ASEE'S VIRTUAL CONFERENCE

At Home with Engineering Education H#ASEEVC Paper ID #29402

Introduction of Software Engineering Concepts for Electrical and
Computer Engineering Students and Application to Senior Projects

Dr. Danielle Marie Fredette, Cedarville University

Danielle Fredette received her Ph.D. degree from The Ohio State University’s College of Engineering
(Columbus, OH) in 2017, her M.S. also from The Ohio State Univeristy in 2016, and her B.S.E.E. from
Cedarville University (Cedarville, OH) in 2012, during which time she participated in research as an
intern at the Air Force Institute of Technology at Wright Patterson Air Force Base, OH, in the Radar
Instrumentation Lab. While researching for her Ph.D, she was a University Fellow and then a GATE
Fellow with The Ohio State University’s Center for Automotive Research and its Control and Intelligent
Transportation Research Lab. She is currently serving as an Assistant Professor of Electrical and Com-
puter Engineering at Cedarville University. Research interests include control for multi-agent systems
and autonomous ground vehicles.

Nathan Jessurun, University of Florida

Nathan Jessurun received his B.S. in Computer Engineering from Cedarville University in 2019. Currently
he is a PhD candidate at the University of Florida, working toward a degree in Electrical and Computer
Engineering. His research interests include x-ray and terahertz wave applications, multi-modal imaging,
tomographic reconstruction algorithms, and machine learning applications.

(©American Society for Engineering Education, 2020

Introduction of Software Engineering Concepts for Electrical
and Computer Engineering Students and Application to Senior
Projects

Danielle M. Fredette, Nathan T. Jessurun
Cedarville University

Abstract

This paper describes results of incorporating basic software engineering principles into the senior
design curriculum for electrical and computer engineering students who have no prior software
engineering exposure. Software engineering concepts are introduced to computer and electrical
engineering students in the fall of the senior year using lectures, books, and guided application to
a year long project. As the electrical and computer engineering fields have broadened, introducing
software engineering topics to all of the students before graduation has become increasingly
valuable to both students and faculty.

The senior design course itself is described as it is currently along with its evolution over the
course of the program’s history. Student perspectives are analyzed using comments from the
course evaluation as well as taking a closer look at how one project team applied software
engineering basics in their project toward greater success and satisfaction in their senior design
experience. Several further improvement possibilities for the course are identified from this
student feedback, especially regarding the response of the more hardware oriented electrical
engineering students to software engineering topics.

1 Introduction

This paper is an experience report on a senior capstone course in which basic software
engineering principles are introduced to electrical and computer engineering students who have
had no prior exposure. Our intention is to describe a model for the incorporation of introductory
software engineering concepts using both classic and newer materials, with a strong emphasis on
project based application of the concepts in the senior capstone design.

In this paper, we report on the evolution and evaluation of our school’s senior design capstone
class for electrical and computer engineering (EE/CpE) students. Specfically, we will look at the
impact of the inclusion of introductory software engineering materials on senior design
performance for students with little to no knowledge about large software project management.
We will begin by describing and discussing changes made to the content/seminar portion of the
course. Then we will discuss student feedback on the course from student evaluations and take a

closer look at one team’s particular experience. The purpose of this paper is to communicate what
has and has not worked well for us in the senior design course over the years, and to draw some
preliminary conclusions about how EE/CpE students respond to course content on the basics of
software engineering, and how they do or do not make use of that material in their projects, with
the intent to improve our course for future years. Specific items to evaluate over the next cycle of
the course are also identified.

As noted by the author of [1], senior capstone design work is a valuable part of an engineering
curriculum, giving many students their first experience working on a team to complete a large
project on a relatively long time scale. However, many students, especially those with less
technical experience from internships or co-ops, come into senior design with weaknesses. These
weaknesses might include unfamiliarity with how to plan for and manage constraints such as time
and money, discomfort with being dependent on teammates, lack of experience regarding how to
manage a team or a meeting, and unreasonable expectations about system integration. In our
school’s EE/CpE senior design program, we attempt to head off some of these weaknesses by
offering a seminar/lecture component in the fall part of the course in which we teach some of
these soft skills (similar to what is described as typical in [2]). Software engineering principles,
along with instruction on more general project management and leadership, form the basis of the
seminar content. Throughout the year, each team is guided by a faculty advisor toward putting
these ideas into practice on a variety of hardware and software projects.

