
Paper ID #31321

Improving Student Learning Through Required Exposure to Other Student
Code Via Discussion Boards

Dr. Kyle D Feuz, Weber State Univesity

Kyle Feuz is an Associate Professor at Weber State University in the School of Computing. He earned
his Ph.D from Washington State University under the guidance of Dr. Diane Cook in 2014. He also
received his B.S and M.S in Computer Science from Utah State University in 2010 and 2011, respectively.
He is actively engaged in research in Artificial Intelligence, Machine Learning, Computer Security and
Computer Science education.

Dr. Linda DuHadway, Weber State University

Linda DuHadway has been in higher education for many years. She has degrees from Utah State Univer-
sity and received a PhD from the University of Utah with a focus in Computer Science Education. She
is actively engaged in bringing a variety of innovative teaching methodologies into the traditional and
online classroom. Currently her focus is implementing a new program called CS Flex. CS Flex offers a
creative way to minimize the time barriers of higher education. It includes mastery learning, open entry,
and flexible completion including support for accelerated progress.

Dr. Hugo Edilberto Valle, Weber State University

Dr. Hugo Valle is an Associate Professor of Computer Science at Weber State University. He received
his Ph.D. in Physics in 2008 and MSc. in Physics in 2006, both from Vanderbilt University (Nashville,
TN). His research interests are in IoT devices, Data Visualization, Software Development for particle
detectors, sensors, microelectronics, and embedded systems. Previously, he was a member of the PHENIX
collaboration at RHIC.

Dr. Richard C Fry, Weber State University

Richard Fry is a full professor at Weber State University in the School of Computing. He is actively
involved in service-learning research and continues to partner with both local and global community
organizations to engage Computer Science students in building sustainable Software Engineering projects.
In 2014, his students took 2nd place in a national competition for their software solution supporting people
with disabilities. Dr. Fry has also led more than 150 of his students to both Ghana and Thailand to work
on Software Engineering projects affecting their global communities. He currently serves as the faculty
in residence for the Center of Community Engaged Learning at Weber State University.

Prof. Kim Marie Murphy, Weber State University

Prof. Kim Murphy earned her M.S. degree from Utah State in 2010. Starting in 2018, Prof. Murphy was
an Instructor at Weber State University in the department of Computer Science. From 1999 to 2018 she
taught Computer Science classes at Weber High School.

c©American Society for Engineering Education, 2020

Improving Student Learning Through Required Exposure to
Other Student Code Via Discussion Boards

Abstract:

In a typical lower-division programming course, students rarely see other students’ code outside
of a paired programming exercise. This limits their exposure to the potentially powerful learning
experience of seeing examples from other programmers. In this work, we explore the result of
having required code sharing via discussion posts to increase a student’s exposure to coding
solutions, styles and practices (both good and bad). For each module in a Data Structures and
Algorithms course, students post a small section of code, typically a single method or function,
and also get to see the code posted from every other student in the class. They can choose to
share a section of code that worked particularly well for them or submit code they are struggling
with and want some help. The students are then required to respond to entries posted by other
students. This creates a dialog between students and provides a mechanism for students to see
how other students are coding a solution. The code students submit is from a low-stakes
assignment. Students are allowed to see other student’s submissions from the very beginning.
They are not required to have completed the assignment or posted their own code to enter the
discussion board. To identify the benefits of this assignment, the comments during one semester
are analyzed and the results tracked over the course of the semester. The code posted is analyzed
for a variety of quality markers such as variable names, commenting, syntax errors, logic errors,
correctness, and handling of edge cases. The responses are analyzed for effective error
corrections, alternative solutions provided, formatting changes recommended, etc. There is also
an analysis of student expressions. Finally, and perhaps most interesting of all is how these
details change over the course of the semester.

I. Introduction

Imposter syndrome has long been acknowledged within the Computer Science (CS) educational
community with several studies reporting over 50% of CS oriented individuals exhibiting
imposter syndrome [1]. Weber State University is an open-enrollment university. Students can
enroll regardless of the current GPA, ACT and SAT scores or other common criteria used in a
college admissions program. This means students in the classroom often come in at very
different levels of preparation. Additionally, more than 50% of the student population is
considered non-traditional. These are some of the factors that lead students to feel isolated and
underprepared for pursuing a college degree, particularly in a STEM field.

