
Paper ID #28319

Microprocessor Design Learning

Mr. Dominic Zucchini, Missouri University of Science and Technology

Dominic Zucchini is senior in at the S&T Cooperative Engineering program in Springfield. He is studying
for his degree major in Electrical Engineering and minor in Computer Engineering. He has taken all
courses in computer engineering available in the cooperative program and is now exploring curriculum
outside of the classroom through research projects such as the WIMPAVR. His research interests include
embedded system programming and ASIC design.

Mr. Justin Chau, Missouri University of Science and Technology

Justin Chau is a senior in the Cooperative Electrical Engineering Program between Missouri State Univer-
sity and Missouri University of Science and Technology. Justin is interested in learning about computer
engineering, electronics, and signal processing and likes to work on projects in these areas outside of
class.

Mr. Matthew Neal Mutarelli,

Matthew Mutarelli, is a student in the Department of Electrical and Computer Engineering at the Missouri
University of Science and Technology and Missouri State University’s Cooperative Engineering Program.
His research interests include Integrated Systems , Digital Logic, and Control systems.

Dr. Rohit Dua, Missouri University of Science and Technology

ROHIT DUA, Ph.D is an Associate Teaching Professor in the Department of Electrical and Computer En-
gineering at the Missouri University of Science and Technology and Missouri State University’s Coopera-
tive Engineering Program. His research interests include engineering education. (http://web.mst.edu/˜rdua/)

c©American Society for Engineering Education, 2020

WIMPAVR: Schematic Capture Design and FPGA Emulation

Department of Electrical and Computer Engineering,

Missouri University of Science and Technology, Missouri, USA

Introduction

The Electrical (EE) and Computer (CpE) Engineering program, at Missouri University of

Science and Technology (Missouri S&T), provides several opportunities to learn microprocessor

know-how and design, covering different microprocessor families, via multiple elective, and

graduate level, sequential courses. Two foundational courses serve as pre-requisites that set the

stage for students to learn deep and advanced microprocessor design. The basic Introduction to

Digital Logic is required for all EE and CpE majors and serves as the foundation for advanced

courses that focus on computer architecture, operation, and design. However, the Digital Logic

course does not delve into a typical microprocessor type Register Transfer Logic (RTL) design,

and only serves to teach basic computer engineering concepts up to datapath components and

simple finite state machines. The subsequent CpE course, Introduction to Microcontrollers and

Embedded Systems, concentrates on three aspects of embedded system design: A brief

introduction to a typical microprocessor working, ASM programming of a typical

microcontroller, and typical embedded application development using C programming. It is in

this course, students are first exposed to a typical RTL design. This embedded system course is

required for CpE majors, but an elective for EE majors.

In the past, the first embedded system course concentrated on the 8051 family of

microcontrollers [1]. Students were exposed to a typical microcontroller core working via a

simple 8051 core called the WIMP51 [1, 2]. Students implemented a project in which they add a

few instructions, in the 8051 microcontroller family, to the current WIMP51 instruction set and

create a fully functional WIMP51 variation [1]. This exercise provides them a deeper

understanding of how a microprocessor instruction set is related to its functioning.

The 8051 microcontroller family is an outdated technology. New and faster

microprocessor technologies have been developed including AVR, PIC and ARM

microcontrollers. Universities have shifted toward teaching these faster microcontrollers. The

University of Texas A&M has updated its curriculum to study ARM-based microcontrollers [3].

Savannah State University has transitioned to use advanced PIC controllers in its microcontroller

curriculum [4]. To reflect the progressive industry trend, Missouri S&T has also updated its

microcontroller curriculum to focus on teaching the AVR family of microcontrollers for its

undergraduate introductory microcontrollers course. The Weekend Instructional Microprocessor

AVR (WIMPAVR) was designed as a tool to teach modern microprocessor designs. The

WIMPAVR is a custom-designed microprocessor based on the AVR microprocessor core [5]. It

is a softcore microprocessor that can be emulated on an FPGA board and has a reduced

instruction set. The use of custom FPGA softcore processors has proven to be a powerful and

flexible tool in teaching microprocessors. The University of Hartford used a custom

microprocessor on an FPGA board to teach Von Neuman architecture systems [6]. Boise State

University has altered its microcontroller curriculum to instruct only through softcore processors

on FPGA [7]. As the curriculum for microcontrollers continues to evolve, it shifted from

physical processor integrated circuits to softcore processors on FPGAs. Softcore processors are

more flexible than traditional processor integrated circuits because the entire structure of the

processor can be customized to suit the needs of the course. The flexibility of the softcore

processor allows for additional peripherals to be developed much easier than integrating

peripherals to a fixed hardcore processor. The flexibility of the softcore processor also allows it

to be compatible with hardware peripherals. The University of Akron has developed a

curriculum where softcore processors are integrated with hardware peripherals [8]. The

combination of softcore processors and hardware peripherals removes the constraints of

integrating a hardcore processor and hardware peripherals.

