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Introduction 

The Electrical (EE) and Computer (CpE) Engineering program, at Missouri University of 

Science and Technology (Missouri S&T), provides several opportunities to learn microprocessor 

know-how and design, covering different microprocessor families, via multiple elective, and 

graduate level, sequential courses. Two foundational courses serve as pre-requisites that set the 

stage for students to learn deep and advanced microprocessor design. The basic Introduction to 

Digital Logic is required for all EE and CpE majors and serves as the foundation for advanced 

courses that focus on computer architecture, operation, and design. However, the Digital Logic 

course does not delve into a typical microprocessor type Register Transfer Logic (RTL) design, 

and only serves to teach basic computer engineering concepts up to datapath components and 

simple finite state machines. The subsequent CpE course, Introduction to Microcontrollers and 

Embedded Systems, concentrates on three aspects of embedded system design: A brief 

introduction to a typical microprocessor working, ASM programming of a typical 

microcontroller, and typical embedded application development using C programming. It is in 

this course, students are first exposed to a typical RTL design. This embedded system course is 

required for CpE majors, but an elective for EE majors.  

In the past, the first embedded system course concentrated on the 8051 family of 

microcontrollers [1]. Students were exposed to a typical microcontroller core working via a 

simple 8051 core called the WIMP51 [1, 2]. Students implemented a project in which they add a 

few instructions, in the 8051 microcontroller family, to the current WIMP51 instruction set and 

create a fully functional WIMP51 variation [1]. This exercise provides them a deeper 

understanding of how a microprocessor instruction set is related to its functioning.  

The 8051 microcontroller family is an outdated technology. New and faster 

microprocessor technologies have been developed including AVR, PIC and ARM 

microcontrollers. Universities have shifted toward teaching these faster microcontrollers. The 

University of Texas A&M has updated its curriculum to study ARM-based microcontrollers [3]. 

Savannah State University has transitioned to use advanced PIC controllers in its microcontroller 

curriculum [4]. To reflect the progressive industry trend, Missouri S&T has also updated its 

microcontroller curriculum to focus on teaching the AVR family of microcontrollers for its 

undergraduate introductory microcontrollers course. The Weekend Instructional Microprocessor 

AVR (WIMPAVR) was designed as a tool to teach modern microprocessor designs. The 

WIMPAVR is a custom-designed microprocessor based on the AVR microprocessor core [5]. It 

is a softcore microprocessor that can be emulated on an FPGA board and has a reduced 

instruction set. The use of custom FPGA softcore processors has proven to be a powerful and 

flexible tool in teaching microprocessors. The University of Hartford used a custom 

microprocessor on an FPGA board to teach Von Neuman architecture systems [6]. Boise State 

University has altered its microcontroller curriculum to instruct only through softcore processors 

on FPGA [7]. As the curriculum for microcontrollers continues to evolve, it shifted from 

physical processor integrated circuits to softcore processors on FPGAs. Softcore processors are 

more flexible than traditional processor integrated circuits because the entire structure of the 

processor can be customized to suit the needs of the course. The flexibility of the softcore 

processor allows for additional peripherals to be developed much easier than integrating 

peripherals to a fixed hardcore processor. The flexibility of the softcore processor also allows it 



to be compatible with hardware peripherals. The University of Akron has developed a 

curriculum where softcore processors are integrated with hardware peripherals [8]. The 

combination of softcore processors and hardware peripherals removes the constraints of 

integrating a hardcore processor and hardware peripherals. 

The flexibility of the WIMPAVR processor allows it to be compatible with any 

peripheral mounted to the FPGA board. The initial project was to design the custom WIMPAVR 

processor without peripherals; however, future work can be done to create a system of 

microcontrollers with different peripherals that all use the WIMPAVR processor. A system of 

WIMPAVR microcontrollers can extend the teaching platform to a variety of applications. 

Oregon State University has already developed a custom system of discrete custom AVR 

microcontrollers that are used in multiple different courses [10]. 

The WIMPAVR was designed to be used in the microcontroller curriculum as a project 

learning environment to allow students to understand the operation of the Atmel AVR processor 

and design additional features to the WIMPAVR using schematic capture files. The project-

based learning approach provides more practical experience and application of microcontrollers 

to students. Purdue University has made a shift toward a project and lab-based approach to 

microcontrollers to engage students with the curriculum [9]. 