2 Capstone Course Development

2.1 Senior Design Course Overview

Cedarville University’s senior design or capstone class is a year long project-based course. Teams
of 2-6 students work together for the entire school year on a large project under the supervision of
a faculty advisor. Each team’s project is typically unique from that of other teams, and both
students and faculty are involved in proposing and selecting projects and teams for the upcoming
school year. Teams are typically multi-disciplinary with a mixture of electrical and computer
engineering students. Using the classification criteria of [2], our senior design class is 1) offered
at the program level and 2) gives students authentic involvement in solving a real problem. Some
projects have real customers (business, nonprofit organization, other university department,
engineering competition team). Almost every project has both hardware and software
components. Students are allowed to self-select their teams, with certain project and team size
constraints given by the faculty.

During the fall semester, in addition to the project-based part of the class, students participate in a
seminar-type course. The course has three major facets: 1) to teach the principles of project and
team management, 2) to teach software engineering principles and practices, and 3) to lay the
foundation for the spring by developing project proposals and beginning a design cycle for a
product. The objectives of the fall senior design course, mapped to ABET outcomes, are the
following:

1. Identify and apply principles of project management. (2, 5)

2. Identify and apply key concepts of electronic product design.(1, 2)

3. Demonstrate effective project communication skills.(3)

4. Work with others in solving a realistic design project.(5)

5. Select and use computer aids appropriate to various aspects of electronic design. (1,7)
Grades for the course are awarded based on the following breakdown.

e mini projects: 12%

reading/class presentations: 15%

project proposals: 15%

project milestones (2): 10%

weekly reports: 5%

hours logs: 5%

final presentation/design report: 15%
e instructor evaluation: 23%

The schedule of topics and assignments for the course is shown in Figure 1. Note that, for the
latter half of the course, the students are asked to give presentations on the book material. This
approach has been adopted both to help the students truly engage with at least a subset of the
required reading material and to give all of them additional practice presenting to a group.

Students typically find senior design to be a rewarding opportunity. They enjoy being able to
create something they can be proud of, work closely with a faculty member and with other
students on a realistic engineering project, and gain valuable hands-on experience.

EGEE/EGCP-4810 Class Schedule 2019

Date Reading Speaker TOPIC Thurs Lab Assignments Due
Wed, Aug 21| Design CH 1 Professor Intro: The Engineering Design Process
Fri, Aug 23| Design CH 2 Professor Project Selection & Needs Identificcation Team meeting
Mon, Aug 26| Design CH 3 Professor Requirements Specification
Wed, Aug 28 Professor Writing your proposals and requirements Work time, PCB officer designations
Fri, Aug 30 Team Meeting meeting
Mon, Sep 2 Labor Day Labor Day - No class
Wed, Sep 4 Professor Technical Writing Work time. PCB
Fri, Sep 6 Team Meeting meeting
Mon, Sep 9| Design CH 9,10 Professor Team & Project Management
Wed, Sep 11| Design CH 5 Professor Functional Deomposition
Fri, Sep 13 Team Meeting Work time
Mon, Sep 16| Design CH 7 Professor Testing
Wed, Sep 18| Design CH 8 Professor Reliability
Fri, Sep 20 Team Meeting Work time formal proposals
Mon, Sep 23| Myth CH 1-3 Professor Tar Pit, Mythical Man-Month, Surgical Team X
Wed, Sep 25 Career Fair Required attendance at the Career Fair m Zxﬁi‘f 11 cl;nrz’in e
Fri, Sep 27 Team Meeting meeting mini-project #1
Mon, Sep 30| Leadership 1&2 Professor Greatest is the Servant/Show Justice Mercy
Wed, Oct 2| Agile CH 1-2 Professor Development & Begin Agility Work time, CAN
Fri, Oct 4 Team Meeting meeting
Mon, Oct 7 Myth 4-5 ML game Mythical Man Month #2 Design Reviews:
Wed, Oct 9| Leadership 3&4 | ML camera Seek to Serve / Share Credit, Shoulder Blame 11(1}1/1 ;Sllrotr;:jl
Fri, Oct 11 Team Meeting advisor) mini-project #2
Mon, Oct 14 Agile CH 3 Car Feeding Agility
Wed, Oct 16 Myth 6-7 Aero Mythical Man Month #3
Fri, Oct 18 Fall Break - No Class Fall Break
Mon, Oct 21| Agile CH 4a Arm Delivering what users want (10-14)
Wed, Oct 23 | Leadership 5&6 Radio Ask for Help / Keep a Short List
Fri, Oct 25 Team Meeting Work time mini-project #3
Mon, Oct 28| Agile CH 4b Boat Delivering what users want (15-18)
Wed, Oct 30| Leadership 7&8 ML game Read to Lead / Set the Course ... and Pace
Fri, Nov 1 Team Meeting Work time
Mon, Nov 4 Agile CH 5 Car Agile Feedback
Wed, Nov 6| Leadership 9-11 Car Accountablility /Exercise/ Conclusion
Fri, Nov 8 Team Meeting Work time mini-project #4
Mon, Nov 11 Agile CH 6 Aero Agile - coding
Wed, Nov 13| Agile CH7 & 8 |Radio Agile Debugging & Collaboration
Fri, Nov 15 Team Meeting Work time
Mon, Nov 18 Potential Make-Up Day Design Reviews:
Mon, Nov 18 n(l}l;lsfltrog;iz
Wed, Nov 20 advisor)
Fri, Nov 22
‘Wed, Nov 20 No Class Thanksgiving Break
Fri, Nov 22 No Class Thanksgiving Break Thanksgiving
Mon, Nov 25 No Class Thanksgiving Break
Mon, Nov 25
‘Wed, Nov 27 Presentations
Fri, Dec 6
1st PCB Design
(if you have a
Sun, Dec 8 Design Reports Due by 12:00 noon PCB) final design reports