The flexibility of the WIMPAVR processor allows it to be compatible with any

peripheral mounted to the FPGA board. The initial project was to design the custom WIMPAVR

processor without peripherals; however, future work can be done to create a system of

microcontrollers with different peripherals that all use the WIMPAVR processor. A system of

WIMPAVR microcontrollers can extend the teaching platform to a variety of applications.

Oregon State University has already developed a custom system of discrete custom AVR

microcontrollers that are used in multiple different courses [10].

The WIMPAVR was designed to be used in the microcontroller curriculum as a project

learning environment to allow students to understand the operation of the Atmel AVR processor

and design additional features to the WIMPAVR using schematic capture files. The project-

based learning approach provides more practical experience and application of microcontrollers

to students. Purdue University has made a shift toward a project and lab-based approach to

microcontrollers to engage students with the curriculum [9].

Microprocessors are typically designed using hardware descriptive languages such as

VHDL and Verilog. Students in an introductory microcontrollers class do not have experience

with these hardware descriptive languages since it is not covered in the pre-requisite sophomore-

level introductory digital logic course at Missouri S&T. Though, some students may learn HDL

basics on their own. The WIMPAVR was designed using primitive digital logic circuits through

schematic capture so that students who have only taken the basic required digital logic course

will be able to understand the inner workings of the AVR processor core. The design process is

the same as used for WIMP51 [1, 2]. The digital logic circuits were created using schematic

capture files with Altera’s Quartus II design software. The digital logic circuits of the created

WIMPAVR processor can be downloaded and tested on Intel’s DE II FPGA board. Students can

observe the operation of the processor on the FPGA board by observing the values stored in the

processor’s internal registers as it cycles through a user-entered machine code program at a

slower rate. Other universities have developed projects using softcore processors such as the

University of Texas [11]. These softcore projects use pre-designed softcore microprocessors such

as the MicroBlaze architecture and download the softcore to an FPGA board. The goal of

projects centered around these pre-designed softcore processors was to integrate hardware

peripherals to the softcore processors using a provided compiler and online resources [11]. These

projects fail to address how the microcontroller fundamentally operates and was designed on a

primary level.

A group of undergraduate EE students created the WIMPAVR processor, using digital

logic circuits, and Intel’s Quartus II software. The students had varying levels of microprocessor

experience ranging from basic digital logic to an understanding of simple microprocessor

operation. The students had not taken any classes on microprocessor design other than the

introductory microcontroller class offered at Missouri S&T [1].

Design Methodology

The WIMPAVR processor instruction set, as shown in Figure 1, is a subset of the overall

AVR instruction set [12]. The choice of instructions was kept similar to the WIMP51 instruction

set [1] and has a complement of data transfer, logical, arithmetic and branch instructions

sufficient for a mini-processor operation. The architecture of the microprocessor was designed

based on the block diagram in Figure 2.

Figure 1: WIMPAVR instruction set. The instruction set is similar to the WIMP51 instruction set. But,

each instruction is a 16-bit instruction. The machine codes are from the actual AVR microprocessor

instruction set.

Figure 2: WIMPAVR block diagram. Note, the enable signals are grouped as control signals.

The Program Memory (PM), as seen in Figure 2, is technically not part of the processor

and represents the code memory, which is implemented using the available FPGA onboard

SRAM chip. Different data paths, as seen in Figure 2, are color-coded to ease understanding of

data flow. The processor contains two ALUs, one to manipulate data and another to control the

Program Counter (PC). The Data Router (DR) allows the routing of 8-bit data from the source to

the destination depending on the executed instruction. The State Machine (SM) and the Control

Unit (CU) work together to generate the different enable signals required to control the

processor’s operation.