Microprocessors are typically designed using hardware descriptive languages such as 

VHDL and Verilog. Students in an introductory microcontrollers class do not have experience 

with these hardware descriptive languages since it is not covered in the pre-requisite sophomore-

level introductory digital logic course at Missouri S&T. Though, some students may learn HDL 

basics on their own. The WIMPAVR was designed using primitive digital logic circuits through 

schematic capture so that students who have only taken the basic required digital logic course 

will be able to understand the inner workings of the AVR processor core. The design process is 

the same as used for WIMP51 [1, 2]. The digital logic circuits were created using schematic 

capture files with Altera’s Quartus II design software. The digital logic circuits of the created 

WIMPAVR processor can be downloaded and tested on Intel’s DE II FPGA board. Students can 

observe the operation of the processor on the FPGA board by observing the values stored in the 

processor’s internal registers as it cycles through a user-entered machine code program at a 

slower rate.  Other universities have developed projects using softcore processors such as the 

University of Texas [11]. These softcore projects use pre-designed softcore microprocessors such 

as the MicroBlaze architecture and download the softcore to an FPGA board. The goal of 

projects centered around these pre-designed softcore processors was to integrate hardware 

peripherals to the softcore processors using a provided compiler and online resources [11]. These 

projects fail to address how the microcontroller fundamentally operates and was designed on a 

primary level. 

A group of undergraduate EE students created the WIMPAVR processor, using digital 

logic circuits, and Intel’s Quartus II software. The students had varying levels of microprocessor 

experience ranging from basic digital logic to an understanding of simple microprocessor 

operation. The students had not taken any classes on microprocessor design other than the 

introductory microcontroller class offered at Missouri S&T [1].  

 

 

 

 

  



Design Methodology 

The WIMPAVR processor instruction set, as shown in Figure 1, is a subset of the overall 

AVR instruction set [12]. The choice of instructions was kept similar to the WIMP51 instruction 

set [1] and has a complement of data transfer, logical, arithmetic and branch instructions 

sufficient for a mini-processor operation. The architecture of the microprocessor was designed 

based on the block diagram in Figure 2. 

 
Figure 1: WIMPAVR instruction set. The instruction set is similar to the WIMP51 instruction set. But, 

each instruction is a 16-bit instruction. The machine codes are from the actual AVR microprocessor 

instruction set.    

 
Figure 2: WIMPAVR block diagram. Note, the enable signals are grouped as control signals.  



The Program Memory (PM), as seen in Figure 2, is technically not part of the processor 

and represents the code memory, which is implemented using the available FPGA onboard 

SRAM chip. Different data paths, as seen in Figure 2, are color-coded to ease understanding of 

data flow. The processor contains two ALUs, one to manipulate data and another to control the 

Program Counter (PC). The Data Router (DR) allows the routing of 8-bit data from the source to 

the destination depending on the executed instruction. The State Machine (SM) and the Control 

Unit (CU) work together to generate the different enable signals required to control the 

processor’s operation.  

Each unit in the block diagram is composed of subsystems of digital logic circuits that 

process inputs depending on the executed instruction. The layout of the top-level components 

was kept close to the layout seen in the block diagram, Figure 2, which would in-turn ease 

system visualization. Since schematic capture uses Block Diagram Files (BDF), students can 

easily access the next lower-level logic for each block by double-clicking top-level entity blocks. 

This feature allows them to easily understand how each complex, top-level entity block is made 

up of sub-blocks down to gate-level logic. An example of the multi-layered system block can be 

seen in Figure 3 for the DR block.  

 
Figure 3. Multi-layered DR block 



The top-level DR block is composed of 8 4:1 multiplexers to multiplex four different 8-

bit values. Each of these 4:1 multiplexers is a subsystem that can be opened to observe the digital 

logic circuit used to create the 4:1 multiplexer.  

This facility also allows students to visualize that a simple block can be used in multiple 

locations on a higher level. For example, one key sub-system in the design of the WIMPAVR is 

the self-loop block. The self-loop block allows a 1-bit memory element to either hold the current 

memory content or allow new information to enter the memory element, and is based on a 2:1 

multiplexer. This 1-bit memory element is used to implement multiple components such as 8-bit 

internal data registers, 16-bit Instruction Register (IR) and Program Counter (PC) and the 

different flags seen in Figure 2.   

