
Paper ID #28786

An Open-Source Autonomous Vessel for Maritime Research

Dr. Robert Kidd, State University of New York, Maritime College

Dr. Kidd completed his B.S., M.S. and Ph.D. at the University of Florida in 2011, 2013, and 2015
respectively. He worked at the Center for Intelligent Machines and Robotics at UF from 2009 to 2015
researching the use autonomous ground vehicles including ATVs, a Toyota Highlander, and a tracked
loader. He has taught at SUNY Maritime College since 2015 running the capstone design sequence
for mechanical engineers. His research interests include additive manufacturing, fault-tolerant control,
artificial immune systems, and autonomous ground vehicles and surface vessels.

c©American Society for Engineering Education, 2020

An Open-Source Autonomous Vessel for Maritime Research

Abstract

As autonomy becomes increasingly prevalent in the maritime industry, students entering the field

will need to receive advanced training in this area. To address this challenge, this work details

efforts to develop an independently deployable autonomous vessel (the AG-0) which is

generated through combining existing open source resources. The vessel can be used as a low-

cost solution for researching and teaching autonomy in the maritime environment and can also be

used as an autonomous vessel to perform scientific research in inaccessible areas without

requiring experience with coding or autonomy. Without the sensor package for scientific

research, the vessel costs below $500 and can be built by students with limited technical

knowledge. A first-iteration vessel is generated by engineering students and faculty before being

given to undergraduate environmental science researchers. The performance of the design is

evaluated by these non-engineers for both function and operability. Their recommendations are

detailed along with design and construction information.

Introduction

While there is a consensus that autonomy is coming to the maritime industry and will be

revolutionary, there is not a consensus on exactly how it will come. In general, the autonomous

vessel community believe that autonomy could begin making certain vessels unmanned in the

near future [1]. Many of these projects are currently in the demonstration phase, such as the

Falco, an unmanned ferry from Finferries [2]. However, many in the maritime community feel

that there are certain applications, such as non-electric vessels, that will require a trained crew

onboard [3].

This uncertainty means that academic institutions are hesitant to fund new advanced training

programs until they are certain what they should look like. For example, as autonomy increases

on vessels, mariners could either focus on traditional computer engineering skills such as coding

and data management of the digital twin – a virtual simulation of a vessel used for increasing

efficiency and early fault detection – or focus on traditional trade school skills such as engine

maintenance and repair. Few institutions are well positioned to develop new programs in

computer science or engineering for mariners. Of the 7 collegiate maritime academies, none

include a computer science or computer engineering program. Several of the academies offer

degrees in electrical engineering, but these focus primarily on power generation and distribution

instead of control and automation.

This means a significant skills gap is projected for engineers who are comfortable in both the

maritime environment and with automation if changes are not made [4]. To deal with this,

academic institutions need to be proactively building the infrastructure to prepare the next

generation of maritime engineers even as the industry evolves. Low-cost programs will be

critical to enable institutions to explore these high-tech programs and develop experience before

the industry needs become clear.

Education with autonomy is difficult to get started in. Firstly, most autonomous vehicle

programs are directed toward those with a coding or computer science background. For example,

the majority of these programs are written for Linux. This means that both students and,

sometimes, instructors must learn not only new coding skills and new programs, but also a new

operating system. Once these software challenges are overcome, moving to real-world hardware

can also be challenging. Purchasing a platform to test these new autonomy algorithms can be

expensive. The well-equipped Clearpath Robotics Heron USV costs $35,000-$40,000. While

significantly less capable, the BlueRobotics BlueROV2 can still cost $3,000 to $5,000. These

costs can increase greatly if multiple vessels are needed for a class on autonomy.

Beyond these engineering considerations, environmental scientists studying the maritime

environment have a need for remote data collection platforms. Without access to robotic

platforms, scientists are relegated to either getting data from other scientists, collecting samples

from the shoreline, or placing their sensors on a manned vessel. Again, these robots can be

prohibitively expensive for small institutions or citizen scientists. Combining these two needs

provides an opportunity to develop a low-cost autonomous vessel that can serve multiple roles on

a campus and can be customized based on any local needs.

Design Specifications

The base AG-0 vessel, shown in figure 1, uses a 3D-printed hull with customizable inserts for

different research applications and hardware configurations. Unlike most autonomous surface

vessels (ASVs), this vessel used a monohulled design instead of a catamaran or trimaran design.

The multihulled designs are common due to their high maneuverability and stability. These

benefits come at a cost to both storage size and expense which were not feasible for this project.

Additionally, since the goal of the AG-0 was to serve as a platform that could be used to teach

real-world autonomy for ocean-going vessels in the future, a monohulled design was chosen to

mirror the majority of these vessels. The hull is adapted from the n3m0 vessel created by Mike

Holden at California State University Maritime Academy. The n3m0 hull is modeled after a US

Navy PT boat.