Each unit in the block diagram is composed of subsystems of digital logic circuits that

process inputs depending on the executed instruction. The layout of the top-level components

was kept close to the layout seen in the block diagram, Figure 2, which would in-turn ease

system visualization. Since schematic capture uses Block Diagram Files (BDF), students can

easily access the next lower-level logic for each block by double-clicking top-level entity blocks.

This feature allows them to easily understand how each complex, top-level entity block is made

up of sub-blocks down to gate-level logic. An example of the multi-layered system block can be

seen in Figure 3 for the DR block.

Figure 3. Multi-layered DR block

The top-level DR block is composed of 8 4:1 multiplexers to multiplex four different 8-

bit values. Each of these 4:1 multiplexers is a subsystem that can be opened to observe the digital

logic circuit used to create the 4:1 multiplexer.

This facility also allows students to visualize that a simple block can be used in multiple

locations on a higher level. For example, one key sub-system in the design of the WIMPAVR is

the self-loop block. The self-loop block allows a 1-bit memory element to either hold the current

memory content or allow new information to enter the memory element, and is based on a 2:1

multiplexer. This 1-bit memory element is used to implement multiple components such as 8-bit

internal data registers, 16-bit Instruction Register (IR) and Program Counter (PC) and the

different flags seen in Figure 2.

Processor Design

The AVR processor is a two-stage pipeline [5], which means that the processor has two

basic states: build and fetch/execute. When the processor is turned on, it is in the build state,

which allows for the pipeline to be created. As long as the IR does not contain a branch

instruction, the processor stays in the fetch/execute state. The execution of each instruction takes

exactly one clock cycle. During the fetch/execute state, the processor must make a decision

whether to stay in the fetch/execute state or rebuild the pipeline. If the IR contains a branch

instruction and if the branch condition, if any, is not satisfied, the processor stays in the

fetch/execute state. If the branch condition is satisfied, the processor moves back to the build

state to rebuild the pipeline, in which it fetches an instruction from the branch location and incurs

a branch penalty, which in turn is for one clock cycle.

State Machine
 The AVR processor has two basic states. Therefore, only one state bit is needed for the

state machine. To facilitate the processor creation and simplify its understanding, two additional

states were incorporated. Of these four states, shown below, only three states are part of the

process operation.

000 − Idle

001 − Build from Power on

011 − Fetch/Execute

101 − Build from Branch

 Three state bits, to represent 4 states, were chosen to ease the design of control signals.

• Idle State (000): When the processor is first turned on, the state machine will start in the

idle state. In this state, the processor is off and will not read or operate any instructions.

The state machine will continue to be in the idle state until the processor is turned on. The

processor is turned on by turning on the master switch located on the FPGA board. When

the master switch is turned on, the state machine will remain in the idle state and only

move to the build state at the next clock edge. The master switch allows the user to reset

the processor and return to the idle state at any point in its operation.

• Build State (001): The state machine can only transition to the build state after the master

switch SW17 has been turned on in the idle state for one clock cycle. In the build state,

the AVR processor fetches the instruction, from the program memory, at the PC address,

into the IR. Initially (transition from the idle state), the PC will be at zero. No instructions

are executed during this step. The PC increments by one at the end of the build state.

After this step, the state machine will move to the fetch/execute state, unless the master

switch is turned off, then the state machine will return to the idle state. The state machine

will never be in the build state for consecutive clock cycles.

• Fetch/Execute (011): The state machine will transition to the Fetch/Execute state after

the Build state as long as the master switch remains on. In the Fetch/Execute state, the

instruction, loaded in the IR, is executed. The CU generates the necessary control signals

to allow the data path components to execute the current instruction. In addition, the

processor will fetch the next instruction at the updated PC address from the previous

state. Depending on the type of instruction, the next state of the processor will change.

Consider the timing diagram shown in Figure 4, which shows the operation as long as the

branch instructions, as seen in Figure 1, do not show up.

Figure 4: Timing diagram for a subprogram, which does not include branch instruction

As seen in Figure 4, at the end of the third clock cycle, instruction 0 has been executed

(all necessary registers are updated), and the instruction 1 has shown up in IR. The

processor stays in the Fetch/Execute state as long as the current and subsequent

instructions are not branch instructions. Now consider a typical timing diagram shown in

Figure 5.