 

Processor Design 

The AVR processor is a two-stage pipeline [5], which means that the processor has two 

basic states: build and fetch/execute. When the processor is turned on, it is in the build state, 

which allows for the pipeline to be created. As long as the IR does not contain a branch 

instruction, the processor stays in the fetch/execute state. The execution of each instruction takes 

exactly one clock cycle. During the fetch/execute state, the processor must make a decision 

whether to stay in the fetch/execute state or rebuild the pipeline. If the IR contains a branch 

instruction and if the branch condition, if any, is not satisfied, the processor stays in the 

fetch/execute state. If the branch condition is satisfied, the processor moves back to the build 

state to rebuild the pipeline, in which it fetches an instruction from the branch location and incurs 

a branch penalty, which in turn is for one clock cycle. 

   

State Machine 
 The AVR processor has two basic states. Therefore, only one state bit is needed for the 

state machine. To facilitate the processor creation and simplify its understanding, two additional 

states were incorporated. Of these four states, shown below, only three states are part of the 

process operation. 

000 − Idle 

001 − Build from Power on  

011 − Fetch/Execute 

101 − Build from Branch 

 Three state bits, to represent 4 states, were chosen to ease the design of control signals.    

• Idle State (000): When the processor is first turned on, the state machine will start in the 

idle state. In this state, the processor is off and will not read or operate any instructions. 

The state machine will continue to be in the idle state until the processor is turned on. The 

processor is turned on by turning on the master switch located on the FPGA board. When 

the master switch is turned on, the state machine will remain in the idle state and only 

move to the build state at the next clock edge. The master switch allows the user to reset 

the processor and return to the idle state at any point in its operation.  

• Build State (001): The state machine can only transition to the build state after the master 

switch SW17 has been turned on in the idle state for one clock cycle. In the build state, 

the AVR processor fetches the instruction, from the program memory, at the PC address, 

into the IR. Initially (transition from the idle state), the PC will be at zero. No instructions 

are executed during this step. The PC increments by one at the end of the build state. 

After this step, the state machine will move to the fetch/execute state, unless the master 



switch is turned off, then the state machine will return to the idle state. The state machine 

will never be in the build state for consecutive clock cycles.  

• Fetch/Execute (011): The state machine will transition to the Fetch/Execute state after 

the Build state as long as the master switch remains on. In the Fetch/Execute state, the 

instruction, loaded in the IR, is executed. The CU generates the necessary control signals 

to allow the data path components to execute the current instruction.  In addition, the 

processor will fetch the next instruction at the updated PC address from the previous 

state. Depending on the type of instruction, the next state of the processor will change. 

Consider the timing diagram shown in Figure 4, which shows the operation as long as the 

branch instructions, as seen in Figure 1, do not show up.  

 
 

Figure 4: Timing diagram for a subprogram, which does not include branch instruction 

 

As seen in Figure 4, at the end of the third clock cycle, instruction 0 has been executed 

(all necessary registers are updated), and the instruction 1 has shown up in IR. The 

processor stays in the Fetch/Execute state as long as the current and subsequent 

instructions are not branch instructions. Now consider a typical timing diagram shown in 

Figure 5. 

 
Figure 5: Timing diagram for a subprogram, which includes a branch instruction. But the branch 

condition, if any, is unsatisfied.  



At the end of the third clock cycle, as before, instruction 0 has been executed and 

instruction 1, which is now a conditional branch instruction, has entered the IR. The 

processor stays in the Fetch/Execute state in the fourth clock cycle. Since the condition is 

not satisfied, which is the case here, at the end of the fourth clock cycle, appropriate 

updates are made and instruction 2 has entered IR. If the master switch is off and a reset 

button, on the FPGA board, is pressed, the processor will return to the idle state. In 

general, the processor will return to Fetch/Execute, if it not already in this state, and will 

stay in the Fetch/Execute state for consecutive clock cycles as long as no branch 

instructions are successfully executed and the master switch is on. This facility allows the 

processor to achieve maximum throughput by executing 1 instruction per clock cycle. 

• Branch State (101): Consider the timing diagram shown in Figure 6.  

 
Figure 6: Timing diagram for a subprogram, which includes a branch instruction. But the branch 

condition, if any, is satisfied. 

 

As before, at the end of the third clock cycle, instruction 0 has been executed and 

instruction 1, which is a branch instruction, has entered IR. The processor stays in the 

Fetch/Execute during the fourth clock cycle, during which the processor detects that the 

branch instruction condition is satisfied. The PC during this clock cycle is now pointing 

at instruction 2, which is the incorrect instruction. The conditional branch instruction 

points to instruction 3 as the next instruction. The processor will now enter the Branch 

state (101, also called Rebuild state as seen in Figure 6) during the fifth clock cycle. PC is 

updated to point to instruction 3, which enters the IR at the end of the fifth clock cycle. 