Figure 1: Fall 2019 Senior Design Course Schedule

2.2 Improvements Through the Years and Software Engineering Content

The engineering program at Cedarville University began in 1990, initially offering majors in
mechanical and electrical engineering. The first electrical engineering graduating class was the
class of 1994, and initial accreditation was received that same year. The computer science (CS)
program graduated its first students in 2002, and its accreditation came in 2006 after moving from
the department of science and mathematics to the department of engineering and computer
science. The computer engineering program was conceived as a hybrid of electrical engineering
and computer science, and was first offered in the year 2002, with its first graduating class and
accreditation in 2006.

A senior design capstone project has always been part of the curriculum for engineering students,
with electrical engineering and computer engineering students put together on teams in order to
utilize their different skills to complete a realistic project. Initially, all of the EE student teams did
the same project for a full year, with each year’s project being different from the previous year’s.
After about 5 years of this, senior design started having diverse projects. Each project and team is
advised by a faculty member, and each year both students and faculty get an opportunity to
propose new projects.

In addition to the year-long project-based objectives of the senior design course, EE, CpE, and CS
students all receive a senior design lecture component in the senior fall semester. The goal has
always been to introduce useful topics (such as software engineering) to the students in a way that
contributed to their senior design projects and future work aspirations without taking too much
time away from the project component of the course. The EE content has included project
management concepts plus certain technical topics thought to aid the students in their projects
(power supplies, voltage regulators, communication protocols, etc.). In the course of ongoing
accreditation cycles and recommended improvements to the curriculum, it was decided that CpE
students should receive some formal instruction on the ideas of software engineering. This was
accomplished initially by requiring CpE seniors to join the fall lecture portion of the CS senior
design course. This did expose CpE seniors to useful software engineering concepts, but it caused
them to feel a bit “orphaned” or caught between two programs, being in lecture with CS seniors
but on project teams with EE seniors. It was also difficult to keep senior design course grading
and expectations well-communicated and consistent. For these reasons and because the CS
program experienced significant growth, a CpE faculty member took over the CpE senior design
course in 2014. Under this scheme, the CpE students shared a few lectures on project
management with the EE class, and the rest of the course content was borrowed directly from the
CS senior design curriculum.