Figure 5: Timing diagram for a subprogram, which includes a branch instruction. But the branch

condition, if any, is unsatisfied.

At the end of the third clock cycle, as before, instruction 0 has been executed and

instruction 1, which is now a conditional branch instruction, has entered the IR. The

processor stays in the Fetch/Execute state in the fourth clock cycle. Since the condition is

not satisfied, which is the case here, at the end of the fourth clock cycle, appropriate

updates are made and instruction 2 has entered IR. If the master switch is off and a reset

button, on the FPGA board, is pressed, the processor will return to the idle state. In

general, the processor will return to Fetch/Execute, if it not already in this state, and will

stay in the Fetch/Execute state for consecutive clock cycles as long as no branch

instructions are successfully executed and the master switch is on. This facility allows the

processor to achieve maximum throughput by executing 1 instruction per clock cycle.

• Branch State (101): Consider the timing diagram shown in Figure 6.

Figure 6: Timing diagram for a subprogram, which includes a branch instruction. But the branch

condition, if any, is satisfied.

As before, at the end of the third clock cycle, instruction 0 has been executed and

instruction 1, which is a branch instruction, has entered IR. The processor stays in the

Fetch/Execute during the fourth clock cycle, during which the processor detects that the

branch instruction condition is satisfied. The PC during this clock cycle is now pointing

at instruction 2, which is the incorrect instruction. The conditional branch instruction

points to instruction 3 as the next instruction. The processor will now enter the Branch

state (101, also called Rebuild state as seen in Figure 6) during the fifth clock cycle. PC is

updated to point to instruction 3, which enters the IR at the end of the fifth clock cycle.

The Branch State operates the same as the Build state. The processor will always return

to the Fetch/Execute state after the Rebuild state as it is impossible to remain in the

branch state for consecutive clock cycles. Figure 6 also demonstrates the concept of

branch penalty encountered in pipelined systems, and for the WIMPAVR processor’s 2

stage pipeline the branch penalty is one clock cycle.

Control Unit
The CU looks at the instructions in the IR and decides what type of instruction is being

executed. There are five main types of instructions based on how the register file responds to the

instruction: ALU, Move, Load, Branch, and Status instructions.

Reset
An external push-button reset switch is included on the AVR processor. The reset is an

active low input and can only be activated if the master switch is off. The reset causes all

registers to reset to 0 the state machine to return to the idle state.

Program Counter and Instruction Register
The PC is a 16-bit register that stores the address of the next instruction to be executed.

The IR is a 16-bit register that stores the current instruction to be executed during Fetch/Execute.

The update of the PC and IR was discussed above in the timing diagrams shown in Figures 4-6.

PC ALU and the branch instructions
The value of the next PC address is controlled by the PC ALU. The PC ALU is enabled

only when the AVR processor is not in the idle state. Figure 7 shows the block diagram for the

PC ALU.

Figure 7: PC ALU block diagram.

The PC ALU is used to manipulate the PC, which require the PC to be incremented each

clock cycle and for two unique branch instructions: RJMP, which allows for a 12-bit relative and

unconditional jump, and BRBS(Z), which allows for a 7-bit relative and conditional (if the Z flag

is set) jump. The PC ALU is composed of a 16-bit ripple adder and a Jump Selection Block

(JSB) as seen in Figure 7. The 16-bit ripple adder is used to add the current PC address with the

data from the JSB to calculate the next PC address. The JSB is a 12-bit 2:1 multiplexer with an

enable to route the necessary jump data. The Enable (EN) of the JSB is controlled by the branch

signal, which is generated by the CU, to determine if a branch instruction is decoded. If a branch

instruction is not decoded, the output of the JSB is zeros. The 16-bit adder increments the PC,

using carry in (C_IN) if the branch instruction is not decoded.

Data Router (DR) Multiplexer
Figure 8 shows the DR block diagram. The microprocessor accesses and moves data from

three different locations: the ALU, immediate data from an instruction, and data in the registers.

Figure 8: The DR block, which is an 8-bit 4:1 MUX

The destination is always one of the “ddddd” registers defined in the opcode mentioned

in Figure 1. One notable difference, as seen in the opcodes mentioned in Figure 1, is that LDI

allows data to be only written into 16 registers, whereas other instructions can write data into 32

registers. The self-loop path, seen in Figure 8, is the default path used when the current

instruction is neither LDI, MOV nor an ALU instruction.

