were manually selected for extraction, 

scree plots and item eigenvalues were surveyed to determine if there were divergences from the 

expected number of factors. During each of these iterations, for each scenario and the aggregate, 

the following results were collected: the Kaiser-Meyer-Olkin (K-M-O) measure of sampling 

adequacy; Bartlett’s Test of Sphericity (chi-squarenull, degrees of freedom, and significance); and 

Goodness-of-fit (chi-squareimplied, degrees of freedom, and significance). The Bartlett’s Test of 

Sphericity and Goodness-of-fit parameters (along with sample size) were then used to calculate 

four of the major CFA construct fit indices [18]:  

 

• Normed-Fit Index (NFI) [21]: 𝑁𝐹𝐼 =
(𝜒𝑁𝑢𝑙𝑙

2 −𝜒𝐼𝑚𝑝𝑙𝑖𝑒𝑑
2 )

𝜒𝑁𝑢𝑙𝑙
2  

• Tucker Lewis Index (TLI) [22]: 𝑇𝐿𝐼 =
(𝜒𝑁𝑢𝑙𝑙

2 /𝑑𝑓𝑁𝑢𝑙𝑙)−(𝜒𝐼𝑚𝑝𝑙𝑖𝑒𝑑
2 /𝑑𝑓𝐼𝑚𝑝𝑙𝑖𝑒𝑑)

[(𝜒𝑁𝑢𝑙𝑙
2 /𝑑𝑓𝑁𝑢𝑙𝑙)−1]

 

• Comparative Fit Index (CFI) [23]: 𝐶𝐹𝐼 = 1 −
(𝜒𝐼𝑚𝑝𝑙𝑖𝑒𝑑

2 −𝑑𝑓𝐼𝑚𝑝𝑙𝑖𝑒𝑑)

(𝜒𝑁𝑢𝑙𝑙
2 −𝑑𝑓𝑁𝑢𝑙𝑙)

 

• the Root Mean Square of Approximation (RMSEA) [24]: 𝑅𝑀𝑆𝐸𝐴 = √
𝜒𝐼𝑚𝑝𝑙𝑖𝑒𝑑
2 −𝑑𝑓𝐼𝑚𝑝𝑙𝑖𝑒𝑑

(𝑁−1)∗𝑑𝑓𝐼𝑚𝑝𝑙𝑖𝑒𝑑
 

 

Where N is sample size, 𝜒𝑁𝑢𝑙𝑙
2  is the chi-square result from the Bartlett test of Sphericity, 𝜒𝐼𝑚𝑝𝑙𝑖𝑒𝑑

2  

is the chi-square results from the Goodness-of-fit test, 𝑑𝑓𝑁𝑢𝑙𝑙 is the degrees of freedom from 



Bartlett’s test, and 𝑑𝑓𝐼𝑚𝑝𝑙𝑖𝑒𝑑 is the degrees of freedom from the Goodness-of-fit test. The results 

of the fit indices are evaluated as follows: the NFI, TLI, and CFI are considered good if >0.95, 

whereas the RMSEA is “okay” if <0.08, and good if <0.06. If the majority of the fit indices meet 

their thresholds, then there is a reasonable chance that the construct is well represented by the 

scale. 

 

 During each iteration of the PCFA, the Pattern Matrix was used for determining which 

items loaded to which factors. If it was apparent that an item was loading on the wrong factor, or 

if an item was loading too weakly (<0.3) the item was removed from the pool and the next round 

of analysis was initiated. This took place (generally) in three cycles for each scenario (except for 

scenario 1). 

Results 

 

Partial Confirmatory Factor Analysis 

 

 Results from all rounds of analysis refinement for each scenario are summarized below. 

The referenced index values, as well as corresponding Bartlett Test of Sphericity and Goodness-

of-fit results, are all detailed in summary tables below each scenario section. These tables also 

include, for each round, how many factors were naturally extracted by factor analysis and reference 

to the specific items that were removed during the process and after which round they were 

removed. Items are coded as follows: the first value is the schema (i.e., pre-conventional, 

conventional, and post-conventional), the second value indicates the scenario (i.e. s1 for scenario 

1), and the last value indicates which of the items was removed. 

 

Scenario 1 

 

 Scenario one’s factor analysis successfully extracted three factors naturally on the first 

round and each item was correctly loaded onto a factor with the appropriate items. Although this 

was the only scenario that resulted in loadings perfectly consistent with theory and scale design, 

the fit indices were the weakest (only two above threshold). Using the Factor Matrix instead of the 

Pattern Matrix showed that one of the conventional items was cross loaded between conventional 

and pre-conventional. This item was dropped, resulting in another conventional item dropping 

below the strength threshold of 0.3. With the second conventional item removed, final analysis 

had all items loaded correctly and a third fit index going above its acceptable threshold.  