Between the years of 2014 and 2018, the CpE senior design curriculum underwent considerable
change. Initially, Pressman’s traditional textbook Software Engineering: A Practitioner’s
Approach [3] was used, giving way to the more concise Gustafson’s Schaum’s Outlines: Software
Engineering [4]. Neither of these seemed the right fit for the CpE students, and eventually the
CpE faculty settled on covering the material found in the following collection of shorter books,
which comprise the current text choices for CpE senior design:

Design for Electrical and Computer Engineers, Ford and Coulston [5]
— Project management and teamwork basics
— How to organize, decompose, and plan a large project

— Defining requirements, objectives, needs, constraints, standards

10 Leadership Maneuvers, Loren Reno [6]

— Wisdom on how to be a good leader

The Mythical Man-Month, Essays on Software Engineering, Frederick P. Brooks Jr. [7]
— Classic but relevant wisdom of a father of the software engineering field

— Explores philosophy and experience surrounding large software projects and their
unique difficulties

Practices of an Agile Developer, Venkat Subramanaim and Andy Hunt [8]
— An introduction to the Agile methodology
— Do’s and don’ts of practical team software projects

In 2018, the faculty experienced some turnover and subsequent shuffling of loading. At this point
it became clear that the EE senior design lecture curriculum also could use an update. It had
previously covered many useful, miscellaneous technical topics, but with the growth of the fields
of electrical and computer engineering and the blurring of the lines between them over recent
decades, the faculty decided that the EE students would also benefit from an introduction to
software engineering and merged the EE and CpE senior design courses entirely starting in 2019.
The most important technical topics from the two sections were converted into a bank of
assignments from which the students could choose the four that most interested them.

Next, we will look at examples of how one team utilized the software engineering principles
learned in class toward a successful senior design project.

3 Case Study: Autonomous Shuttle Project

3.1 Autonomous Shuttle Project Overview

Beginning in fall 2018, the authors were part of the team working on a new autonomous shuttle
senior design project. D. Fredette served as the faculty advisor and N. Jessurun was one of four
team members. The goal was to convert a small ground vehicle, such as a golf cart, into a fully
autonomous shuttle for urban/on campus transport, with similar functionality to existing
experimental autonomous shuttles [9]. Part of the challenge was a minimal budget of just a few
thousand dollars. Figure 2 depicts the used golf cart our team acquired for the project and a
student using a GPS receiver to collect waypoints for navigational use.

The year 1 team accomplished converting the golf cart to a drive by wire vehicle (designing and
building systems for electronic steering, braking, and throttle, Figures 3 and 4) and demonstrating
autonomous navigation by following GPS waypoints. The Reach GPS unit (Figure 5) provided

sufficient accuracy to stay on a sidewalk when used with real time kinematic (RTK) correction
from a nearby Ohio Department of Tranportation GPS base station. Software and algorithms for
obstacle avoidance were also developed, although the full implementation of an obstacle
avoidance system was left to a future team. Year 1 managed to realize level 3 autonomy (steering
and brake/acceleration capability of the car such that the computer can take over driving when
certain conditions are met) [10] with a budget of about $3500.

Regarding software design, the students looked carefully at similar applications [11]-[17] to
identify common elements for a robust software architecture for autonomous navigation. We
identified for such elements. They are listed below with a brief description of how each was

implemented in the design.

e Acquisition of navigational data
— Waypoints and position/speed information from EMLID Reach+ GPS unit, Figure 5
— Obstacle detection using RADAR and/or LIDAR

e Asynchronous, separate processing routines for unique autonomous operations

— Software must be able to continue processing messages from subsystems with
differing or inconsistent update rates. For example, if the GPS sensor momentarily
loses satellite connection, the system should still be able to process incoming
information from other sensors.

e Robust communication interfaces to facilitate data transfer between sensing components

— Figure 6 depicts the software architecture of the internal communication system we
implemented. To ensure consistency between modules, we programmed a
Nodelnterface, the concept of which is depicted in Figure 7.

e Priority-based feedback from the processor to each locomotive component (e.g. motors
controlling vehicular movement).

— Priority information is built in to the ConnectionHub design. That is, each update
from a module has a priority attached, and updates are dispatched in priority order.

The autonomous car project is now in its second year, with a new team of six seniors adding
LIDAR functionality, dynamic routing algorithms, and more robust hardware improvements.
Starting drive by wire conversion on a second golf cart is also in the works, which will allow us
try out some multi-vehicle interactive driving possibilities, perhaps in year three.

Figure 3: The golf cart after drive by wire conversion

3.2 Student Perspective: Lessons Learned from Applying Software Engineering Basic Principles
to the Senior Design Project

As arecent graduate, I (N. Jessurun) have found Cedarville University’s senior design to be a
highly effective course which prepares its graduates both for industry and advanced academics.
Students are taught teamwork, project management, and interdisciplinary skills — increasing their
technical and social aptitude in the process. In this section, I will discuss some of the ways the
autonomous car team and I were able to apply and test the software engineering principles we
learned in class.

