
Paper ID #31094

Computational Modeling in Introductory Physics Courses and Across the
Curriculum

Dr. Todd Zimmerman, University of Wisconsin - Stout

Todd Zimmerman is an associate professor of physics in the Department of Chemistry and Physics at
the University of Wisconsin - Stout. He is also the editor-in-chief of the Partnership for Integrating
Computation Into the Undergraduate Curriculum.

c©American Society for Engineering Education, 2020

Computational Modeling in Introductory Physics Courses and
Across the Curriculum

Todd A. Zimmerman
Department of Chemistry and Physics

University of Wisconsin - Stout, Menomonie WI, 54751

Abstract
Modern research and design are carried out using the three-pillars of theory, experiment, and
computational modeling but many courses are still taught focusing on just theory and experiment.
To rectify this mismatch, we have introduced a series of 8 computational modeling activities in a
second semester introductory course on electricity and magnetism. A major hurdle to adding a
computational component to introductory courses is that students enter with a wide variety of
computational experience. Methods for dealing with differing skill levels will be discussed.
Glowscript, an implementation of Python that runs in a browser window with no installation, is
used to create 3D visualizations of electric and magnetic fields and to animate the motion of
particles in the associated fields. Emphasis is placed on applying problem solving strategies to
creating computational models and evaluating the output of the models, with a focus on
developing computational thinking skills. It is important to create activities that focus on creating
a computer model and involve minimal computer programming – the goals of the activity should
highlight the model and not the programming syntax. In order for students to maintain the skills
they learn as well as to understand the importance of computational thinking, modeling activities
must be incorporated across a variety of courses. Our efforts to infuse computational modeling
across the physics and engineering curriculum will be covered. Issues incorporating
computational modeling across the curriculum will also be discussed.

1 Introduction
Modern scientific research relies on three equally important tools; theory, experiment, and
computational modeling[1]. Despite the importance of computational modeling, and while the
number of departments incorporating computation into homework and projects has grown, few
show consistent use of computation in active engagement in the classroom or exams[2].

The American Physics Society, in conjunction with the American Association of Physics
Teachers released a report titled ”Phys21- Preparing Physics Students for 21st Century
Careers”[3], looking at what skills our students need to succeed. Although this report focused on
physics graduates, it is relevant to engineers since a large fraction (43%) of the students in
physics end up in engineering-related fields or non-physics STEM fields. The J-TUPP report
found that physics graduates and their employers felt a need for a wider and deeper understanding
of computational analysis tools.

Recent research on the effectiveness of traditional physics labs in reinforcing mastery of physics
concepts has shown labs do not aid student understanding [4] [5]. Instead, the researchers suggest
focusing on scientific skills and ways of thinking that the lab time is uniquely suited for [6]. We
decided to focus on creation and interpretation of computational models, collecting and analyzing
data, scientific communication, and use of typical equipment such as soldering irons, digital
multimeters, and oscilloscopes. Since understanding multimeters and oscilloscopes comes after
the introduction of electric potential, this leaves time early in the semester that can focus on
computational modeling. Discussion periods can be spent on aspects of computational modeling
as well.

University Physics II is a 5-credit introductory electricity and magnetism course with two
semesters of calculus as a prerequisite. The students are primarily engineering students who have
taken a semester of Statics and a semester of Dynamics, although a smaller fraction of students
have taken an introductory classical mechanics course instead. The course meets face-to-face
with three hours of lecture each week and a two hour lab and two hour discussion. Since labs and
discussions are held in a lab room, there is flexibility as to the types of activities that can be done
during lab or discussion times. Several of our courses operate as flipped classrooms, where first
exposure to the material occurs outside the class and lecture time is spent with students answering
questions and solving problems. This allows more flexibility for computational modeling during
some discussion periods.

The University of Wisconsin - Stout provides laptop computers to all students. This provides us
with a great deal of flexibility since we don’t need to schedule computational activities in
computer labs and can use the physics labs. Sections are 24 students and they are organized into
groups of 3 for lab, discussion, and computational modeling activities.