In many computer science (CS) degree programs, a Data Structures and Algorithms class is
especially challenging and is often a point where students get slowed in their degree progression
[2]. This creates problems for retention and graduation rates. When students take this class, most
of them are in their sophomore year. At this point in the degree, many students have not fully
developed their problem solving and programming skills, and most of their coding feedback has
come from the instructor. In some situations, students taking a traditional face-to-face course
have the opportunity to do collaborative work. This can come in the form of pair programming,

code sharing or some small group assignments. However, the majority of their work is individual
assignments.

Evidence supports code-review, collaboration, pair programming and student-to-student
interaction as valuable tools to improve learning and retention. These strategies are especially
beneficial for under-represented populations [3,4]. The effectiveness of these activities varies
depending on the course format. For example, in a face-to-face format, collaboration and pair
programming works well. Some instructors have even been successful implementing distributed
pair programming in an online course [5]. However, in a flexible schedule, online format (Flex),
the implementation of these activities is particularly challenging. In the Flex format, students
start the course at different points in the semester, work at their own pace and may not be
working on the same module at the same time. The asynchronous nature of the class makes it
particularly difficult for students to interact with each other. We propose the use of discussion
boards within the learning management system to help create peer-to-peer code sharing
experiences in a Flex class. In this study, we explore the benefits of using discussion boards for
peer-to-peer code review. We believe an effective way to improve a student’s confidence in their
programming skills is to share their successes, ask for help with their struggles, and to review
their peers' work. The students are required to post their code as part of the assignment. Students
are also required to review or comment on their peers' posts.

Our goal is to show that code-sharing via online discussion boards can be used as an effective
tool to help students improve their programming skills, be successful in the course and recognize
that other students also struggle when working through the assignments.

The rest of this paper is organized as follows: the methods and techniques to analyze the data
collected are discussed in Section II. Section III presents the results and findings. A discussion of
the results is provided in Section IV. Related work is provided in Section V. Finally, our
conclusions and plans for future work are presented in Section VI.

II. Methods

The Data Structures and Algorithms class is a computer science course taught in the C++
language. The course is composed of seven different modules and each of the modules cover a
different set of topics. The amount of content and the time allocated to each module is similar
across all modules. Certain modules and topics tend to be easier for students to grasp than other
modules. Table 1 lists the core topics of each module. In each case, students are asked to
implement some or all of the functionality of the data structure or algorithm as well as use their
implementation in solving a specific programming problem.

The class is offered in an online, flexible format. Our goal is to allow students to move through
the modules at their own pace. When a student completes one module they are able to
immediately move on to the next module in the course. Modules can be completed early,
on-time, or students can request an extension. Due dates for each module shift as extensions are
requested. This flexibility means that students in the same section of the course will be working
on different modules at any given point in time.

Table 1. Data Structures and Algorithms Module Topics
Module Topics
Module 1 C++ classes, Pointers, Dynamic Memory, Operator Overloading
Module 2 Copy-constructor, Assignment operator, Destructor, Move

constructor, Move assignment operator, Inheritance
Module 3 Linked Lists, Templates
Module 4 Recursion, Stacks, Queues
Module 5 Sorting, Search, Hashtables
Module 6 Trees, Binary Search Trees, Expression Trees, Balanced Trees
Module 7 Graphs, Dijstra’s algorithm, Depth-first search, Breadth first search

Each module has an introductory programming assignment that includes a video walkthrough, a
related try-it-out assignment, and a corresponding challenge assignment. As the students
progress through the module, the responsibility for coding gets shifted from the instructor to the
student. Until in the end, the student is coding the project on their own.

The walkthrough assignment is low-stakes and has the student follow along as the instructor
writes some code. Most or all of the walkthrough assignments are demonstrated directly by the
instructor. The student needs to listen, follow along, and write the code. The end program needs
to compile correctly. As the students follow along they learn the new concepts and create a
program at the same time.

The try-it-out assignment requires the student to go beyond what has been directly demonstrated.
It uses similar concepts to the walkthrough assignment but applies them in a slightly different
fashion. This is also a low-stakes assignment.

The challenge assignment is where the student is asked to demonstrate proficiency in the
concepts being covered by the module. This assignment may use some code directly from the
walkthrough or try-it-out assignments but it also asks students to go even further in
demonstrating the application of the concepts being covered.