The Branch State operates the same as the Build state. The processor will always return 

to the Fetch/Execute state after the Rebuild state as it is impossible to remain in the 

branch state for consecutive clock cycles. Figure 6 also demonstrates the concept of 

branch penalty encountered in pipelined systems, and for the WIMPAVR processor’s 2 

stage pipeline the branch penalty is one clock cycle.  

 

  



Control Unit 
The CU looks at the instructions in the IR and decides what type of instruction is being 

executed. There are five main types of instructions based on how the register file responds to the 

instruction: ALU, Move, Load, Branch, and Status instructions. 

Reset 
An external push-button reset switch is included on the AVR processor. The reset is an 

active low input and can only be activated if the master switch is off. The reset causes all 

registers to reset to 0 the state machine to return to the idle state. 

Program Counter and Instruction Register 
The PC is a 16-bit register that stores the address of the next instruction to be executed. 

The IR is a 16-bit register that stores the current instruction to be executed during Fetch/Execute. 

The update of the PC and IR was discussed above in the timing diagrams shown in Figures 4-6.  

PC ALU and the branch instructions 
The value of the next PC address is controlled by the PC ALU. The PC ALU is enabled 

only when the AVR processor is not in the idle state. Figure 7 shows the block diagram for the 

PC ALU. 

 
Figure 7: PC ALU block diagram. 

 

The PC ALU is used to manipulate the PC, which require the PC to be incremented each 

clock cycle and for two unique branch instructions: RJMP, which allows for a 12-bit relative and 

unconditional jump, and BRBS(Z), which allows for a 7-bit relative and conditional (if the Z flag 

is set) jump. The PC ALU is composed of a 16-bit ripple adder and a Jump Selection Block 

(JSB) as seen in Figure 7. The 16-bit ripple adder is used to add the current PC address with the 

data from the JSB to calculate the next PC address. The JSB is a 12-bit 2:1 multiplexer with an 

enable to route the necessary jump data. The Enable (EN) of the JSB is controlled by the branch 

signal, which is generated by the CU, to determine if a branch instruction is decoded. If a branch 



instruction is not decoded, the output of the JSB is zeros. The 16-bit adder increments the PC, 

using carry in (C_IN) if the branch instruction is not decoded.  

Data Router (DR) Multiplexer 
Figure 8 shows the DR block diagram. The microprocessor accesses and moves data from 

three different locations: the ALU, immediate data from an instruction, and data in the registers. 

 
Figure 8: The DR block, which is an 8-bit 4:1 MUX 

 

The destination is always one of the “ddddd” registers defined in the opcode mentioned 

in Figure 1. One notable difference, as seen in the opcodes mentioned in Figure 1, is that LDI 

allows data to be only written into 16 registers, whereas other instructions can write data into 32 

registers. The self-loop path, seen in Figure 8, is the default path used when the current 

instruction is neither LDI, MOV nor an ALU instruction.  

ALU Instructions 
Figure 9 shows the implemented ALU top-level block diagram. The ALU operates on 

two operands: rrrrr and ddddd, which are 32 8-bit registers, and forms the internal RAM. After 

an ALU instruction, the destination register defined by the five-bit sequence ddddd is updated 

with the output of the ALU. ALU instructions can be further divided into logic & swap 

instructions, and arithmetic instructions. An 8-bit 2:1 MUX, as seen in Figure 9, routes the ALU 

result to the DR block depending on an ALU instruction, as seen in Figure 2. An internal MUX, 

in the logic block, routes the correct logical instruction result to the main 2:1 ALU MUX as seen 

in Figure 9. The Zero (Z) flag status bit is required for the correct operation of the BRBS(Z) 

branch instruction. Figure 10 shows the block diagram of the Z flag update sub-system. The Z 

flag is updated only after an add (ADC) instruction is executed and can work with any of 32 

registers involved in the add instruction.  

Status instructions 
The Carry (C) flag, which is the other status bit can be updated using the set and clear 

carry flag instructions, as seen in Figure 1, or after the add instruction. Figure 11 shows the carry 

flag update sub-system block diagram.  

Move and Load Instructions 
Move instructions do not use the ALU and move data from a source register defined by 

“rrrrr” to a destination register “ddddd”. The WIMPAVR has only one type of MOV instruction 

as seen in Figure 1. Load instructions store immediate data, located in the instruction itself, into a 

destination register “ddddd” without using the ALU or a source register. The WIMP AVR has 

only one type of load instruction that can only load data to registers 16-31.   