This paper will discuss how computer modeling was adding into this course. We discuss an
important distinction between programming and modeling, and how we tie traditional homework
problems to show the similarity to modeling. We describe how we avoided dealing with installing
VPython on student computers and how we deal with the different levels of computer programing
incoming students have. Grading is an important part of motivating students to take modeling
seriously and this is discussed. Examples of some computational activities are outlined. Finally,
some issues related to integrating computation across the curriculum is discussed.

2 Computational Modeling in the Physics Classroom
Modeling vs. Programming
A common complaint from students is they didn’t sign up for a programming class. To this end it
is important that the course does not turn into a programming class. Minimal working code is
provided to students for all activities. A minimally working program is one that will run as
provided but must have a few lines added or changed to provide the modeled behavior desired.
For example, in an activity on drawing the electric field vectors of a point charge, code drawing a
ball representing a sphere and a series of arrows with fixed directions at several locations are
provided. Students must add code to calculate the electric field at the location of the arrows.

When students are confronted with a programming-related challenge, such as syntax errors or
other misunderstandings that are related to confusion about coding and not about physics content,
students are provided with the answer immediately. Rather than using Socratic questioning for

Figure 1: Example VPython Output

programming issues, they are given the answers. This reduces their level of frustration with
modeling.

When solving standard pen-and-paper homework problems in class, students are encouraged to
use a problem solving format of sketching the problem, drawing and labeling vectors, then listing
their known and unknown quantities along with any equations they might need. This same format
is used with the computational modeling activity. With a traditional homework problem students
would go on to manipulate equations to get the correct result, then evaluate the validity of their
answer. With computational modeling, the only difference is during the manipulation of
equations the student should let the computer do most of the work. Students write out the first
part of the problem before they start modifying code. Students are encouraged to transition from a
mathematical description to a code model by rewriting the equations in terms of variable names
as pseudo-code before typing anything into the computer. The questions that make up the activity
then ask students to reflect on their results, which takes the place of the evaluation step when
working homework problems.

Great pains are taken to refer to these activities as computational modeling activities.
Additionally, it is made clear to students that computer programming is focused on how to
structure the components of a program while the computational modeling involves making
changes to working code and drawing conclusions from the output of the model.

Questions provided with each activity guide students through the process of making sense of the
graphical output from the model. They are also asked to compare what they are seeing on the
screen with what they expect based on the equations and what they learned in lecture.

Connections are made between numerical integration techniques and analytical results. For
example, even though students are not expected to be able to code a for-loop by themselves, they
are expected to understand how a for-loop can be used to calculate the electric field of a charge
distribution. By breaking a distribution into a set of discrete charged pieces, finding the field of
each piece, then adding up the resulting fields, students see that this sort of computational
approach can be used in many situations throughout the course.

Logistical Considerations
Python was chosen as the language because of the author’s familiarity with the language, the fact
that the textbook used for the course uses Python, and the fact that several faculty in the
engineering and mathematics departments make use of Python in their courses. A module called
VPython was developed by the textbook authors to aid in visualizing and animating objects in
motion[7]. Glowscript is an implementation of VPython that can run in the browser. The terms
Glowscript and VPython are frequently treated as synonyms.

All of our students are provided with laptops as part of their tuition so we looked for something
that was easy to run with minimal installation. Glowscript.org and trinket.io are two websites that
allow VPython to run in browsers with no installation. We have opted for Trinket because the
paid version allows me to create web pages to write up instructions along side the code that can
be run on the page.

Although Trinket has an option to collect assignments and give feedback, we have students
submit a link to their code through our learning management system (LMS), along with answers
to the questions in the activity.

In the past I have put students into two-person groups for computational modeling activity. Pair
programming is fairly common in computer science courses and even in the software
development industry[8]. In the class, one student is responsible for typing while the other
student provides guidance and feedback. Every thirty minutes or so the students are asked to
switch roles, to make sure one student does not dominate the activity. This proved to be
problematic for a couple of reasons. Students were placed in three-person groups for lab and
discussion activities, while switching to two-person groups for programming, leading to some
confusion about which groups to get into and who was in what group. Additionally, if a single
student is absent it significantly hampers the progress of the other student.

An ideal size for lab groups and group problem solving is three to four students [9] so we have
groups of three for non-computational activities. This has proved to be confusing to students and,
when a single student is missing from a group, results in lone students trying to work through the
computational activities. In the future I will use the same three-person groups for lab, discussion,
and computational modeling.