Part of the senior design class involved reading a book from the developers of Agile principles [8]
and incorporating these practices into our design process. This entailed breaking deliverable
products into 1- to 2-week cycles, with definite goals reached each iterative cycle. Agile requires
teams to break large tasks, such as designing a system to act upon GPS data, into small, bite-sized
pieces. In the GPS example, this would involve turning the overall goal into objectives able to be
completed in 1-2 weeks like:

e Design an interface to poll the EMLID system for positional data

Figure 5: The Reach GPS unit and an example of the waypoints collected along a driving path.
Data plotted using maps .google.com.

e Develop an algorithm to extract heading and velocity data from progressive geographical
timestamps

e ctc.

The Agile mindset proved highly useful to our senior design team. Using Trello, an online
list-based task scheduler, we were able to record time spent on each task and ensure each team
member received an equitable work load. With this system in place, milestones felt far more
achievable.

Our team performed a small ‘case study’ of Agile-based vs. traditional waterfall release tasks. At
certain times throughout the semester, multiple courses have projects or exams at the same time,
requiring more work than usual for students to keep up. During one such period, our senior
design team didn’t take the time to break larger milestones into smaller tasks. Instead, we each
logged time to a single, high level descriptor for the milestone, such as ‘Complete GPS program’.
Uncharacteristic of previous accomplishments, we were unable to meet our specified goals and
didn’t implement the desired level of functionality. We had some doubts as to whether the lack of
smaller tasks and realistic goals was to blame (instead of just a lack of time). However, an

maps.google.com

BrakeSys

VarGroupinternCtnt

VarGroup
allSharedCtnt

VarGroupexternCtntg

Figure 6: Diagram of the connection hub software architecture for overall data sharing between
software modules in the project

opportunity to test this hypothesis presented itself when in the next semester a similar priority
conflict arose. This time, however, the team lead dedicated time to appropriately break apart
tasking between members. The additional planning paid off — time logs show we avoided spikes
in hours recorded, which shows we properly estimated our capabilities. When bite-sized
objectives were consistently defined for each overarching responsibility, the team was much more
effective at realizing them. At the end of the year, each member noted in retrospect the additional
work required to break down large milestones proved worthwhile.

Agile methodology is helpful for naturally and realistically breaking large objectives into smaller
tasks. However, it lacks the ability to generate initial high-level goals from a single product
statement. The textbook Design for Electrical and Computer Engineers [5] was included in the
senior design curriculum to address these concerns.

While Design for Electrical and Computer Engineers contains several helpful principles for
system design, we found requirement specifications to be the most beneficial and applicable to
our project. Namely, we used these guidelines to break our ambiguous product description into
several separate, festable objectives.

One recommendation given by the book was to avoid thinking about a project in terms of what
must be designed. Instead, the author suggested focusing on verifiable actions — termed ‘product
requirements’ — that the system can perform. Next, these requirements are grouped by items with
related functionality. Breaking our project description down this way, we were easily able to
identify the high-level goals of our project. For instance, our decomposition of navigation
requirements resembled the following, starting from the project objective and growing more
specific as you go down in hierarchy:

1. The team shall design and demonstrate capabilities of an autonomous vehicle.
(a) The cart shall accelerate when given the appropriate software command

(1) On human intervention (i.e. a keypress), all autonomous acceleration instructions

Connection

Hub
Radar Nodelnterface
% Nodelnterface

- . Node

Figure 7: Connection Hub software architecture concept

shall cease.

(i1)) The commanded acceleration shall not exceed appropriate speed limits for the
areas traversed

(iii) ...
(b) The cart shall slow when given the appropriate software command

(c) The cart shall turn when given the appropriate software command

d ...

(e) The cart shall navigate routes of reasonable complexity without requiring human
intervention.

Once enough points are fleshed out, similar requirements can be grouped and separate systems
become more recognizable. Hence, top-level system designations can be generated by thinking
about what operations are required, not what structures must be in place to accomplish them.
More concisely, this entails creating an architecture first answering what the system does, and
only then considering how this is realized.

Beyond identifying objectives, product requirements also ensure that no portions of the system
are incompatible with each other. While determining software goals, we realized that two system
components performed mutually exclusive functionality. This was indicative of a poor design,
which we were able to rectify before incurring significant time losses.

