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Objective 

 

This teaching module was designed to enhance the knowledge and expertise of our 

students which enabled them to successfully apply Mont Carlo Methods to solve differential and 

integral equations, for finding eigen values, for inverting matrices, for  evaluating multiple 

integrals different configurations, simulating random collisions of neutrons and subatomic 

particles, in statistics, in queueing models, in games of strategy, in EEG diagnostics and 

interpretation, thereby enhancing computational literacy and critical thinking.  

A Monte Carlo Simulation is a way of approximating the value of a function where calculating 

the actual value is difficult or impossible. It uses random sampling to define constraints on the 

value and then makes a sort of "best guess."  

The advances in computing have given a new meaning to the term stochastic or Monte Carlo 

simulations. The name “Monte Carlo” comes from the city in Monaco, famous for its gambling 

casinos. The Monte Carlo method (MCM), also known as the method of statistical trials is a 

traditional marriage of two major branches of theoretical physics the probabilistic theory of 

random process dealing with Brownian motion or random walk experiments and potential 

theory, which studies the equilibrium states of a homogenous medium. It is a method of 

approximately solving problems using sequences of random numbers. It is a means of treating 

mathematical problems by finding a probabilistic analog and then obtaining approximate 

answers to this analog by some experimental sampling procedure.  

Monte Carlo methods have three characteristics: 

1. Random sample generation 

2. Known input distribution 

3. Numerical experiments 

The direct output of the Monte Carlo simulation method is the generation of random sampling. 

Other performance or statistical outputs are indirect methods which depend on the applications. 

There are many different numerical experiments that can be done, probability distribution is one 

of them. Probability distribution identifies either the probability of each value of an unidentified 

random variable (when the variable is discrete), or the probability of the value falling within a 

particular interval (when the variable is continuous). That is equivalent to saying that for random 

variables X with the distribution in question, Pr[X = a] = 0 for all real numbers a. That is, the 

probability that X attains the value a is zero, for any number a. If the distribution of X is 

continuous, then X is called a continuous random variable. Normal distribution, continuous 

uniform distribution, beta distribution, and Gamma distribution are well known absolutely 

continuous distributions. 

Simple Monte Carlo Estimation Examples                                                                                     

Monte Carlo methods is a class of numerical methods that relies on random sampling. If you had 

a circle and a square where the length of a side of the square was the same as the diameter of the 

circle, the ratio of the area of the circle to the area of the square would be π/4. So, if you put this 

circle inside the square and select many random points inside the square, the number of points 



inside the circle divided by the number of points inside the square and the circle would be 

approximately π/4 

Consider the following Monte Carlo method which computes the value of π: 

1. Uniformly scatter some points over a unit square [0,1]×[0,1]. 

2. For each point, determine whether it lies inside the unit circle. 

3. The percentage of points inside the unit circle is an estimate of the ratio of the area inside the 

circle and the area of the square,which is π/4. Multiply the percentage by 4 to estimate π. 

The Matlab script depicted below in Figure 1 performs the Monte Carlo computation: 

 

 

                                                           

Figure 1. Monte Carlo Matlab computation to estimate pi 

 

This example represent a general procedure of Monte Carlo methods: First, the input random 

variables (x and y) are sampled. Second, for each sample, a calculation is performed to obtain the 

outputs (whether the point is inside or not). Due to the randomness in the inputs, the outputs are 

also random variables. Finally, the statistics of the output random variables (the percentage of 

points inside the circle) are computed, which estimates the output.                                           

Students were then given the handout and advised to compute value of pi for each value of          

n = 100, n = 10000 and n = 1000000, run the script 3 times. 

Ex.1:  Compute and interpret as to how accurate is the estimated pi using: 



1. MatLab 

2. Microsoft Visual Studio and C# 

3. Python 

 

Figure 2. C# Program to compute the value of PI 



 

Figure 3. Python program to compute the value of PI using a function 

Ex. 2 Write the Matlab scripts and C# programs to demonstrate Monte Carlo Method to estimate 

the volume of a 3-dimensional ball and a ten dimensional hyperball. 