ALU Instructions
Figure 9 shows the implemented ALU top-level block diagram. The ALU operates on

two operands: rrrrr and ddddd, which are 32 8-bit registers, and forms the internal RAM. After

an ALU instruction, the destination register defined by the five-bit sequence ddddd is updated

with the output of the ALU. ALU instructions can be further divided into logic & swap

instructions, and arithmetic instructions. An 8-bit 2:1 MUX, as seen in Figure 9, routes the ALU

result to the DR block depending on an ALU instruction, as seen in Figure 2. An internal MUX,

in the logic block, routes the correct logical instruction result to the main 2:1 ALU MUX as seen

in Figure 9. The Zero (Z) flag status bit is required for the correct operation of the BRBS(Z)

branch instruction. Figure 10 shows the block diagram of the Z flag update sub-system. The Z

flag is updated only after an add (ADC) instruction is executed and can work with any of 32

registers involved in the add instruction.

Status instructions
The Carry (C) flag, which is the other status bit can be updated using the set and clear

carry flag instructions, as seen in Figure 1, or after the add instruction. Figure 11 shows the carry

flag update sub-system block diagram.

Move and Load Instructions
Move instructions do not use the ALU and move data from a source register defined by

“rrrrr” to a destination register “ddddd”. The WIMPAVR has only one type of MOV instruction

as seen in Figure 1. Load instructions store immediate data, located in the instruction itself, into a

destination register “ddddd” without using the ALU or a source register. The WIMP AVR has

only one type of load instruction that can only load data to registers 16-31.

Figure 9: ALU block diagram.

Figure 10: The Z Flag sub-system.

Figure 11: The C flag update sub-system.

These instructions operate on a designed 32×8 register file. All data is stored in the

register file, and ALU operations can only be performed on data stored in this register file.

Figure 12 shows the block diagram of the created register file.

Figure 12: The 32×8 register file block diagram.

 The destination address “ddddd” allows the program to write to one of the 32 registers.

The two 8-bit 32:1 MUX, shown in Figure 12, allows the processor to access data from two

registers at a time, using two 5-bit codes: one to identify the source register rrrrr and another to

identify the destination register ddddd. A designer can modify the block by adding more MUX

blocks to access multiple registers as required. This facility allows a designer to modify the

processor relatively easily. Non-ALU and data transfer instructions cause the registers to stay in

a hold state by using the self-loop feature incorporated for all registers.

Additional Design Features

Processor Operation Features
To make WIMPAVR an effective teaching tool, additional design components, not

shown in Figure 2, were created that provides the user access to the internal signals of the

processor. Figure 13 shows the register access and the display features created for WIMPAVR.

Figure 13: Display features available during WIMPAVR operation

• Seven-Segment Display (SSD) controls: The Altera (now Intel) FPGA board is limited to

8 SSDs as seen in Figure 13. An SSD can display one hexadecimal number which

represents four binary bits. The SSDs are used to display key register values within the

WIMPAVR which include the PC, IR, Next Instruction, Registered Data, and Output

Result. Since there are a limited number of SSDs available on the FPGA board and the

user needs access to multiple registers with varied sizes (8 and 16 bits), switches on the

FPGA board were used to multiplex register values displayed on the SSDs. Following is

a list of multiplexed displays:

o Switch (SW) 14 down (off): SSDs 3-0 displays the current 16-bit instruction in

the IR

o SW14 up (on): SSDs 3-0 displays the next 16-bit instruction in the program

memory accessed using the PC. This feature allows the user to observe pipelined

instructions, which is an important AVR microprocessor core facility.

o SW13 down: SSDs 7-4 displays the 16-bit PC

o SW13 up: SSDs 5-4 displays the DR block output

o SW13 up: SSDs 7-6 displays the values of one of the 32 8-bit registers, which are

multiplexed using switches SW4-SW0

• Clock control system. This system is used to control the clock speed of the

microprocessor. One of the FPGA board’s in-built clock sources, 50 MHz clock speed,

can be slowed down significantly to allow humans to observe the operation of the

microprocessor. Figure 14 shows the block diagram of the clock control sub-system.

Figure 14: Clock control sub-system. Note the user is allowed to manually control the processor operation

using a push-button switch.