Figure 1: CAD model of the hull (left) and the 3D printed hull (right)

The hull has a length overall (LOA) of 35.5” (90.2 cm) and a beam of approximately 8.5” (21.6

cm). Internally, the vessel has a bulkhead at its approximate center that separates the vessel into a

fore and aft sections. The fore section is designated for the electronic control package while the

aft section is designated for power storage and sensor packages. The hull is designed to be

printed in sections which fit snugly within the print bed of an Ultimaker 3D printer or any printer

with a print bed at least 8.5” (21.6 cm) square. The top of the vessel is also 3D printed in sections

and is held down through elastic straps. All antenna masts are included in a single section of the

top so that only one part would need to be edited for different antenna configurations or if

external atmospheric sensors were desired. The foremost sections of the hull and the top are left

unused so future autonomy packages can utilize the space for additional sensing capabilities such

as sonar or LIDAR. The aftmost section of the hull, shown in figure 2, includes all sensor

mounts. If a different sensor package is desired, this section can be edited and replaced.

Figure 2: The aftmost section of the AG-0 hull showing the three sensors along with the

propeller and shaft. Rudder not shown for clarity

The hull sections can then be epoxied together to form the uniform hull, and the top sections can

be epoxied together to form a uniform cover. It is recommended to seal both the hull and the top

to prevent any potential leaks and limit environmental deterioration. While PLA is a generally

acceptable material to be used if protected, printing with ABS is recommended due to its

superior performance in a saltwater environment. The files for the hull can be found at

https://github.com/bokidd/AG-0_CAD.

Internally, the vessel has a series of customizable mounts for different configurations. The

current implementation utilizes the center bulkhead as a motor mount for the propulsion system.

This bulkhead is 3D printed and can be customized based on the motors available. If desired, this

bulkhead could be expanded to separate the vessel into two watertight compartments. Within this

bulkhead, routing points are included for cables connecting the sensor package to the electronics

https://github.com/bokidd/AG-0_CAD

package. The electronics package sits on a shelf that conforms to the curvature of the hull. This

shelf provides a level mounting platform for the electronics while elevating them above the inner

surface of the hull in case there are any leaks. For this application, the electronics package is

protected in a separate IP67 waterproof case that was on-hand.

The electronics package consists of a Pixhawk flight controller, a Raspberry Pi 3 B+, and an

Arduino Uno. The Pixhawk performs the basic navigation functions and interfaces with the

propulsion hardware. It is an open-source hardware project that runs a suite of open-source

software. This software includes the PX4 autopilot and the MAVLink protocol from the

Dronecode project. The Arduino manages the sensor payload used for environmental testing and

logs the generated data. The Pi provides high-level intelligence, control, and management of the

vessel through MOOS-IvP, an open-source software ecosystem from MIT. Separating the

electronics into these modules – navigation, payload, and intelligence – slightly increases the

overall cost and complexity of the design. However, this modularity means the modules can be

swapped as users desire. The navigation package can be upgraded to any other package that is

compliant with the MAVLink protocol, such as the BeagleBone Blue. The modular design also

allows the sensor payload to be removed from the vessel and operated manually on shore.

The propulsion system utilizes a brushless DC motor attached to a stock shaft and propeller. The

motor, controller, and propeller can be varied if greater or lesser speeds are desired. Minimum

design speeds and motor selections will be determined by the user’s particular application space.

While this is beyond the scope of this phase of the project, future work will define these

relationships.

In consultation with local environmental scientists, the sensor package must be able to geotag

and record the temperature, dissolved oxygen, and pH of the water. The data should be recorded

approximately every second and should have accuracy of ± 0.9° F (0.5º C), ±1.7*10-6 lb/gal (0.2

mg/L), and ±0.2 pH units, respectively. These values correspond to the specifications of the

equipment currently used by the scientists.

To control the vessel, the Raspberry Pi is designed to use two modes, control via MOOS-IvP and

control via a standard ground control station (GCS) such as Qgroundcontrol from Dronecode on

a companion computer or smartphone. The GCS option allows unskilled users to plan and

execute missions while the MOOS-IvP option allows complex intelligence tasks to be

performed.

Implementation

For propulsion, the AG-0 utilizes a 1.375” (3.5 mm) propeller, a 4300 KV motor, and a 60 A

electric speed controller powered by a 3S LiPo battery pack. Costs for the propulsion system

were approximately $60 for the motor, controller, transmission shaft, and propeller with an

additional $30 for the battery pack. Parts were connected through machined couplers and shafts.