For each try-it-out assignment there is an associated discussion board with the same prompt for
each module (except the assignment name). This prompt is shown in Figure 1. Students are
encouraged to share their code openly and freely and to ask for help from other students. Code
they get from the discussion board can be used directly in the try-it-out assignment. They do not
have to post their own code, contribute to the discussion or submit the assignment before
accessing the discussion board.

No special effort has been made to guide or moderate the discussion boards. Students received a
copy of the syllabus which includes a statement about the classroom being an inclusive
environment and prohibiting any discrimination or harassment. Each post has the student’s name
attached in a manner clearly visible to all students and the instructor.

Figure 1. Discussion Prompt

Students are given full-credit for the discussion if they make a valid attempt to post one code
segment and respond to at least two other posts. For the try-it-out assignment they are given full
credit if they make a valid attempt at implementing it. The solution does not have to be correct or
even compile to receive credit. The student just needs to demonstrate that they tried something.
The incentive for getting the code to work is not the grade. Instead, students know that they will
face a similar problem on the challenge assignment so if they can get it working in the try-it-out
assignment they will find the challenge assignment much easier to complete.

At the end of the semester the discussion board postings are analyzed to quantify how students
interacted with the discussion board. Using a predetermined set of characteristics (see Table 2
and 3), two separate reviewers manually mark each post and reply as either having or not having
the characteristic. The results are then compared for consistency and averaged together. The
characteristics selected for analysis are chosen as a means of measuring whether or not the
code-sharing supported the stated goals of improving students coding abilities, helping students
be successful in the class and helping students see other students encountering the same
challenges they face.

We also administer three exams throughout the semester. The first exam covers modules 1-3.
The second exam covers modules 4 and 5 and the last exam covers modules 6 and 7. We
compare the performance of students from this semester on the programming exam questions to
the performance of students from previous semesters on similar programming exam questions as
a means of quantitatively measuring the effectiveness of code-sharing in helping students learn
to code and be successful in the class. The exam programming questions vary slightly between
semesters so only modules 1, 2, 3, 4, and 6 have exam questions that are similar enough for a

Table 2. Student Post Characteristics
Description
1. Student includes code comments in the posted code
snippet
2. Student uses descriptive variable names throughout
the code snippet
3. The posted code snippet is free from any errors and
functions correctly.
4. The posted code snippet contains one or more syntax
errors
5. The posted code snippet contains one or more logic
errors
6. The posted code snippet contains one or more logic
errors that only occur under certain conditions (i.e.
out-of-bounds access, etc)
7. The post contains additional thoughts, comments or
extra information outside of the code snippet
8. The student expresses a sentiment that their code
snippet is correct
9. The student expresses a lack of confidence that their
code is correct
10. The student acknowledges that the code snippet may
lack in efficiency, elegance, etc
11. The student ask direct question or uses a questioning
phrase
12. The student uses a workaround to provide
formatting and or syntax highlighting. (i.e. screenshot of
code snippet, <pre> tags, etc)

Table 3. Student Reply Characteristics
Description
13. The student ask a question in their reply
14. The student answer a question in their reply
15. The student suggests an alternative solution to the
code post.
16. The student expresses that they found the posted
code snippet to be helpful
17. The student expresses that they found the posted
code snippet to be unhelpful
18. The student expresses a positive sentiment about the
code. (i.e Nice work, Good job, etc)
19. The student expresses that they had not considered
using that approach before
20. The student expresses confusion about the code
snippet
21. The student expresses a “me too” sentiment. (i.e.
that they used a similar approach in their own code)
22. The student corrects a syntax error in the code
snippet
23. The student corrects a logic error in the code snippet
24. The student references the efficiency (runtime,
memory, etc) of the code snippet or suggested
alternative
25. The student suggest a different choice of names for
the variables used in the code snippet
26. The student suggests a change in the style of the
code snippet. (formatting, whitespace, etc)
27. Other students reply to this reply either directly
through a threaded reply or indirectly by reference this
reply.

direct comparison to be meaningful. Furthermore, the questions for Module 1 and 2 have
significant overlap and are combined and reported under Module 2.

III. Results

Over the course of the semester there were a total of 110 posts and 232 replies. Table 4. Shows
the amount of participation in each module. After an initial drop in participation between the first
and second module, the amount of participation was more consistent in the next few modules.
Then we see another drop in participation towards the end of the course with modules six and
seven having fewer posts and replies.