The speed of the processor can be slowed to 0.2 Hz so that users can observe the

operation of the microprocessor with minimal human intervention. An option to run the

processor at 1.6 MHz is also provided to show that the processor can work at higher

clock speeds. The microprocessor can also be set to manual mode, using push-button

KEY0 on the FPGA board to act as a clock edge. This facility allows the user to take as

much time as necessary to observe the processor signals for each state. The clock of the

WIMPAVR can be controlled using the clock control switch SW16 and SW15 as seen in

Figure 13.

• Master switch and Reset: SW17 is used to either run the processor (on position) or pause

the processor (off position). In the pause condition, the processor can be reset by using

push-button KEY1 as seen in Figure 13. Note: the reset does not erase the program

memory.

• LED data: LEDs, as seen in Figure 13, are used to display the Z and C flags, the

processor state and master switch enable indicator.

Processor Programming Features:

The WIMPAVR processor executes a user-entered program stored in the program

memory, which is implemented on the FPGA on-board SRAM chip as shown in Figure 15. The

user is required to write the machine coded program directly into the program memory manually.

Even though this process is cumbersome and time-consuming, the experience can be invaluable.

A separate system was created to allow users to write machine coded instructions into the

SRAM. To assist users and minimize errors in entering the machine code, unique display

features, as seen in Figure 15, were incorporated.

Button from Altera Board

50 MHz Clock

Clock Select

Clock Out

4:1

MUX

00

01

10

11

CLOCK SLOWER 0.2 Hz

1.6 MHz

S1 S0

1 Bit

2 Bits

External Clock

Figure 15: Display features available during the machine code programming of the onboard SRAM chip

Since each WIMPAVR instruction, and the PC, is 16 bits, and there are a limited number

of switches available on the FPGA board, following is the process to enter the machine code at a

particular program memory location:

1. Setup the program memory address using the switches SW15 – SW0.

2. Press the pushbutton KEY0 to register the memory address. This registered address is

connected to the address bus of the onboard SRAM chip. The registered address is

displayed on SSDs 3-0. This visual display helps minimize errors.

3. Setup the machine code, as seen in Figure 1, of the instruction, using switches SW15 –

SW0, to be entered at the address set in steps 1 and 2.

4. Press the pushbutton KEY1 to register the machine code. This registered machine code is

connected to the data bus of the onboard SRAM chip. The status of the switches is

displayed on SSDs 7-4. This visual display helps minimize errors.

5. Press the pushbutton KEY3 to write the machine code into the onboard SRAM chip.

6. Repeat steps 1 through 5 till all the machine codes have been entered.

A Platform for Class Project Implementation

The WIMPAVR was primarily designed to be a teaching tool and project platform for

students to understand the working of an AVR microprocessor core in the introductory

microcontrollers course. The planned WIMPAVR instruction and project curriculum is similar to

the one implemented for the WIMP51 [1] and forms phase 1 of the microcontrollers course.

Students are taught the WIMPAVR and its internal design. Students practice writing and

executing simple ASM programs machine coded as discussed. Students then implement a project

in which they modify the current WIMP AVR architecture to add instructions, to the current

instruction set similar to a project implemented for WIMP51 [1]. Students create the necessary

digital circuits, subsystems, and blocks necessary for the processor to execute the assigned

additional instructions. Students must demonstrate their modified WIMPAVR via hardware

demonstration of test programs. The project provides students the experience in basic

microprocessor design and testing.

YouTube Videos

 Videos demonstrating the workings of the processor were created to aid in the

dissemination and understanding of the processor working and FPGA board features. YouTube

videos can be found at:

• WIMPAVR Introduction: https://www.youtube.com/watch?v=uDD9K1mkM-k

• WIMPAVR Instruction Set Review: https://www.youtube.com/watch?v=iUUuAPZLTBo

• WIMPAVR Program Memory Machine Code Upload Process:

https://www.youtube.com/watch?v=eobcjZ4kyz0

• WIMPAVR Code Execution Example 1: Simple Program:

https://www.youtube.com/watch?v=Jd8KeFuT1hg

• WIMPAVR Code Execution Example 2: Conditional Branching:

https://www.youtube.com/watch?v=MFMkeym_ncU

• WIMPAVR Code Execution Example 3: 5*3 Using Repetitive Adding:

https://www.youtube.com/watch?v=FwDAmfwAy4w

Conclusion and Future Work

This paper presents the design of the simple WIMPAVR microprocessor, which was

designed by undergraduate EE students to serve as an educational platform to teach introductory

microprocessor design. The schematic capture creation technique used to build the processor

provides students, who do not possess HDL skills, a platform for learning basics of processor

design. The AVR microprocessor core was chosen because Missouri S&T has transitioned to the

AVR family of microcontrollers as part of the introductory microcontrollers course. The limited,

but useful, instruction set provides students a basic understanding of how data transfer,

arithmetic & logic, and branch instructions are implemented in a typical RTL design. The

educational platform allows the user to create variations of the basic WIMPAVR by modifying

the current design to accommodate additional instructions, thereby, increasing its versatility.