 

Table 1, Statistical results of PCFA analysis for scenario 1. 

Scenario 
Analysis 

Round 

Natural 

Factors 
 

Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test 
K-M-O 

Items 

Removed 

1 

1 3 

2 2687.123 154.321 

0.728 
1 item 

removed 
df 66 33 

Sig 0.000 0.000 

2 3 
2 2387.074 95.514 

0.717 
1 item 

removed df 55 25 



Sig 0.000 0.000 

3 3 

2 2219.208 71.978 

0.707 

 

df 45 18 

Sig 0.000 0.000 

 

Scenario 2 

 

 Scenario two’s factor analysis successfully extracted three factors naturally on the first 

round, but there was an item which was incorrectly loaded (a post-conventional item loaded with 

the conventional items). After removing this item, all remaining items were correctly loaded, but 

one of the schema-4 items dropped below a loading strength of 0.3 and was removed before a final 

analysis. The final analysis resulted in correctly loaded items and three fit indices above threshold. 

 

Table 2, Statistical results of PCFA analysis for scenario 2. 

Scenario 
Analysis 

Round 

Natural 

Factors 

 Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test K-M-O 
Items 

Removed 

2 

1 3 

2 2894.233 218.224 

0.734 
1 item 

removed 
df 66 33 

Sig 0.000 0.000 

2 3 

2 2686.291 199.331 

0.728 
1 item 

removed 
df 55 25 

Sig 0.000 0.000 

3 3 

2 2377.840 92.094 

0.715  df 45 25 

Sig 0.000 0.000 

 

Scenario 3 

 

 Scenario three’s factor analysis naturally produced 4 factors. This was because the 

threshold was set to 1 eigenvalue. Upon analyzing the scree plot (shown in figure 1), it was clear 

that a) the fourth factor was only just above an eigenvalue of 1, and b) there was a stronger 

inflection point at the third factor. Thus, it was concluded that 3 factors were appropriate. 

Upon analysis of the Pattern Matrix, 

two of the conventional items were 

shown to be below a loading strength 

of 0.3 and were removed. The second 

analysis improved greatly but still 

had one rogue conventional item 

which was loaded with the pre-

conventional items. It was removed, 

and the final analysis showed good 

loading fit for the remaining items 

and all four fit indices were above 

threshold. 



 

Table 3, Statistical results of PCFA analysis for scenario 3. 

Scenario 
Analysis 

Round 

Natural 

Factors 

 Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test K-M-O 
Items 

Removed 

3 

1 4 

2 2109.649 159.737 

0.684 
2 item 

removed 
df 66 33 

Sig 0.000 0.000 

2 3 

2 1844.211 57.081 

0.671 
1 item 

removed 
df 45 18 

Sig 0.000 0.000 

3 3 

2 1680.246 31.405 

0.654  df 36 12 

Sig 0.000 0.000 

 

Scenario 4 

 

 Although five factors were extracted naturally, running again while restricting to only five 

factors resulted in two of the factors dropping below an eigenvalue of 1, so three factors were 

justified. Items which were above a loading strength of 0.3 all fit with theoretical expectation on 

the first round, so the two lowest items—one from pre-conventional and one from conventional 

—were removed. The second round of analysis only had one remaining post-conventional item 

which was below 0.3 and was removed. The final round of analysis had good results, except one 

of the pre-conventional items is weakly loaded with conventional items (at a strength of 0.323) in 

addition to a stronger loading (0.520) with the remaining schema-23 items. Final round analysis 

also yielded three fit indices above threshold. 

 

Table 4, Statistical results of PCFA analysis for scenario 4. 

Scenario 
Analysis 

Round 

Natural 

Factors 
 

Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test 
K-M-O 

Items 

Removed 

4 

1 5 

2 2232.400 305.388 

0.700 
2 items 

removed 
df 66 33 

Sig 0.000 0.000 

2 3 

2 1687.303 68.810 

0.677 
1 item 

removed 
df 45 18 

Sig 0.000 0.000 

3 3 

2 1530.058 44.133 

0.657  df 36 12 

Sig 0.000 0.000 

 

Scenario 5 

 



 Scenario five’s factor analysis cleanly extracted only three factors. First round analysis of 

the Pattern Matrix looked good, except that there was a conventional item loaded with the post-

conventional items and a post-conventional item loaded with the other conventional items. These 

two items were removed. The second round of analysis a pre-conventional item was split loaded 

with conventional and was removed. The final round of analysis had good loading with remaining 

items and all four fit indices were above threshold. 

 

Table 5, Statistical results of PCFA analysis for scenario 5. 