 
Figure 9: ALU block diagram.  

 
Figure 10: The Z Flag sub-system.  

 

 
Figure 11: The C flag update sub-system.  



These instructions operate on a designed 32×8 register file. All data is stored in the 

register file, and ALU operations can only be performed on data stored in this register file. 

Figure 12 shows the block diagram of the created register file.  

 

 
Figure 12: The 32×8 register file block diagram. 

 

 The destination address “ddddd” allows the program to write to one of the 32 registers. 

The two 8-bit 32:1 MUX, shown in Figure 12, allows the processor to access data from two 

registers at a time, using two 5-bit codes: one to identify the source register rrrrr and another to 

identify the destination register ddddd. A designer can modify the block by adding more MUX 

blocks to access multiple registers as required. This facility allows a designer to modify the 

processor relatively easily.  Non-ALU and data transfer instructions cause the registers to stay in 

a hold state by using the self-loop feature incorporated for all registers.  

 

Additional Design Features  

Processor Operation Features 
To make WIMPAVR an effective teaching tool, additional design components, not 

shown in Figure 2, were created that provides the user access to the internal signals of the 

processor. Figure 13 shows the register access and the display features created for WIMPAVR. 



 
Figure 13: Display features available during WIMPAVR operation 

 

• Seven-Segment Display (SSD) controls: The Altera (now Intel) FPGA board is limited to 

8 SSDs as seen in Figure 13. An SSD can display one hexadecimal number which 

represents four binary bits. The SSDs are used to display key register values within the 

WIMPAVR which include the PC, IR, Next Instruction, Registered Data, and Output 

Result. Since there are a limited number of SSDs available on the FPGA board and the 

user needs access to multiple registers with varied sizes (8 and 16 bits), switches on the 

FPGA board were used to multiplex register values displayed on the SSDs. Following is 

a list of multiplexed displays: 

o Switch (SW) 14 down (off): SSDs 3-0 displays the current 16-bit instruction in 

the IR 

o SW14 up (on): SSDs 3-0 displays the next 16-bit instruction in the program 

memory accessed using the PC. This feature allows the user to observe pipelined 

instructions, which is an important AVR microprocessor core facility.  

o SW13 down: SSDs 7-4 displays the 16-bit PC 

o SW13 up: SSDs 5-4 displays the DR block output 

o SW13 up: SSDs 7-6 displays the values of one of the 32 8-bit registers, which are 

multiplexed using switches SW4-SW0  

• Clock control system. This system is used to control the clock speed of the 

microprocessor. One of the FPGA board’s in-built clock sources, 50 MHz clock speed, 

can be slowed down significantly to allow humans to observe the operation of the 

microprocessor. Figure 14 shows the block diagram of the clock control sub-system. 



 
Figure 14: Clock control sub-system. Note the user is allowed to manually control the processor operation 

using a push-button switch.  

 

The speed of the processor can be slowed to 0.2 Hz so that users can observe the 

operation of the microprocessor with minimal human intervention. An option to run the 

processor at 1.6 MHz is also provided to show that the processor can work at higher 

clock speeds. The microprocessor can also be set to manual mode, using push-button 

KEY0 on the FPGA board to act as a clock edge. This facility allows the user to take as 

much time as necessary to observe the processor signals for each state. The clock of the 

WIMPAVR can be controlled using the clock control switch SW16 and SW15 as seen in 

Figure 13. 

• Master switch and Reset: SW17 is used to either run the processor (on position) or pause 

the processor (off position). In the pause condition, the processor can be reset by using 

push-button KEY1 as seen in Figure 13. Note: the reset does not erase the program 

memory.  

• LED data: LEDs, as seen in Figure 13, are used to display the Z and C flags, the 

processor state and master switch enable indicator.  

Processor Programming Features:  

The WIMPAVR processor executes a user-entered program stored in the program 

memory, which is implemented on the FPGA on-board SRAM chip as shown in Figure 15. The 

user is required to write the machine coded program directly into the program memory manually. 

Even though this process is cumbersome and time-consuming, the experience can be invaluable. 