Future work will focus on improving the efficiency and application of the WIMPAVR.

The logic, for WIMPAVR, was tested to operate properly, but the design may not be optimal.

The digital logic circuits of the WIMPAVR can be redesigned to be faster. The designed

WIMPAVR acts as a microprocessor but can be expanded with peripherals to create a

microcontroller. This project can be part of an advanced course or extra-curricular design

projects. The WIMPAVR can also be recreated in hardware descriptive languages such as

Verilog or VHDL to act as a tool to bridge the gap between schematic capture and hardware

descriptive languages taught in upper-level graduate courses. The WIMPAVR student design

team plans to create a second version of the WIMPAVR, which will incorporate a more true

Harvard architecture as part of an experiential learning project. Future such projects will

concentrate on the design of mini-processor belonging to other processor families.

References

[1] Dua, R., “Digital System Design - 8051 Microcontrollers Home Page” January 2015.

[online]. Available: http://web.mst.edu/~rdua/Digital%20Systems%20Design.htm [Accessed:

December 30, 2019]

[2] Marshall, M., Moss, A., Garringer, L. G., & Dua, R. (2015, June), “WIMP51 Processor:

Envisioning and Recreating the Platform for Implementing Student Design Projects”, Paper

presented at 2015 ASEE Annual Conference & Exposition, Seattle, Washington.

10.18260/p.25078

[3] Hur, B. (2019, June), “ARM Cortex M4F-based, Microcontroller-based, and Laboratory-

oriented Course Development in Higher Education”, Paper presented at 2019 ASEE Annual

Conference & Exposition, Tampa, Florida. https://peer.asee.org/32105

[4] Lehman, W., Huang, C., Venkatesha, M., & Yousuf, A. (2005, June), “Teaching PIC

Microcontroller in EET Program”, Paper presented at 2005 Annual Conference, Portland,

Oregon. https://peer.asee.org/15464

[5] Microchip Technology Inc., “ATmega32 Data Sheet (Page 3): Block Diagram”, [online].

Available: http://ww1.microchip.com/downloads/en/DeviceDoc/doc2503.pdf [Accessed: January

2, 2020]

[6] Hill, J. (2007, June), “Custom Processor Using An FPGA For Undergraduate Computer

Architecture Courses”, Paper presented at 2007 Annual Conference & Exposition, Honolulu,

Hawaii. https://peer.asee.org/1665

[7] Planting, A., & Loo, S. M. (2008, June), “On The Use Of A Soft Core Processor In Junior

Microprocessors Course”, Paper presented at 2008 Annual Conference & Exposition, Pittsburgh,

Pennsylvania. https://peer.asee.org/3805

[8] Hassan, F., & Vemuru, S. (2010, June), “Introducing Hybrid Design Approach At The

Undergraduate Level”, Paper presented at 2010 Annual Conference & Exposition, Louisville,

Kentucky. https://peer.asee.org/16966

[9] Richardson, J. J. (2017, June), “Transformation of an Introduction to Microcontroller

Course”, Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio.

https://peer.asee.org/29040

[10] Heer, D. (2004, June), “A Custom Microcontroller System Used As A Platform For

Learning In ECE”, Paper presented at 2004 Annual Conference, Salt Lake City, Utah.

https://peer.asee.org/13005

[11] Slivovsky, L., & Liddicoat, A. (2007, June), “Transforming The Microprocessor Class:

Expanding Learning Objectives With Soft Core Processors”, Paper presented at 2007 Annual

Conference & Exposition, Honolulu, Hawaii. https://peer.asee.org/2758

[12] Microchip Technology Inc., “AVR Instruction Set Manual,” [online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-

Manual.pdf [Accessed December 30, 2019]