Table 4. Participation Statistics per Module
 Number of

Participants
Number of

Posts
Number of

Replies
Module 1 20 19 36
Module 2 16 14 32
Module 3 17 17 33
Module 4 17 17 36
Module 5 16 16 37
Module 6 13 13 26
Module 7 14 14 32

The posts and replies were independently analyzed by two different reviewers and marked using
the characteristics listed in Tables 2 and 3. The inter-rater reliability between reviewers on the
post data using Pearson’s Correlation Coefficient was .99 and the inter-rater reliability between
reviews on the reply data was .91. The results have been averaged between the two reviewers
and are listed in Tables 5 and 6.

Table 5 shows the percentage of student replies that demonstrate the given characteristic. We see
a majority of replies expressing a positive sentiment. The next most commonly observed
characteristics are expressing a helpful sentiment, and expressing a me too sentiment. On the
other side of things, no reply suggested a change in variable names. Suggesting a style change
almost never occurred. Similarly, we rarely observed an expression of unhelpfulness. We see a
small percentage of replies that express confusion, correct an error, or answer a question.

Table 6 shows the percentage of student replies that demonstrate the given characteristic. We see
a majority of replies expressing a positive sentiment. The next most commonly observed
characteristics are expressing a helpful sentiment and expressing a me too sentiment. On the
other side of things, no reply suggested a change in variable names. Suggesting a style change
almost never occurred. Similarly, we rarely observed an expression of unhelpfulness. We see a
small percentage of replies that express confusion, correct an error, or answer a question.
Although small, we also see students asking additional questions, or expressing that they had not
considered that approach.

Table 5. Percentage of Student Post Exhibiting Characteristic
Characteristic Percent of Posts Characteristic Percent of Posts
1. Comments code 39.6% 7. Extra information 82.60%
2. Good variable names 88.33% 8. Says answer is correct 8.32%
3. Correct 74.27% 9. Says answer may not be correct 10.86%
4. Syntax errors 4.70% 10. Says answer has shortcomings 6.51%
5. Logic errors 23.28% 11. Asks a question 7.47%
6. Edge-case logic errors 9.55% 12. Workaround for formatting. 15.92%

Table 6. Percentage of Student Replies Exhibiting Characteristic
Characteristic Percent of Replies Characteristic Percent of Replies
13. Asks a question 8.22% 21. Me too sentiment 23.89%
14. Answers a question 4.38% 22. Corrects a syntax error 0.83%
15. Alternative solution 28.48% 23. Corrects a logic error 4.33%
16. Helpful sentiment 34.60% 24. References efficiency 3.14%
17. Unhelpful sentiment 0.45% 25. Suggests name choice 0.00%
18. Positive sentiment 65.14% 26. Suggests style changes 0.22%
19. Did not think of that 7.71% 27. Generates response 6.84%
20. Expresses confusion 2.97%

We also looked at how the prevalence of these characteristics changed over the course of the
semester. For many characteristics the change over time was not significant or interesting. It
would bounce back and forth around the average value. However, we have selected four
characteristics from the posts and 6 characteristics from the replies that did appear to exhibit
some interesting or noteworthy changes.

The trends exhibited in the characteristics of the student posts are shown in Figure 2. Students
initially included comments in the code at nearly a 50% rate. By module 4 code comments
peaked at nearly 65% of posts including comments in the code. From here things decline to less
than 25% of students using comments in the code. We see a positive trend in the amount of posts
that include correct code and a corresponding negative trend in the amount of code containing
logic errors. The other characteristic which showed a positive trend was the workaround for
formatting code. As one student would introduce a work-around for including syntax
highlighting and maintaining whitespace formatting other students would copy the work around
in subsequent modules.

Figure 2. Student Trends in Posts

Figure 3. Student Trends in Replies

The trends exhibited in the student replies are shown in Figure 3. The replies expressing a me too
sentiment have a downward trend. We see more students asking and answering questions in the
early and later modules. The replies in the middle modules have fewer questions and answers.
Students expressing a “did not think of that” sentiment is largely stable between modules with
module 4 seeing the fewest replies expressing that sentiment and module 3 seeing the most
replies expressing that sentiment.