Uniform random variable is special in Monte Carlo methods and in computation – most psuedo 

random number generators are designed to generate uniform random numbers. In MATLAB, for 

example, the following command generates an m by m array of U(0,1) uniform random numbers.                                                 

x = rand(m,n);To generate an U(a,b) uniform random numbers, one can simply scale the U(0,1) 

random numbers by                                                                                                             

x=rand(m,n)*(b-a)+a;                                                                                                                  

Almost all other languages used for scientific computation have similar random number 

generators.                                                                                                                                                                                                                                                                                                                         

Ex. 3. Determine the mean, variance and standard deviation of a U(a,b) random variable. 

Non-uniform distributions are those whose probability density functions are not constant. Several 

simple but important non-uniform distributions are: 



Triangular distribution. It is characterized by three parameters a,b,c. The probability density 

function is as follows: 

𝑓(𝑥) =

{
 
 

 
 

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
,  𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑐 − 𝑎)
 , 𝑐 ≤ 𝑥 ≤ 𝑏

0, 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏

 

 

Exponential distribution. It is characterized by a single parameter λ. The probability density 

function is 

 𝑓(𝑥) = {
𝛌𝑒−𝛌𝐱, 𝑥 ≥ 0

0, 𝑥 < 0
  

Normal distribution, also known as Gaussian distribution. 

Applications to EEG: 

 

Advances in technology and the widespread availability of powerful computing devices have 

given a new meaning to the term applied signal processing for real world EEG analysis and 

applications with introduction of Monte Carlo simulations in recording and analysis of electrical 

activity of the human brain.   

 

Mastery and expertise in clinical EEG interpretation is one of the most desirable diagnostic clinical 

skills in interpreting seizures, epilepsy, sleep disorders, and other neurocognitive studies.  In most 

cases EEG activity is described in terms of frequency, amplitude, distribution or location, 

symmetry, synchrony, reactivity, morphology, rhythmicity and regulation. 

The dynamic nature of epileptic phenomena causes EEG signals to exhibit stochastic and non-

stationary behavior. The time frequency distributions are potentially very useful for detecting and 

analyzing non-stationary epileptic EEGs. Although visual analysis of raw EEG traces is still the 

major clinical tool and the point of reference for other methods, we can relate visual analysis to 

mathematics with a time-frequency description. The EEG signal analysis is often complemented 

with MEG and functional magnetic resonance imaging (fMRI) to correlate specific EEG findings 

with pathology of the brain and selectively demonstrate the diagnosis of certain neuronal disease 

processes, and assessment parameters.  

One of the first applications of matching pursuit (MP) in EEG analysis was detection and 

parameterization of sleep spindles--structures present in sleep EEG recordings. The matching 

pursuit (MP) algorithm3 is often used instead of popular time-frequency (TF) domain approaches 

such as short-time Fourier transform and the wavelet transform because of its higher temporal 

spatial resolution in the TF space. Some preliminary applications of the matching pursuit method 

have appeared, analyzing routine EEG, ictal scalp EEG, sleep EEG, and evoked potentials.                                             

Other method is the Gabor representation 5 that does not assume that the signal is known at 

arbitrary time and frequency points, but at a lattice points: t = nT, w = kF;                                        where 

n, k  Z; T is the sampling interval in the time domain; and F is the sampling interval in the 



frequency domain.  Figure 4 demonstrates examples of different shapes of Gabor functions, which 

can be included in the dictionary used for MP decomposition.  

 
                                                 

Figure 4. Shapes of different Gabor Functions 

This interactive teaching module proved to be highly beneficial since it facilitated progressive 

learning of students by enhancing their understanding of clinical EEG parameters and their 

relationship with differential diagnosis of the patients. Previously, abnormal spike activity 

associated with epilepsy was mainly accomplished by converting into frequency domain using 

FFT algorithm and using the cursor position as shown in Figure 5. 

 

  

Measurements Result  

  

Channel Name   Cursor Position   

EEG   ( 00:00:01.11 , -10.11uV )  

  

Plots  

 
 

Cursor position: ( 00:00:01.11 , -10.11uV )               

Figure 5. EEG Measurement Results and Plot 

  
            

  
  
    
  

  

    
                                                            



 

 Students were introduced early only to object based programming with Python and C#, but also 

to basic concepts of discrete Fourier, fast Fourier Transforms, continuous and discrete time 

Wavelet Transforms, and MP algorithm. Having being exposed to this C#, python programming, 

MCMs, Wavelet transform, learning module has far reaching implications. 