A separate system was created to allow users to write machine coded instructions into the 

SRAM. To assist users and minimize errors in entering the machine code, unique display 

features, as seen in Figure 15, were incorporated. 
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50 MHz Clock
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Clock Out

4:1 

MUX

00

01

10

11

CLOCK SLOWER 0.2 Hz
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S1 S0

1 Bit

2 Bits

External Clock



 
Figure 15: Display features available during the machine code programming of the onboard SRAM chip 

 

Since each WIMPAVR instruction, and the PC, is 16 bits, and there are a limited number 

of switches available on the FPGA board, following is the process to enter the machine code at a 

particular program memory location: 

1. Setup the program memory address using the switches SW15 – SW0.  

2. Press the pushbutton KEY0 to register the memory address. This registered address is 

connected to the address bus of the onboard SRAM chip. The registered address is 

displayed on SSDs 3-0. This visual display helps minimize errors. 

3. Setup the machine code, as seen in Figure 1, of the instruction, using switches SW15 – 

SW0, to be entered at the address set in steps 1 and 2.  

4. Press the pushbutton KEY1 to register the machine code. This registered machine code is 

connected to the data bus of the onboard SRAM chip. The status of the switches is 

displayed on SSDs 7-4. This visual display helps minimize errors. 

5. Press the pushbutton KEY3 to write the machine code into the onboard SRAM chip.  

6. Repeat steps 1 through 5 till all the machine codes have been entered.  

 

A Platform for Class Project Implementation 

The WIMPAVR was primarily designed to be a teaching tool and project platform for 

students to understand the working of an AVR microprocessor core in the introductory 

microcontrollers course. The planned WIMPAVR instruction and project curriculum is similar to 

the one implemented for the WIMP51 [1] and forms phase 1 of the microcontrollers course. 

Students are taught the WIMPAVR and its internal design. Students practice writing and 

executing simple ASM programs machine coded as discussed. Students then implement a project 

in which they modify the current WIMP AVR architecture to add instructions, to the current 



instruction set similar to a project implemented for WIMP51 [1]. Students create the necessary 

digital circuits, subsystems, and blocks necessary for the processor to execute the assigned 

additional instructions. Students must demonstrate their modified WIMPAVR via hardware 

demonstration of test programs. The project provides students the experience in basic 

microprocessor design and testing.  

 

YouTube Videos 

 Videos demonstrating the workings of the processor were created to aid in the 

dissemination and understanding of the processor working and FPGA board features. YouTube 

videos can be found at: 

• WIMPAVR Introduction: https://www.youtube.com/watch?v=uDD9K1mkM-k 

• WIMPAVR Instruction Set Review: https://www.youtube.com/watch?v=iUUuAPZLTBo 

• WIMPAVR Program Memory Machine Code Upload Process: 

https://www.youtube.com/watch?v=eobcjZ4kyz0 

• WIMPAVR Code Execution Example 1: Simple Program: 

https://www.youtube.com/watch?v=Jd8KeFuT1hg 

• WIMPAVR Code Execution Example 2: Conditional Branching: 

https://www.youtube.com/watch?v=MFMkeym_ncU 

• WIMPAVR Code Execution Example 3: 5*3 Using Repetitive Adding: 

https://www.youtube.com/watch?v=FwDAmfwAy4w 

 

Conclusion and Future Work 

This paper presents the design of the simple WIMPAVR microprocessor, which was 

designed by undergraduate EE students to serve as an educational platform to teach introductory 

microprocessor design.  The schematic capture creation technique used to build the processor 

provides students, who do not possess HDL skills, a platform for learning basics of processor 

design. The AVR microprocessor core was chosen because Missouri S&T has transitioned to the 

AVR family of microcontrollers as part of the introductory microcontrollers course. The limited, 

but useful, instruction set provides students a basic understanding of how data transfer, 

arithmetic & logic, and branch instructions are implemented in a typical RTL design. The 

educational platform allows the user to create variations of the basic WIMPAVR by modifying 

the current design to accommodate additional instructions, thereby, increasing its versatility. 

Future work will focus on improving the efficiency and application of the WIMPAVR. 

The logic, for WIMPAVR, was tested to operate properly, but the design may not be optimal. 

The digital logic circuits of the WIMPAVR can be redesigned to be faster. The designed 

WIMPAVR acts as a microprocessor but can be expanded with peripherals to create a 

microcontroller. This project can be part of an advanced course or extra-curricular design 

projects. The WIMPAVR can also be recreated in hardware descriptive languages such as 

Verilog or VHDL to act as a tool to bridge the gap between schematic capture and hardware 

descriptive languages taught in upper-level graduate courses. The WIMPAVR student design 

team plans to create a second version of the WIMPAVR, which will incorporate a more true 

Harvard architecture as part of an experiential learning project. Future such projects will 

concentrate on the design of mini-processor belonging to other processor families.  
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