We see an interesting pattern emerge with alternative solutions and helpful sentiments. Student
replies that express the post was helpful are negatively correlated with student replies that
suggest an alternative solution. It looks like when a student finds the post helpful they do not
provide an alternative solution and when they find the post less helpful they instead suggest an
alternative. The two characteristics together consistently make up about 70% of the replies.

It is important to realize that although each module was similar in the amount of content
presented and that the amount of time students had to complete each module was identical, some
module concepts were more challenging for students to grasp and implement then others.
Anecdotally, we observed students struggle more with modules 1, 2, 6 and 7 then they did with
modules 3,4 and 5. We see several of the trend lines reflecting this pattern.

To compare performance on the exam programming questions we looked at the percentage of
students scoring 70% or higher on the programming exam questions that are similar across
semesters. We compare this semester to the previous four semesters all taught by the same
instructor. The results are shown in Figure 4. The percentage of students achieving a 70% or
higher on the exam programming questions is similar or higher in the semester when students
participated in the code-sharing discussion boards than in the other traditional semesters.

Although the results on the exam programming questions are promising, more work is needed to
validate those improvements. Introducing code-sharing via discussion boards is not the only
change that has taken place in this course compared to previous semester offerings. The course
has also moved to an online flexible format. The use of code-sharing via discussion boards in
other settings is currently being explored to isolate the effect of the discussion board.

Figure 4. Percentage of Students Scoring at least 70% on the Exam Programming Questions

IV. Discussion

1. Good things we saw

We saw students helping students, students learning new ways of doing things, trying new ideas,
answering questions, and having some back and forth dialog (max depth observed was 5). The
number of correct postings improved over time. Students recommended other approaches and
made suggestions.

The me too sentiment showed up often. There were students who expressed they solved a
problem in a similar way. Others indicated that they struggled with the same issues. This
opportunity to connect with others seems beneficial for many reasons. Often students feel
isolated and that they are the only ones struggling. Seeing others are struggling as well helps
them normalize the struggle inherent in learning new material and may reduce the effects of
imposter syndrome.

Sharing successes can be beneficial to both the person that has succeeded and the one who hears
of the success. Writing working code is inherently satisfying. Being able to tell someone else
about it, increases the satisfaction. As other students see their classmate’s success, they are more
likely to anticipate their own success.

Logic errors are often difficult to see. If the testing is limited, students may not even realize they
have included a logic error. One of the situations we saw was a student shared code and indicated
that it was working. Then someone would reply and identify a concern about a particular logic
error. They may have seen that the code had not protected against an edge case like when an
array is empty and suggested that an if statement be added to handle that specific case. They may
have noticed an off-by-one error where everything works great until it gets to the end of the array
and then the loop writes something just outside the array bounds.

These errors are tricky to see. With multiple eyes on the code, it increases the chance that
someone will notice. Once the error is identified, it can be easily fixed. Participating in these

discussions helps the student who posted the code. They are able to fix it. It also helps those who
are participating. Certainly the student who discovered the issue is rewarded for their ability to
recognize the logic error. But even the student who just reads through the discussion benefits
from hearing the conversation and can become more aware.

2. Things we saw that could be improved

Not every post had a reply. It would be nice if everyone had responses. There was a noticeable
decline in the number of responses for the later posts. The first few posts had the most replies.
By the end, some of the posts didn’t have any replies and the others only had one or two.

Not every question was answered or even responded to. Questions were brought up in the
replies. Often these questions went unanswered. They were valid questions and it would have
been beneficial for the students to hear the answer.

This reduced response rate later in a thread or at the end of a discussion makes sense. Students
participate in the discussion and move on. This may be an indication that fewer students are
seeing the later posts and replies. One of the things we can investigate is how to encourage
students to come back to the conversation after they have completed the required number of
replies and moved on to another module.

3. Things we rarely saw

We saw few suggestions for stylistic improvements and no suggestions for better variable names.
This may be a consequence of students not caring or considering it less of a priority.

Corrections of syntax errors were also rare. This is likely because there was less code that
included syntax errors. Only 4.7% of code posted contained syntax errors. Compilers do a good
job of pointing out syntax errors and students can often resolve them on their own.