Scenario 
Analysis 

Round 

Natural 

Factors 

 Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test K-M-O 
Items 

Removed 

5 

1 3 

2 2228.127 178.373 

0.747 
2 items 

removed 
df 66 33 

Sig 0.000 0.000 

2 3 

2 1775.411 88.749 

0.726 
1 item 

removed 
df 45 18 

Sig 0.000 0.000 

3 3 

2 1427.591 28.331 

0.708  df 36 12 

Sig 0.000 0.000 

 

Scenario 6 

 

 Scenario six’s factor analysis extracted 4 factors naturally when all items were included. 

Scree plot analysis did not yield any clear justification for reducing factors to only three. It was 

decided to force a three-factor extraction and clean erroneous items until a natural three factor 

extraction was achieved. First round analysis of the Pattern Matrix showed relatively clean loading 

except two post-conventional items below loading strength of 0.3, which were removed. There 

was an additional pre-conventional item which was strongly loaded with post-conventional. The 

strength of the loading (stronger than either of the remaining post-conventional items) suggested 

that it was legitimate, suggesting that the item may in fact need to be changed to a post-

conventional item. Second round analysis resulted in one conventional item below loading strength 

of 0.3 and was removed. Final round analysis resulted in good loading (assuming that the rogue 

pre-conventional item can be assumed now as a post-conventional item). 

 

Table 6, Statistical results of PCFA analysis for scenario 6. 

Scenario 
Analysis 

Round 

Natural 

Factors 

 Bartlett’s 

Test of 

Sphericity 

Goodness-

of-fit Test K-M-O 
Items 

Removed 

6 

1 4 

2 2198.483 73.133 

0.790 
2 items 

removed 
df 66 24 

Sig 0.000 0.000 

2 3 
2 1884.542 59.135 

0.776 
1 item 

removed df 45 18 



Sig 0.000 0.000 

3 3 

2 1797.045 46.415 

0.778  df 36 12 

Sig 0.000 0.000 

 

Index performance 

 

 Prior to removing any items, when running factor analysis with the current form of the 

EERI, index performance is generally poor. As is shown in Table 7, only three of the scenarios 

had at least one index which performed within acceptable thresholds. None of them met the 

preference of having at least three indices which performed within acceptable thresholds. 

 

Table 7, Index performance results for all scenarios prior to any item removal. “*” Near 

threshold, “**” above threshold, unacceptable where there are no asterisks  

First Round Analysis Results 

Scenario/Index NFI (>0.950) CFI (>0.950) TLI (>0.950) RMSEA (<0.06 or <0.08) 

Scenario 1 Items 0.943 * 0.954 ** 0.908 0.0558 ** 
Scenario 2 Items 0.925 * 0.935 * 0.869 0.0691 * 
Scenario 3 Items 0.924 * 0.938 * 0.876 0.0571 ** 
Scenario 4 Items 0.863 0.874 0.749 0.0837 
Scenario 5 Items 0.920 * 0.933 * 0.866 0.0612 * 
Scenario 6 Items 0.940 * 0.954 ** 0.908 0.0503 ** 
Combined 

Scenario Items 
0.621 0.685 0.656 0.0497 ** 

 

 After refinement of item selection, a much better index performance was achieved. As can 

be seen in Table 8, all scenarios now meet at least the minimum expectation of a majority of indices 

having performance within acceptable thresholds. Even the TLI index performance was relatively 

close to the threshold of >0.95, with an average deficiency of only 0.016. The only remaining set 

of indices which completely failed regardless of item selection are those associated with factor 

analysis of all items from the entire EERI in aggregate. 

 

Table 8, Index performance results for all scenarios after completing analysis iterations and 

removing select items. “*” Near threshold, “**” above threshold, unacceptable where there are 

no asterisks 

Final Round Analysis Results 

Scenario/Index NFI (>0.950) CFI (>0.950) TLI (>0.950) RMSEA (<0.06 or <0.08) 

Scenario 1 Items 0.968 ** 0.975 ** 0.938 * 0.0505 ** 
Scenario 2 Items 0.961 ** 0.968 ** 0.921 * 0.0591 ** 
Scenario 3 Items 0.981 ** 0.988 ** 0.965 ** 0.0371 ** 
Scenario 4 Items 0.971 ** 0.979 ** 0.936 * 0.0477 ** 
Scenario 5 Items 0.980 ** 0.988 ** 0.965 ** 0.0340 ** 
Scenario 6 Items 0.974 ** 0.980 ** 0.941 * 0.0494 ** 



Combined 

Scenario Items 
0.667 0.717 0.684 0.0543 ** 

 

Removed Items 

 

 Throughout the iterations of item selection refinement, a total of sixteen items were 

identified as poorly fitted and removed. Two items were removed from the pre-conventional pool; 

nine items were removed from the conventional pool; and five items were removed from the post-

conventional pool. This left 56 items in the scale from the original 72. 