These were made by students in the campus machine shop to increase student exposure to the

equipment and reduce costs. These are expected to provide a speed of 4 MPH (1.8 m/s) and an

endurance of 30 min. Future work will determine the real-world speed and endurance of the

vessel.

The environmental scientists currently use a package from Vernier Software and Technology

including a LabQuest 2 DAQ and three Vernier probes. The Vernier package is extremely

expensive relative to the rest of the device, costing $762 before any software is used. The sensor

package for the AG-0 replaces the DAQ entirely with the Arduino Uno and utilizes a DS18B20

waterproof temperature sensor in the place of the Vernier temperature probe. Interfacing the

Vernier probes with the Arduino utilizes open libraries from Vernier. This reduces the cost to

approximately $400-$450 depending on the equipment on-hand. The Arduino reads the data

from the sensors continuously and logs their values twice a second. The Arduino also listens to a

serial connection from the Raspberry Pi for GPS data and logs this information at the same time.

The data is stored in a microSD card utilizing an OpenLog from SparkFun Electronics on an I2C

interface. The code used for the Arduino can be found at https://github.com/bokidd/AG-

0_Arduino.

Separating the Arduino from the Raspberry Pi allows several benefits. Firstly, the Arduino

sensor package can be removed for use outside of the vessel. For user convenience during this

process, a small I2C OLED screen – also an open project from SparkFun Electronics – is

included to display the readings from the three environmental probes. Secondly, if users wish to

use a different sensor package, such as the water sampling apparatus discussed later in the future

work section, no changes need to be made to the Raspberry Pi. Finally, as the vessel’s

autonomous capabilities increase, the Raspberry Pi will likely need to be replaced with another

single-board computer such as an ODROID or a full-size computer. In either case, no changes

would need to be made to the sensor package. The Arduino board could likely be bypassed with

the Vernier sensors communicating directly with the Raspberry Pi, however, adding this

capability was determined to not be necessary for this project.

To implement the two different control modes in the Raspberry Pi, the system was configured to

run one of two routines. The code for both routines can be found at

https://github.com/bokidd/AG-0_PiCode. The first routine, called MAVLink_connection, is the

GCS option. It acted as an information relay to query the autopilot for information such as

current location and target waypoint. This information was then transmitted serially to the

Arduino for logging. The GCS platform controls the vessel entirely. In the AG-0, a radio

transmitter is connected to an Android phone running the Qgroundcontrol app. Missions are

created in Qgroundcontrol according to the standard process in the program.

The second routine uses a MOOS-IvP wrapper for the MAVLink command node. The autopilot

software in the Pixhawk is configured to run in a manual mode, accepting commands from a

joystick. The MOOS-IvP wrapper converts the desired speed and desired heading commands

into MAVLink compliant virtual joystick command messages and converts the MAVLink

position and orientation information messages into MOOS-IvP messages. The Raspberry Pi can

then run all remaining MOOS-IvP programs to enable the AG-0 to operate autonomously.

https://github.com/bokidd/AG-0_Arduino
https://github.com/bokidd/AG-0_Arduino
https://github.com/bokidd/AG-0_PiCode

Results

Creating the AG-0 provided several important insights. Student participation was limited to 2

maritime engineering students working on hardware, 2 maritime engineering students working

on software, and 2 non-engineering students working as testers for the environmental science

components. Students were either juniors or seniors and spent between 2 and 10 hours per week

on the project depending on the week. The engineering students had basic familiarity with

coding in MATLAB or C++ and Autodesk Inventor or AutoCAD. The environmental science

students had no familiarity with any autonomous vessel topics.

Firstly, the students working on the software implementation repeatedly discovered one of the

difficulties in combining open source resources: incompatibility. An example can be seen in the

MAVLink communication to the Arduino. The MAVLink implementation on the Arduino

utilizes version 1.0 of the protocol while the majority of other equipment suppliers utilize the 2.0

version of the protocol. While systems are designed to be backward compatible, this version

discrepancy was unable to be overcome easily. Upgrading the Arduino to the 2.0 version was not

feasible due to the library memory requirements of the 2.0 version. Additionally, this meant that

the Arduino libraries used in most tutorials called functions that were deprecated in the latest

versions of MAVLink. Based on this experience, the students recommended including copies of

all libraries used in the code repositories for the project. This will allow fallback options if future

incompatibilities arise for other implementations.

Student comments regarding this underscored another major teaching point regarding the

utilization of existing resources. Within this institution, as in others, there is a constant struggle

to balance the need to ensure students learn material with the desire for them to leverage

available resources. When incompatibility issues arose, the students learned that they will be

unable to resolve these issues if they do not understand the fundamentals of the different

systems. At the beginning of the project, students would copy-paste code snippets found online

without hesitation. Toward the end of the project, students were much more interested in

determining the limitations of the snippets before they committed to using them.