4. Things we did not see

There were no negative or hostile comments. This was one of the best parts of the discussion. It
was not clear at the onset that this would be the case. One of the concerns with a public
discussion is you don’t have control of what is said. There is a risk that someone will be
disrespectful or unkind in their comments. The author of each post and reply was clearly visible
which provided individual accountability for what was said. It was encouraging to see how
helpful and kind the student remarks were. We hear negative things about ‘students these days’.
This is a chance to see the quality conversation they engaged in and say, ‘Wow! Look at students
these days’.

One of the most difficult things to say nicely is that something is wrong with someone else’s
code. The students were even able to do this. Consider this reply that identifies an error.

“Wouldn’t the “index > size” need to be either “index >= size” or “index > size - 1” since
if the index equals the size it would be out of bounds? Maybe I’m not thinking straight
due to lack of sleep. Let me know what the consensus is.”

They also expressed appreciation for the corrections made.

“This is great! I took your advice and didn't use the int variable. So far it has worked just
fine. I always forget to add the null character until I look at your code.”

Having students participate in these conversations provides one more way to get students to
engage in the code and topics of the course. It seems no matter how often we cover a topic, some
students don’t hear or it just doesn’t make sense to them. Hearing the topics discussed by new
voices and seeing code that has a different style, approaches a solution in a different way, or is
organized differently broadens the student’s exposure to the topics of the course and to code and
problem solving more generally.

V. Related Works

Research suggests that the benefits of working together on code include increased success rates
in introductory courses, increased retention in the major, higher quality software, higher student
confidence in solutions, and improvement in learning outcomes [6, 7, 8, 9]. While earlier works
mainly address paired programming in a classroom setting, we concentrate on its impact on
asynchronous collaboration via a discussion forum (in which students programmed individually
and were expected to comment and receive feedback on different coding solutions, styles and
practices) in an online, “self-paced” learning environment.
There are several similar studies that present findings on collaboration among novice
programmers in non-traditional learning environments. Othman [10] describes a web-based
system named Online Collaborative Learning System (OCLS) that has been developed to support
collaboration and discussion for learning programming in a virtual environment. The
"Think-Pair-Share'' used in the study reflects the adoption of collaborative approaches in a
virtual setting. Othman’s later study [11] also demonstrates a strong correlation between
students’ logical thinking skills with their abilities to solve problems in an online collaborative
environment.

Muller and Padberg [12] conducted two controlled experiments with 38 subjects on pair
programming. They first studied the correlation between a pair’s feelgood factor and the pair’s
implementation time and programming experience. In the second phase, rather than looking at
the pairs, they focused on the individual’s programming experience and feelgood factor. The
findings showed that a pair’s implementation time was uncorrelated to the pair’s programming
experience, but there was a significant correlation with how comfortable the developers felt with
paired programming during the session (the “feelgood” factor). It is our view that the prevalence
of the me too sentiment expressed in the replies and the positive interactions between
participants produces such a feelgood factor.

The most closely related work to our explorations into online student collaboration was done by
Zacharis [13, 14]. These studies investigated the effectiveness of virtual pair programming (VPP)
on student performance and satisfaction in an introductory Java course. The two groups consisted
of virtually paired programming students and solo students. The two factors examined were code
productivity and software quality. The results suggested that VPP is an effective pedagogical tool
for flexible collaboration and an acceptable alternative to the individual/solo programming
experience, regarding productivity, code quality, academic performance, and student satisfaction.

In our work, we more broadly explore how students collaborated and learned new ways of
programming by making recommendations for improvements and evaluating suggestions
received from others in an asynchronous manner.

VI. Conclusion

Allowing students the opportunity to see and interact with other’s code is an important piece of
learning and facilitates the writing of good software. This can be challenging in an online
classroom environment and even more challenging when the students move through the course at
their own pace. We have shown that using discussion boards is a feasible approach to provide
students with this opportunity. Through the use of the code-sharing discussion boards we saw
students relating to the experiences others shared, we saw students reporting that the discussion
was helpful and we saw improvement on the exam programming questions.

We saw some items that can be improved going forward. Students often posed a question in the
discussion board that went unanswered. We also saw some student posts that did not have a
reply. This typically occurs towards the end of the discussion. Thinking about how to incentivize
a student who may have already finished that module to go back and continue to be active on the
discussion board could provide real benefits.

We plan to continue to use this approach in the Data Structures and Algorithms class and
monitor the student experience. While we saw some indication that students performed better on
the exam programming questions, further investigation is needed to determine if this is a result of
the code sharing exercises or an artifact of other changes to the course structure. We also want to
try this approach in additional classes to see if it is effective in a broad range of settings.