In our senior design course, we were also required to read and discuss the book The Mythical
Man Month [7], a collection of Fred Brooks’ classic essays on software engineering. This book
offers insightful comments on the history of large software design. Since we were creating our
autonomous vehicle’s navigational framework from scratch, it was helpful to keep these ideas in

mind as we proceeded with our design. In particular, Brooks’ essays provided stories contrasting
newer, experimental solutions to mature alternatives — the same situation we were in during one
stage of software development.

After splitting software functionality into several separate modules, we needed to create a
framework in which these pieces could share information with each other. This is a problem
encountered in a multitude of software projects, so multiple existing libraries provided various
solutions. Using Brooks’ insight, we opted for a solution leveraging the appropriate balance
between stability and performance. This lead us to select a JSON serialization library from an
established company, indicating it would receive sustained development. Moreover, this library
was created from scratch in 2011 to provide a lightweight, fast alternative to standard JSON
encoding modules.

The Mythical Man Month also discusses the pros and cons of efficient task reporting. Referring to
some of the author’s stories, we attempted to find the right balance between easy reporting and
avoiding unnecessary administrative overhead. Our team found that Trello fit nicely between
these two bounds. Since each task was manually created and assigned a due date, everyone was
aware of each current objective. However, the automated notification systems and time tracking
capabilities kept all of us up-to-date without a large amount of back-and-forth

communication.

4 Student Response to Fall Course Content: Course Evaluations

While the previous section represented the experience of one senior design team, in this section
we will take a look at a broader sampling of student opinions on the basic software engineering
content from representative course evaluation comments. These comments came at the end of the
fall semester of 2019.

Most negative comments reflect the students’ desire to spend less time in lecture in general and
more time on their projects, as exemplified by the following two comments copied from the
course evaluation.

I extremely disliked the lectures and the other assignments and readings for this
class. They were pointless and a waste of my time. I just wanted to work on my senior
design project and the other assignments and readings for this course took up time I
could have spent on my project.

I thought the first portion of book club was helpful, but the latter seemed a little
unnecessary. Rather than having a bunch of presentations, I think it may have been
more beneficial to have each person write up a < 1 page summary/report on various
sections of the books, and submit that. The time spent in class for the presentations
would then be able to be spent on our actual senior design project.

Other students, however, enjoyed reading and discussing the books together as a class and had at
least a subset of the books that they found to be useful:

I really appreciated taking the time to go through the books, particularly the
leadership one!

I’m very grateful that the faculty dropped the tests in favor of the mini projects. It
allowed us to focus more o the practical side of the project. Additionally, I really
enjoyed the book club. I wasn’t a huge fan of the first book we went through in the
course, but I really enjoyed going through the agile book, leadership book, and
mythical man month.

The Agile book [8] was and continues to be immensely popular with the CpE students. Many are
quick to pick up its recommendations with respect to how they run their project teams. Agile is,
as is known, a prominent tool for software engineers in both industry and academia, and many
colleges, ours included, have incorporated it into their CS and CpE curricula for years [18]-[21].
2019, however, was the first year at our school that it was taught to EE students as well, in hopes
that project teams will be more unified in their knowledge and therefore more likely to try the
structures and ideas out for themselves.

While our EE students are increasingly finding it necessary to engage in at least some level of
programming in their projects and internships, some of them are less interested in software than
others. Hardware people tended to appreciate the Ford and Coulston book more, while
programmers enjoyed the book on Agile. Some EE students thought the software engineering
content specifically to be irrelevant to them and their projects, as exemplified by the following
couse evaluation comment.

The course assigned multiple books to read for class. Two of the books seemed to be
more applicable to Computer Engineers and not Electrical Engineers. This was fine,
from an EE perspective, but I did feel like many lectures did not apply to me.

In the discussion section, we will further address concerns brought up in the student
evaluations.

5 Discussion

5.1 Future Course Improvements for Senior Capstone

Regarding student conerns, I (D. Fredette) first noted that the students appreciated the
streamlining of the course that happened for the 2019 year and the consistency between the two
majors. This was not represented in the course evaluation comments from 2019 because not all
students knew about the way the course had been run in the past. However, conversations with
students from both classes (2019 and 2020) suggest that keeping the expectations the same for
both EE’s and CpE’s is an improvement since EE’s and CpE’s are put on teams together.