Students working on the hardware for the system demonstrated an increased ability to create new

designs and design modifications that are both practical and easily manufactured. This ability to

design for manufacturing, additive manufacturing in this case, is a critical ability for

undergraduate students. This can naturally be done in coursework, but providing students with

practical applications often increases their motivation and participation.

Comments from the non-engineering students emphasized that the equipment is an acceptable

substitution when it operates cleanly. Specifically, occasional human errors on startup prevented

certain components from initializing in the correct order, leading to communication errors and

preventing the system from coming online. Additionally, occasional sensor readings were

erroneous due to hiccups in the communication between the components. These did not cause

issues during startup or with the performance of the autonomy but did cause concern for the

students when the readouts did not show reasonable readings.

The students felt the smartphone interface worked well, with one exception. The students were

required to run a few short terminal commands to start the applications on the Pi, which the

students felt uncomfortable with. This also led to students occasionally starting components in

the wrong order, creating the communication errors. Future revisions will remove this

requirement.

One other major issue was the accuracy of the collected data. For most of the time, the data was

sufficiently accurate as no error was discernable between the on-board sensors and the sensors

currently used. However, the data intermittently included extreme outliers. This revision of the

vessel used direct sensor readings at one instant for logging and did not use a checksum on

received data. These oversights led to data entries that would occasionally spike to inaccurate

values. These errors, such as a GPS reading that is on the opposite side of the globe or

temperature readings below absolute zero, are easily identifiable in the logged data. Increasing

the data rate, incorporating filters to smooth the data, outlier checking to remove erroneous info

points, and incorporating a checksum where appropriate will reduce these issues.

Finally, they recommended several changes to the user interface, such as increased feedback to

the user regarding the state of the vessel and the quality of the data being recorded. For example,

including a visual readout showing whether the Arduino and Pi are communicating accurately

would be beneficial for troubleshooting.

Conclusion

This project provided a vessel that can be operated by untrained non-engineers as well as

providing a platform for future code development. In total, the vessel provided a low-cost option,

costing approximately $75 for propulsion and steering hardware, $30 for batteries, $30-60 in 3D

printing filament depending on infill densities and insert complexity, $200 for the Pixhawk, and

$50 for the Raspberry Pi and Arduino. In total, the AG-0 without the sensor package costs

approximately $400-$450. Including the sensor package, the cost increases to $800-$900. If

cheaper alternatives for the sensor package are used, these costs could be reduced as well.

Future work for this project will include increasing the intelligence of the system, such as adding

obstacle avoidance to the navigation package. Increasing the appeal of the user interfaces will be

critical to increase adoption more broadly. Exchanging the sensor package for a water sampling

apparatus is being explored as a potential option to expand the utility of the vessel. This

apparatus would remove the cost of the sensor package from each vessel and allow additional

tests to be performed on land including testing for microplastics. Finally, a new hull design is

being explored as an opportunity for undergraduate naval architects to build a design utilizing

what they have learned in their coursework.

Acknowledgements

Funding for this project was provided by the State University of New York Innovative

Instructional Technology Grant.

The author would like to acknowledge Mike Holden of California State University Maritime

Academy, SparkFun Electronics, Vernier Software and Technology, the Dronecode Project, and

MIT for their contributions to the open source community, which have greatly benefited this

project.

References

[1] O. Levander, "Path to Remote and Autonomous Shipping," in Achieving Critical MASS:

Spotlight on the U.S. Vessel Automation Industry, Baltimore, 2019. Conference Presentation.

[2] AUVSI News, "Rolls-Royce and FinFerries Successfully Demonstrate World's First Fully

Autonomous Ferry," 3 December 2018. [Online]. Available: https://www.auvsi.org/industry-

news/rolls-royce-and-finferries-successfully-demonstrate-worlds-first-fully-autonomous.

[3] J. Strandberg, "Global Context of Maritime Automation and Autonomy," in Achieving

Critical MASS: Spotlight on the U.S. Vessel Automation Industry, Baltimore, 2019.

Conference Presentation.

https://www.maritime.dot.gov/sites/marad.dot.gov/files/docs/about-

us/foia/11721/w%C3%A4rtsil%C3%A4-global-context-maritime-automation-and-

autonomy.pdf.

[4] M. H. Buzby, "Remarks Prepared for Mark H. Buzby Maritime Administrator MASS

Conference," in Achieving Critical MASS: Spotlight on the U.S. Vessel Automation Industry,

Baltimore, 2019. Conference Address.

https://www.maritime.dot.gov/newsroom/speeches/mass-conference-2019.