Selective Application Highlights 

Monte Carlo methods have also been used in Quantum Physics to determine neutron trajectories, 

simulate atomic clusters and nuclear cascades studies. When a particle collides with a nucleus, a 

nuclear cascade is produced. The particle’s path after the collision determines whether or not a 

new subatomic particles, pions are created. Monte Carlo methods keep track of the colliding 

particle’s path after the collision and determine the probability of the production of pions.   

Monte Carlo algorithms are useful because it is difficult and time-consuming to simulate the 

collisions. By running the algorithm enough times, the results are usually statistically significant, 

and help successfully calculate the probability of the production of nuclear cascades.  

Monte Carlo methods are often used to evaluate integrals for computational electromagnetics. 

Monte Carlo methods overcome multidimensional complexity issues, lack of lack of molecular 

defined boundaries, and electron density ranges, Monte Carlo methods use random number 

generation and a probability distribution function to evaluate the volumes of molecules. 

A major limitation inherent with the standard MCMs for computational Electromagnetics which 

the students came across in the beginning was that they permit single point calculations. 

Research of literature proposed using shrinking boundary and inscribed figure methods for 

whole field Monte Carlo computations. Later they found out that using Markov Chains for whole 

field computations is more efficient than the shrinking boundary method and the inscribed figure 

method.                                                                                                                                                                                                      

 

Monte Carlo Simulation and Risk Analysis                                                                                         

A standard Monte Carlo simulation, a software program samples a random value from each input 

distribution and runs the model using those values. After repeating the process a number of times 

(typically 100 to 10,000), it estimates probability distributions for the uncertain outputs of the 

model from the random sample of output values. The larger the sample size, the more accurate 

the estimation of the output distributions. Microsoft Excel and other spreadsheets do not support 

Monte Carlo simulation directly. But, there are a number of software products that are add-ins to 

Excel that let you perform Monte Carlo simulation. 

The best known are Oracle Crystal Ball and Palisade Software’s @Risk, which are neat products. 

What is different about Analytica is that Lumina designed Analytica from its inception to 

perform Monte Carlo simulation (and LHS methods), so, probabilistic analysis is kind of fully 

integrated into the product from the start. This gives Analytica’s Monte Carlo features certain 



advantages over spreadsheet add-ins, in terms of ease of use and speed of computation. You can 

define any variable, or any cell in an array, as a discrete or continuous distribution. You can view 

the probability distribution for any resulting variable as a set of probability bands (selected 

percentiles), as a probability density function, cumulative distribution function, or even view the 

underlying random sample. 

Language Comparison for Monte Carlo                                                                                               

When it comes to programming languages, a general notion shared by people is that Python, 

Ruby and JavaScript are interpreted languages. They are easy to learn and to use, but not fast 

enough for intensive calculations. Let us analyze which languages can compete with Python and 

MatLab 11 and may be well suited on a simple Monte-Carlo simulation of a forward start option 

under the Black model. To keep it simple we will only compare these other languages and 

compare the reported runtime for executing 16K simulations times a multiplier. A word of 

caution, this reported data was run on an old 2015 desktop and may only serve the purpose of 

relative comparison.  

 

Multiplier  Scala    Julia    JuliaA    Dart    Rust 

1          0.03     0.08      0.09     0.03      0.004  

10        0.07     0.02      0.06     0.11      0.04 

100      0.51     0.21      0.40     0.88           0.23 

1000      4.11     2.07      4.17     8.04           2.01 

 Table 1. Reported Language Runtime for executing 16K simulations times a multiplier 

With newer laptops using enhanced GPU design, these results are ten times faster than what is 

depicted above. It really depends on the field of study and varies from application to application.      