The main student complaint is that they would prefer there to be no or a significantly reduced
lecture component to the fall course (there already is no lecture component to the spring course).
This concern had already been addressed significantly between the 2018 and 2019 years by
reducing the lectures from three times to twice weekly, freeing up an hour for a weekly team
meeting, and ending them by Thanksgiving break. The 2019 class also was allowed to choose
their own subset of previously offered technical content from a bank of assignments and special
seminars, freeing up more time while still providing instruction for those who need it on topics
students deem relevant to their interests. The faculty agree that some lecture/technical content is

helpful, but I believe that more careful curating is called for. For example, I would like to reduce
the number of chapters covered from the Ford and Coulston book, focusing more on the
requirements specification and cutting the less relevant/engaging material.

One important student concern comes from the EE students who do not believe software
engineering basics to be applicable to them. It is true that each year we will have one or two
projects that are almost entirely hardware oriented. For these students, and because all of them
need to be prepared to work on projects that will be a mixture of hardware and software, I plan to
add a lecture/discussion on how the Agile methodology can and has been adapted for hardware
projects [22], [23], perhaps assigning some additional reading on the topic. We can spend some
time discussing the differences and similarities between hardware and software projects and how
a hardware subteam can best interface with a software subteam while working under an
Agile-type planning structure.

Although not all students immediately see the value in official class discussions on software
engineering, those who have experience or get experience by trying out the ideas have found
software engineering instruction to be an important part of the course. A greater awareness of
software engineering principles among the faculty advisors (most are from an EE background)
would be of help in encouraging students to give the practices they learn about in class a try in
their own team settings, allowing deeper, experiential learning to take place such as what N.
Jessurun described in section 3.2.

5.2 Possible Future Work

In this paper, we have been able to look at a limited set of students and their reactions to exposure
to software engineering content in the electrical/computer engineering senior desing capstone.
While some relevant comments from course evaluations and a firsthand account were available as
evidence, much of the idea of students’ valuations of the course content come from unofficial
feedback or instructor experience. It may be of interest to conduct more targeted surveys of
specifically electrical engineering students to understand their impression of the material and
ideas about its usefulness to them, perhaps both before and after the course. An orderly evaluation
of this sort is left as future work.

6 Conclusion

Senior design has been an important part of the engineering program at Cedarville University
since the program’s founding 30 years ago. This paper outlined the evolution of the senior design
curriculum for electrical and computer engineering students over that time. Classroom
discussions on software engineering topics have been an important part of the computer
engineering curriculum, but only recently have been included for electrical engineering students
as well. The current senior design model is fully interdisciplinary including electrical and
computer engineering students doing the same coursework and populating project teams together.
The students and faculty enjoy the consistency and, as the lines between the expectations on
electrical and computer engineers continue to blur, we believe that everyone benefits from
learning some basic software engineering ideas.

In this paper we also described how one senior design team was able to test out some of the
software engineering and design principles learned in class, leading to greater project success and
satisfaction than would likely have been possible otherwise. While student evaluation responses
on the course were mixed, they point to several specific measures that can be enacted to improve
the course next year. Specifically, improvements include further curating and prioritization of
existing content so that students feel that their time is well spent, and a pointed discussion on how
a version of the Agile methodologies can and have been used for hardware development as well as
software. When students are equipped to put what they learn into practice with hands-on projects,
they are able to experience and remember the content in a way that they can carry with them into
their careers. We hope to encourage more of this in the future for all of our students.

References

[1] J.R. Goldberg, “Preparing students for capstone design [senior design]”, I[EEE
Engineering in Medicine and Biology Magazine, vol. 28, no. 6, pp. 98—100, 2009.

[2] A.J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A review of literature on
teaching engineering design through project-oriented capstone courses”, Journal of
Engineering Education, vol. 86, no. 1, pp. 17-28, 1997.

[3] R.S.Pressman, Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005.

[4] D. Gustafson, Schaum’s Outline of Software Engineering. McGraw-Hill, Inc., 2002.

[5] R. Ford and C. Coulston, Design for Electrical and Computer Engineers. McGraw-Hill,
Inc., 2007.

[6] L.M. Reno, 10 Leadership Maneuvers: A General’s Guide to Serving and Leading. Deep
River Books, 2015.

[71 FE. P. Brooks Jr, The mythical man-month (anniversary ed.) Addison-Wesley Longman
Publishing Co., Inc., 1995.