Discussion 

 

 The PCFA demonstrated that the EERI, in its current form, does not seem to adequately 

target the intended latent construct. Although the desired construct seems likely to be achievable 

through the elimination of certain items, this introduces new problems for the EERI. First, with 

the elimination of 16 of the 72 items, the structure of the EERI no longer fully matches that of its 

model, the DIT2. The principle structure of the EERI would still be consonant with the DIT2, but 

a 22% reduction in the number of items introduces some strain to direct comparisons. Despite this, 

we believe that the principle structure regarding how items are presented is more dominant than 

how many items are presented.  

 

 The second problem with item elimination is the unbalanced way that the items were 

removed. Conventional items were the most commonly removed items, making up 56% of those 

eliminated. Next were post-conventional items at about 31%, and finally only about 13% were 

pre-conventional. Not only was the distribution of removed items unequal, but the distribution of 

which scenarios the items were removed from was also unequal. It is not clear yet whether this is 

problematic, and further analysis will need to be conducted. 

 

 Lastly, and most importantly, the elimination of items may nullify the usefulness of the N2 

index for obtaining a final score, which is likely dependent upon a relatively equal number of pre-

conventional and post-conventional items. That being said, it is not clear yet how sensitive the N2 

index is to inequality between these schemas. The DIT2 and the EERI (with all 72 items) already 

have an imbalance in this regard, having only 23 pre-conventional items compared to 24 post-

conventional items. It is possible that the N2 has been compromised in some way due to the larger 

disparity that now exists. 

 

 Moving forward, these results lead to two options. One option would be an attempt to 

replace the missing items with new items. Although this would solve the imbalance issues noted 

above and bring the EERI back into consonance with the DIT2, it would be a lengthy and extensive 

process. Creating new items would require a new set of data to be generated and yet another round 

of involved factor analysis before finding out if the new items work. An alternative option is simply 

to remove to 16 items and leave the EERI in its new form. In this case, more analysis would still 

need to be conducted to complete a full Confirmatory Factor Analysis, but that can be conducted 

with existing data (since this analysis was conducted using less than half of the total data available). 

If it can be shown that the target construct really is represented by the EERI, the next step would 

be to either re-validate the now potentially compromised N2 index, revert to using the P index, or 

try and generate a new index that factors in the imbalance. 



 

 One method for validating an index for this scale would be to mirror what Rest, Narvaez, 

and Bebeau [25] did when originally creating and validating the N2 index. Their approach was to 

use scores generated by experimental indices and test for sensitivity to the following criteria—also 

used to validate the original DIT [26]: 

 

• Sensitivity to educational intervention 

• Sensitivity to differentiated educational groups 

• Sensitivity to longitudinal trends 

• Correlations with moral comprehension 

• Links to behavior 

o Civil libertarian attitudes 

o Pro-social behavior 

 

As administrations of the EERI continue, it may be necessary to start including validated methods 

of measuring the above listed factors to validate the N2 index or another index which may be 

designed. Detecting these sensitivities will also alleviate some of the uncertainty about whether 

the three factors found within each scenario are the target factors (pre-conventional, conventional, 

and post-conventional)   

Limitations 

 

 The current analysis was conducted primarily with only students from Purdue and within 

the context of one course. This is not a broad enough sample to make any sweeping conclusions. 

There was a moderate selection of students represented from sophomore, junior, and senior years, 

but the majority of the students were freshman. A further round of analysis will be conducted once 

the additional 1000+ set of responses—many of which came from other courses and institutions—

has been cleaned and prepared for factor analysis. Considering that the fit indices do not hold when 

the items are analyzed in aggregate, there is a chance that different types of factors are being 

represented by each scenario. It is also possible that the breakdown of cohesion at the aggregate 

level is due to the changing context of each scenario. Future research will need to explore how to 

resolve this uncertainty. 

Conclusion 

 

 With the EERI now several years old and having been used many times with well over 

2000 responses, a formal analysis of construct validity was needed. Using a subset of the data 

collected from students in the EPICS service-learning program at Purdue, a Partial Confirmatory 

Factor Analysis was conducted. This analysis resulted in the identification of 16 (out of 72) items 

which were problematic. When these 16 items were included in factor analysis, construct fit 

indices performed very poorly. When these items were removed, the construct fit indices had very 

promising results, suggesting that a full Confirmatory Factor Analysis would be worth pursuing 

and likely to succeed. At this point, two primary pathways could be taken for future work regarding 

the EERI: 1) new items are created to replace the ones that need to be removed; or 2) the 

problematic items are removed, no items replace them, and the scoring index is re-validated or re-

created. 
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