Time did not permit us to explore applications of the Monte Carlo algorithms in the field of 

finance. Monte Carlo methods aid the analysis of financial instruments, portfolios, assets, various 

price paths and final option value computations. Since Monte Carlo methods work well with 

highly complex equations, their use becomes vital in the calculation of uncertain values, which 

then in turn help analyze the final value of the instrument or asset in question. A specific ‘Monte 

Carlo Option Model’ is used to evaluate future prices of options.                                                                                                                                                   

As stated earlier, Monte Carlo simulation is a useful tool for predicting future results by 

calculating a formula multiple times with different random inputs and not just limited to EEG 

analysis. A simple example is for example predicting future value by calculating a formula 

multiple times with different random inputs. This is a process which one can execute in Excel 

but it is not simple to do without some VBA or potentially expensive third party plugins. Using 

numpy and pandas to build a model and generate multiple potential results and analyze them is 

relatively straightforward. The other added benefit is that analysts can run many scenarios by 

changing the inputs and can move on to much more sophisticated models in the future if the 

needs arise.                                                                                                                                    



Feedback and Assessment 

 

In general, parametric tests 8 have requirements about the nature or shape of the populations 

involved: nonparametric tests do not require that samples come from populations with normal 

distribution or any other particular distribution. Due to the nature of our diverse student 

population, a rank correlation method will be described. The rank correlation test, or  

Spearmen’s rank correlation, is a non parametric test that uses ranks of sample data consisting of 

matched pairs. It is used to test for an association between two variables, so the null and 

alternate hypotheses are as follows (where ps  denotes the rank correlation coefficient for the 

entire population):  

𝐻0:   = 0  (There is correlation between the two variables.)  

𝐻a:   ≠ 0  (There is no correlation between the two variables.)  

The notation 𝑟𝑠 will be used for the Spearman rank relation coefficient so as not to confuse it 

with the linear correlation coefficient r.   

  

Rank Correlation Procedure and Notation   

n = number of pairs of sampled data  

d = difference between the ranks for the two values within a pair  

𝑟𝑠 = rank correlation coefficient for sample paired data (𝑟𝑠 is a sample statistic)  

𝑝𝑠 = rank correlation coefficient for all the population data (𝑝𝑠 is a population parameter)  

  

Test Statistic: 

  

No ties: After converting the data in each sample to ranks, if there are no ties among the ranks 

for the first variable and there are no ties among the ranks for the second variable, the exact 

value of the test statistic can be calculated using this formula 10:  

 

  
                                                           

Ties: After converting the data in each sample to ranks, if either variable has ties among its 

ranks, the exact value of the test statistic can be found by using this formula:  

 

  
  

Table 2 depicted below includes Students Subject Areas Grade Results Ranked by Pre-Monte 

Carlo Test and Post-Monte Carlo Test scores. It includes the difference d and the squares of the 

differences d2.  

 

The value of the rank correlation coefficient is computed in order to determine whether there is a 

correlation between the rankings of the Pre-Monte Carlo Test scores and the rankings of the 

Post-Monte Carlo Test scores using a 0.05 significance level.   

 



  Subject Area              Pre-Monte Carlo       Post-Monte Carlo                  Difference    

  Test Grade    Test Grade          d  d2  

  Ranks     Ranks  

  Logic and Design    1    1         0  0  

 Anatomy& Physiology   3   2         1  1  

 Bioinstrumentation I   2   3         1  1  

 Bioinstrumentation II  5   7         2  4  

 Medical Imaging          4   5         1  1 

 Telemedicine    7  6         1  1  

 Bioinformatics   6  4         2  4  

 Ethics   8  6         2  4  

 Total    16  

 

Table 2: BMET Subject Areas Grade Results Ranked by Pre-Monte Carlo Test and Post-Monte    

Carlo Test   

  

Following the procedure, the data in the Table 3, are in the form of ranks and the neither of the 

two variables has ties among ranks, so the exact value of the test statistic can be calculated as 

shown below using the equations above.   

We use n =8 (for 8 pairs of data) and ∑ d2  =16 (as shown in Table 2) to get  

                                         

    𝑟𝑠  =  1 -  (6 ∑ d2 ) / n(n2  - 1)  =  1 -  [ 6(16) / 8( 82 -1 )]  

                                                    =   1  -   [96/504]   

                                                    =   0.8095  

If n > 30, critical values are found by the following formula, where the value of z corresponds to 

the significance level (for example if α =0.05, z = 1.96).                                  