[8] V. Subramaniam and A. Hunt, Practices of an agile developer: Working in the real world.
Pragmatic Bookshelf, 2006.

[9] DriveOhio, New self-driving shuttle rolls around scioto mile in columbus,
http://drive.ohio.gov/news/New-Self-Driving-Shuttle-Rolls-Around-
Scioto-Mile-in-Columbus/index.html, cited September 2019.

[10] “Taxonomy and definitions for terms related to driving automation systems for on-road
motor vehicles”, SAE International, Standard, Jun. 2018.

[11] A. Canedo-Rodriguez, V. Alvarez-Santos, C. V. Regueiro, R. Iglesias, S. Barro, and
J. Presedo, “Particle filter robot localisation through robust fusion of laser, wifi, compass,
and a network of external cameras”, Information Fusion, vol. 27, pp. 170-188, 2016, ISSN:
1566-2535. DO1: 10.1016/j.inffus.2015.03.006.

[12] A. Finzi, F. Ingrand, and A. Orlandini, “Planning and robotics (planrob-15)”, p. 148,

[13] S. Hernandez and F. Herrero, Autonomous navigation framework for a car-like robot. 2015.

http://drive.ohio.gov/news/New-Self-Driving-Shuttle-Rolls-Around-Scioto-Mile-in-Columbus/index.html
http://drive.ohio.gov/news/New-Self-Driving-Shuttle-Rolls-Around-Scioto-Mile-in-Columbus/index.html
https://doi.org/10.1016/j.inffus.2015.03.006

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

S.-H. Joo, S. Manzoor, Y. G. Rocha, H.-U. Lee, and T.-Y. Kuc, “A realtime autonomous
robot navigation framework for human like high-level interaction and task planning in
global dynamic environment”, p. 4,

L.-S. Kweon, Y. Goto, K. Matsuzaki, and T. Obatake, “CMU sidewalk navigation system: A
blackboard-based outdoor navigation system using sensor fusion with colored-range
images”, in Fall Joint Computer Conference, IEEE, 1986.

M. Munoz-Baiion, I. del Pino, F. A. Candelas, and F. Torres, “Framework for fast
experimental testing of autonomous navigation algorithms”, Applied Sciences, vol. 9,
no. 10, p. 1997, Jan. 2019. DOI: 10.3390/app9101997.

J. L. Sanchez-Lopez, J. Pestana, P. de 1a Puente, and P. Campoy, “A reliable open-source
system architecture for the fast designing and prototyping of autonomous multi-uav
systems: Simulation and experimentation”, Journal of Intelligent and Robotic Systems,
vol. 84, no. 1, pp. 779-797, Dec. 2016, 1SSN: 1573-0409. DOT:
10.1007/s10846-015-0288-x.

B. Lu and T. DeClue, “Teaching agile methodology in a software engineering capstone
course”, Journal of Computing Sciences in Colleges, vol. 26, no. 5, pp. 293-299, 2011.
T. Reichlmayr, “The agile approach in an undergraduate software engineering course
project”, in 33rd Annual Frontiers in Education, 2003. FIE 2003., IEEE, vol. 3, 2003,
S2C-13.

S. Cleland and S. Mann, “Agility in the classroom: Using agile development methods to
foster team work and adaptability amongst undergraduate programmers”, 16th Annual
NACCQ, 2003.

D. F. Rico and H. H. Sayani, “Use of agile methods in software engineering education”, in
2009 Agile Conference, IEEE, 2009, pp. 174-179.

K. Thompson, “Eleven lessons learned about agile hardware development”, [Online].
Available: https://www.agileforhardware.com/whitepapers.

——, “Agile processes for hardware development”, 2015. [Online]. Available:
https://www.agileforhardware.com/whitepapers.

https://doi.org/10.3390/app9101997
https://doi.org/10.1007/s10846-015-0288-x
https://www.agileforhardware.com/whitepapers
https://www.agileforhardware.com/whitepapers

	Introduction
	Capstone Course Development
	Senior Design Course Overview
	Improvements Through the Years and Software Engineering Content

	Case Study: Autonomous Shuttle Project
	Autonomous Shuttle Project Overview
	Student Perspective: Lessons Learned from Applying Software Engineering Basic Principles to the Senior Design Project

	Student Response to Fall Course Content: Course Evaluations
	Discussion
	Future Course Improvements for Senior Capstone
	Possible Future Work

	Conclusion