Overall, the experience was positive. We were especially pleased with how well the students
communicated. They were respectful and thoughtful in their conversation. The students engaged
in the discussion board. They learned new approaches and techniques they had not previously
considered, they helped one another, encouraged each other and shared their code.

References

[1] A. Rosenstein, A. Raghu, and L. Porter. “Identifying the Prevalence of the Impostor
Phenomenon Among Computer Science Students.” In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 2020. Portland, Oregon.

[2] R. Ball, L. Duhadway, K. Feuz, K., J. Jensen, B. Rague, and D. Weidman. “Applying
Machine Learning to Improve Curriculum Design”. In In SigCSE '19 (ACM Technical
Symposium on Computer Science Education 2019). Minneapolis, Minnesota.

[3] L Barker, K. Garvin-Doxas, and E. Roberts E. “What can computer science learn from a fine
arts approach to teaching?” SIGCSE Bull. vol 37, pp. 421–425, Feb. 2005.
DOI:https://doi.org/10.1145/1047124.1047482

[4] L. Barker, K. Garvin-Doxas, and M. Jackson. “Defensive Climate in the Computer Science
Classroom”. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’02). Association for Computing Machinery, New York, NY, USA, pp.
43–47, 2002. DOI:https://doi.org/10.1145/563340.563354

[5] P. Baheti, E. Gehringer, and D. Stotts.. “Exploring the Efficacy of Distributed Pair
Programming”. In: Wells D., Williams L. (eds) Extreme Programming and Agile Methods -
XP/Agile Universe Lecture Notes in Computer Science, vol 2418, 2002. Springer, Berlin,
Heidelberg.

[6] G. Braught, T. Wahls, and L.M. Eby. “The Case for Pair Programming in the Computer
Science Classroom”. TOCE, 11, pp. 2:21, 2011.

[7] P. Maguire, R. Maguire, P. Hyland, and P. Marshall. Enhancing collaborative learning using
pair programming: Who benefits?. All Ireland Journal of Higher Education, 6(2), 2014.
https://ojs.aishe.org/index.php/aishe-j/article/view/141 [Accessed 1 February 2020].

[8] T. Van Toll III, R. Lee, and T. Ahlswede. "Evaluating the Usefulness of Pair Programming in
a Classroom Setting," 6th IEEE/ACIS International Conference on Computer and Information
Science (ICIS 2007), Melbourne, Qld., 2007, pp. 302-308.
DOI: https://doi.org/10.1109/ICIS.2007.96

[9] L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller. In Support of Pair Programming in
the Introductory Computer Science Course, Computer Science Education, vol. 12:3, pp. 197-212,
2002. DOI: https://doi.org/10.1076/csed.12.3.197.8618

[10] M. Othman, F. Othman, and M. Hussain. "Designing Prototype Model of an Online
Collaborative Learning System for Introductory Computer Programming Course, Procedia -
Social and Behavioral Sciences 90, pp. 293-302, 2013.

https://doi.org/10.1145/1047124.1047482
https://doi.org/10.1145/563340.563354
https://ojs.aishe.org/index.php/aishe-j/article/view/141
https://doi.org/10.1109/ICIS.2007.96
https://doi.org/10.1076/csed.12.3.197.8618

[11] M. Othman, N. Zain.. “Online Collaboration for Programming: Assessing Students’
Cognitive Abilities. Turkish Online Journal of Distance Education , 16 (4) , 84-97, 2015.
DOI: https://doi.org/10.17718/tojde.88618

[12] M. Muller and F. Padberg. “An empirical study about the feelgood factor in pair
programming,” in Proceedings of International Software Metrics Symposium, pp. 151–158,
Chicago, IL, USA, September 2004.

[13] N. Zacharis. “Evaluating the Effects of Virtual Pair Programming on Students’
Achievement and Satisfaction”. International Journal of Emerging Technologies in Learning,
vol. 4, pp. 34-39, 2009.

[14] N. Zacharis. "Measuring the Effects of Virtual Pair Programming in an Introductory
Programming Java Course," in IEEE Transactions on Education, vol. 54, no. 1, pp. 168-170,
2011.

https://doi.org/10.17718/tojde.88618