Differing Levels of Computer Programming
Students coming into the class have a wide array of coding skills. Some have had three or more
semesters of computer science courses, while some struggle with navigating the directory
structure of their computer. The first semester introductory physics course includes VPython
activities, but engineers do not take this course. Instead they take a semester of Statics and a
second semester of Dynamics. Computer modeling activities have not been widely implemented
in the Statics and Dynamics course at this time.

A number of steps are taken to lower the entry barrier for students with little background. The
first is to run VPython through the browser. Having to download, install, and configure, and
troubleshoot a VPython installation can be a surprisingly large hurdle, especially with larger
classes. Coding in the browser has grown with the proliferation of on-line computer programming
courses. Glowscript.org and Trinket.io allow running VPython in browsers.

Next, students are given minimally working code, which can be run without making any changes
but doesn’t yet correctly model the desired behavior. The main coding task for the student is
converting a mathematical equation into something the computer can understand. A ”Getting
Started” page is included with all activities, which gives background on any new commands that
are used, as well as places to practice modifying code. All algorithms are included in
pseudo-code, which is easier for students without significant coding to understand.

Students work in groups of three, which increases the likelihood that one or more students will
have some programming. In smaller classes it is even possible to poll students for their
programming background and form groups based on that information. This has been used in
upper level physics courses but not in the introductory courses.

An important step was to give students direct answers to problems related to coding and syntax
and not try to guide them to the answer. Rather than use a Socratic method to help students fix
their errors, giving clear solutions and sometimes stepping in and typing in corrections reduces
student frustration with the coding. The goal of the activities is not that they get the syntax
correct, merely that they can understand what is going on.

The ”Getting Started” pages frequently include common error messages that past students have
encountered. Trinket code boxes are included with incorrect code and students are encouraged to
correct the errors.

Grading Activities
Since the point of these activities is to develop modeling skills and not programming skills, the
grade focuses on evaluating the output of the model. Frequently this is a 3D image or animation
involving moving charges and vector arrows to indicate various quantities. Part of the grade is
based on whether the code runs or not. This is primarily for the instructor’s benefit - to cut down
on time spent tracking down bugs. This makes up 50% of the first activity to incentivize students
to make sure things work before turning it in, but the fraction decreases over the semester to only
10% of the activity grade by the second half of the semester. Grading is also greatly simplified if
the instructor does not have to spend time debugging the activity.

Roughly 30% of the grade is based on correctness of the computational model. Although this can
be done by running the code, the easiest means of assessing this is to ask students to include
screen-shots of the VPython output. Not only does this speed up grading, it also insures you are
looking at the same results that the students drew conclusions from. With students modifying
code and changing physical parameters, there is no insurance that the code they turn in will
replicate the results they had earlier in the activity.

The remaining portion of the grade is based on answering a series of questions correctly based on
their model output, as well as drawing connections between their model and what they had
learned in class. For example, one of the first activities has them modeling a storm cloud as a
negative point charge and drawing the electric field vector at various points around a landscape.
Students are asked to use Coulomb’s law to explain why the direction and magnitude of the
electric field at different locations always points towards the cloud and decreases with distance
from the cloud.

Questions relating to the computational modeling are included on exams. The questions typically

fall into one of two categories. The first category is interpreting the output of the model. These
questions present an image similar to one of the activities in class and ask students to describe
what is happening in the image or to explain why the image is wrong. The second category of
question related to reading code and tying parts of the code back to some physics idea or
equation. For example, the student might be asked to explain how a block of code breaks a
distribution of charge up into small parts and adds up the fields of each part, or to identify whether
a particular equation in the code is correctly used or not. By including questions on the exam it
gives the computational activities more importance in the class and gives students a stronger
incentive to study the activities.

To further incentivize use of VPython, students are allowed to use VPython as their calculator on
exams. Students can use VPython inside a lockdown browser during the exam. A quiz is created
in the LMS, with an embedded trinket-code box on the page. Students submit their code through
the quiz in case questions arise during grading about how they got their answer. The lockdown
browser limits them to one page on the Trinket website and prevents them from opening other
applications on their computer during the exam. They are also encouraged to use VPython to
complete homework problems.