      𝑟𝑠 =  ± z /   

 If n ≤ 30, critical values are found by using 9 the Table for Critical values of Spearman’s Rank  

Correlation.                             

  

For our case n = 8, so we determine that the critical values are  ± 0.738 (based  on α = 0.05) and 

n = 8).    

Because the absolute value of the test statistic 𝑟𝑠 = 0.8095 does exceed the positive critical value 

of 0.738, we reject the alternative hypothesis and conclude that there is a correlation   

It has thus been demonstrated that there is significant correlation between the Pre-Monte Carlo 

Test Results and the rankings of the Post-Monte Carlo Test results.  Subjects appear to better 



learn the BMET course subjects and prep material by studying more and going through rigorous 

practice and testing.            

 

We have offered the mini Monte Carlo Methods with Statistics crash course as a special BMET 

topic course that is one way new courses are piloted locally at our university campus. This 

hands-on course is instrumental in the progressive learning of the students by reviewing, relating 

and applying fundamentals of Matlab, Minitab, EXCEL and SPSS for experimental design, 

using the estimated regression equation for estimation and prediction, trend projection 

and time series analysis, forecasting of variance, and statistical control. 

 

Although special topics are not evaluated in the same manner as standard session-long courses, 

feedback directly from students indicates that initial offering was well received. 

A compilation of feedback was from eight junior students enrolled in the course for 

credit, and four sophomore students attended the lectures and discussions but did not 

receive the credit. The feedback from the student indicates that: 

 

1.   Students gained an appreciation of the Stochastic processes, Monte Carlo Methods statistical     

tools and their capabilities. Using Matlab, C#,  Python, EXCEL, SPSS and R puts many concepts 

in numerical methods, statistics analysis and inference to practice.  

2.   Students gained an appreciation for the difficulties involved in developing nonlinear 

      models, detecting outliers and residual analysis. 

4. Students spent a significant amount of time on solving differential and integral equations,   

for finding eigen values, for inverting matrices, and particularly for evaluating multiple 

integrals. 

5. Estimation and data analysis using python, scripting with R and Matlab programming 

      assignments (presumably relative to their other course work) but the results were satisfying.  

6. We did not receive any complaints about the level of effort required by, nor the time spent                     

time spent  on the programming assignments, although there were issues early on. 

7. Student’s performance in the initial course offering and in the course of capstone projects 

      was exceptionally high. This result was due to a biased sampling; the four juniors taking 

      the special topic course initiated the effort, and the sophomores that attended regularly  

      were invited by the instructor. We hope to see better understanding of basic principles  

      and excellent performance in the future versions of the course. 

  

Conclusions 

 

Statistics Literacy and critical thinking is necessary in today’s world that is fascinated with  

numbers and data. Even if one is not responsible for conducting Monte Carlo simulations, one 

needs the basic understanding to properly use the information for making decisons. With  

proper guidance, monitoring, and diligent care, students were exposed early on scripting,  

discrete probability distributions, sampling distributions, statistical inference, design of  

of experiments, and analysis of variance.                                                    

 

End of the course survey and diagnostic quizzes demonstrated the enhanced student 

understanding of application of Stochastic processes and MonteCarlo simulations which is          

again attributed to early exposure of  Statistics, Matlab, Python scripting, C#, Java          



Programming and the reinforcement of EKG, EMG and EEG component analysis as part            

of BMET (biomedical engineering technology) to which they had been exposed later on             

during their junior and senior years.  

 

The authors wish to stress that this paper is no attempt to challenge previous clinical or 

diagnostic knowledge. It is hoped that the concepts covered in this paper will instigate future 

research and development in the application of stochastic processes and Monte Carlo Methods 

not just for EEG analysis but aid aspiring student researchers and physicians to optimize and 

ultimately provide more cost effective solutions in quantum physics, computational 

Electromagnetics, field of Finance and other potential medical diagnostics applications. Monte 

Carlo methods (MCMs) uses random sampling to define constraints on the value and then makes 

a sort of "best guess." The solution of a problem by this method is closer in spirit to physical 

experiments than to classical numerical techniques 
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