A friend of yours has just completed the first discussion activity where a storm cloud is
modeled as a negative point charge with q = 200 C a height of 1000 m directly over your
position. They show you their computer screen and you notice something can’t be right with
their model. Describe in detail how you know their results are wrong. Include an explanation
of what you would expect to see instead. Feel free to include a sketch.

Figure 2: Example Exam Question

3 Examples of Computational Modeling Activities
The computational modeling activities are clustered towards the first half of the semester, prior to
the introduction of potential difference. Once potential difference is introduced there are several
lab activities that can take place. These activities focus on helping students visualize the electric
and magnetic fields and the impact they have on particle trajectories.

Examples of the activities can be found on the Trinket website[10]. All activities are designed to
be completed in a 2-hour period. Each activity includes a ”Getting Started” page that covers the
background of any new VPython commands that are introduced in the activity. Students are not
expected to use most of the commands, but the background is provided for more ambitious
students.

Each activity has two or three separate code boxes on each page, with students progressively

adding more features as they progress through the activity. Each code box either includes a
minimally working program which needs to be modified or a blank space to copy and paste
previous code for further modification. A series of questions are provided that students answer in
a separate Word document and turn in via an LMS. Five of the eight activities are context-rich
problems involving roll-to-roll manufacturing, storm clouds, velocity selectors, and mass
spectrometers. The activities I am currently using are:

• Computation as a Calculator

• Roll-to-Roll Manufacturing

• Electric Field of a Dipole

• Cloudy Line of Charge

• A Better Cloud Model

• Numerical Integration of Potential Differences

• Mass Spectrometer

• Velocity Selectors

The first activity students complete is using VPython as a calculator. They are assigned a couple
of problems that involve vectors through the on-line homework system. This gets them familiar
with the interface and basic syntax while also demonstrating how easy solving vector problems
can be using VPython. As previously mentioned, students are allowed to use VPython on
exams.

The next four activity involves calculating and drawing electric field vectors near different shapes
of charge distributions. Drawing arrows using VPython is as simple as specifying where an arrow
is and which way it points. The primary goal of these activities is to get students to correctly
calculate the distance vectors needed to find the electric field of a point charge, as well as to see
how the electric field of a distributions of charges can be found by summing the contribution from
small parts of the distribution.

The activity on numerical integration of potential differences has students calculating the electric
field from a distribution of charges and adding up contributions to potential difference as a result
of the changing fields. It is meant to help students see the connection between fields and potential
differences.

The last two activities deal with particles moving in a magnetic field. Many students are surprised
to see charged particles following spiral trajectories even though they can readily state that the
magnetic force is perpendicular to the velocity and magnetic field. The final activity shows how
crossed electric and magnetic fields can be used as a velocity selector for charged particles.

4 Integration Across the Curriculum
To insure students continue to develop their modeling skills, and to show the usefulness of
modeling, Python modeling has been incorporated into a number of courses. The other faculty
teaching the upper level courses all see the value of computational modeling and fortunately all
have been willing to use Python. VPython is integrated into first semester introductory physics,

although engineering students take a Statics course and a Dynamics course in place of the first
semester physics.

Several upper level mathematics courses make use of Python, such as courses in numerical
analysis, cryptography, and machine learning. Some of the engineering courses, such as
Introduction to Numerical Methods in Engineering, do use Python as well.

To further integrate computer modeling in general and Python in particular across the curriculum,
a Python users group was formed with faculty from mathematics, engineering, physics, and
biology. Meeting roughly once a semester, faculty share techniques and tips about incorporating
Python into courses. Topics include the use of Jupyter notebooks, setting up a Jupyter Hub for a
class, and how to grade modeling activities. These meetings are also a time for faculty to discuss
how they incorporate computer modeling into classes so that instructors of later courses know
what skills they can expect their incoming students to have.

Since students often do not take courses in the same sequence, it is hard to count on students
having seen a particular modeling topic. This does limit the integration of modeling. Instead of
relying on them having specific skills, instructors can count on a significant fraction of students
having familiarity with Python.

Instructor turn-over is another hurdle. New instructors may not be interested in including
computation or may have their hands full just preparing for the normal content. Faculty use of
computation in their research with students and faculty belief in the benefits of computational
modeling are the highest predictor of whether faculty will incorporate computation into their
classes[11] while departmental norms are not. This indicates that seeking to hire new faculty that
value computation is a good way to infuse it throughout the curriculum. Sharing activities,
especially ”Getting started”-type activities can ease new faculty into integrating modeling.

5 Discussion
Asking students to learn how to program is not a requirement of most of our courses. To that end,
the focus of any computer-related assignments should be on creation and interpretation of the
models. Giving students skeleton programs that they can modify lowers the barrier for students.
Additionally, use of browser-based programming environments like those at Glowscript.org or
Trinket.io means not having to install software which aids students in getting started.

Students come into the course with different levels of programming skills. The activities are
designed to focus more on making modifications to working code and scaffolding is provided to
deal with common syntax or other coding-related errors. Having students connect the visual
outputs from the model to what has been discussed in class helps them find errors in their code as
well.

Grading of activities focuses on the code running without errors, use of the correct equation when
modeling a system, and correctly answering questions related to tying the output of the model to
what has been learned in class. By including modeling questions on the exam, it demonstrates
that the modeling is an important part of the class.

We have managed to implement Python activities in a number of courses across the math,
engineering, and physics curriculum. An on-campus users group meets regularly to share tips and
to coordinate what we are doing in various classes.

References
[1] M. Caballero, “Integrating computation into core physics courses: A perspective from a research-intensive

university,” Bulletin of the American Physical Society, vol. 64, 2019.

[2] M. D. Caballero and L. Merner, “Prevalence and nature of computational instruction in undergraduate physics
programs across the united states,” Physical Review Physics Education Research, vol. 14, no. 2, p. 020129,
2018.

[3] D. MacIsaac, “APS-AAPT Joint Task Force on Undergraduate Physics Programs (J-TUPP) report released,”
The Physics Teacher, vol. 55, no. 3, pp. 190–190, 2017.

[4] C. Wieman and N. Holmes, “Measuring the impact of an instructional laboratory on the learning of introductory
physics,” American Journal of Physics, vol. 83, no. 11, pp. 972–978, 2015.

[5] N. Holmes, J. Olsen, J. L. Thomas, and C. E. Wieman, “Value added or misattributed? A multi-institution study
on the educational benefit of labs for reinforcing physics content,” Physical Review Physics Education
Research, vol. 13, no. 1, p. 010129, 2017.

[6] N. G. Holmes and C. E. Wieman, “Introductory physics labs: We can do better,” Physics Today, vol. 71, pp.
38–38, 2018.

[7] D. Scherer, P. Dubois, and B. Sherwood, “Vpython: 3d interactive scientific graphics for students,” Computing
in Science & Engineering, vol. 2, no. 5, pp. 56–62, 2000.

[8] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the case for pair programming,”
IEEE software, vol. 17, no. 4, pp. 19–25, 2000.

[9] P. Heller and M. Hollabaugh, “Teaching problem solving through cooperative grouping. part 2: Designing
problems and structuring groups,” American journal of Physics, vol. 60, no. 7, pp. 637–644, 1992.

[10] Available at https://trinket.io/todd zimmerman phd gmail com/courses/
second-semester-introductory-physics-electricity-and-magnetism#/getting-started-with-vpython/why-vpython.

[11] N. T. Young, G. Allen, J. M. Aiken, R. Henderson, and M. D. Caballero, “Identifying features predictive of
faculty integrating computation into physics courses,” Physical Review Physics Education Research, vol. 15,
no. 1, p. 010114, 2019.

https://trinket.io/todd_zimmerman_phd_gmail_com/courses/second-semester-introductory-physics-electricity-and-magnetism#/getting-started-with-vpython/why-vpython
https://trinket.io/todd_zimmerman_phd_gmail_com/courses/second-semester-introductory-physics-electricity-and-magnetism#/getting-started-with-vpython/why-vpython

	Introduction
	Computational Modeling in the Physics Classroom
	Examples of Computational Modeling Activities
	Integration Across the Curriculum
	Discussion

