ASEE'S VIRTUAL CONFERENCE

At Home with Engineering Education H#ASEEVC Paper ID #29133

Not standing at the same starting line - investigation of prior
programming experience on student performance in an introductory
programming course in ECE

Ms. Ziyue Li, University of Illinois - Urbana Champaign

Ziyue Li received her B.S. in Computer Engineering from the University of Illinois - Urbana Champaign
in 2019. She is currently pursuing a Master of Science degree in ECE from the same institution with the
Systems Networking Research Group. She has assisted with undergraduate ECE courses for six semesters
and was involved with the development of numerous online courses offered through Coursera. Off cam-
pus, she has interned with various teams at Google in designing reliable systems for use in production.
Her current research focuses on mobile computing and sensing systems in the acoustic domain.

Prof. Yuting W. Chen, University of Illinois Urbana - Champaign

Dr. Yuting W. Chen received the B.S. degree from the University of Illinois - Urbana Champaign in 2007,
and the M.S. and Ph.D. degrees from Rensselaer Polytechnic Institute in 2009 and 2011, all in Electri-
cal Engineering. She is currently a Teaching Assistant Professor with the Department of Electrical and
Computer Engineering at University of Illinois at Urbana-Champaign. Prior to joining ECE Illinois, she
worked at IBM Systems Group in Poughkeepsie, NY in z Systems Firmware Development. Her current
interests include recruitment and retention of under-represented students in STEM, integrative training for
graduate teaching assistants, and curriculum innovation for introductory programming courses.

(©American Society for Engineering Education, 2020

Not standing at the same starting line - investigation of prior programming
experience on student performance in an introductory programming course
in ECE

Abstract

There have been a good number of studies on computer preparedness of incoming engineering
students, but majority of them focus on simply having access to computers. As personal
computers are becoming more and more prevalent, this information alone can no longer pinpoint
the difference observed in programming readiness among students. A few studies have shown that
students with prior programming experience have an initial advantage in introductory
programming courses. This paper investigates the relevance of the abovementioned statement in a
sophomore level introductory programming course in ECE at a public research university. We
look at the number of years of prior programming experience students have upon entering the
course and the impact it has on their performance. In particular, we are interested to understand
whether the advantage from prior experience is profound only for some parts of the course or
throughout the course. Four semesters of data are collected and analyzed, which include over 900
students who have completed the course. Students are categorized into four groups by number of
years of prior programming experience, from less than 1 year to more than 3 years. A one-way
ANOVA test is used to determine whether there is any statistically significant difference between
groups in terms of performance on the following components of the course: programming
assignments, computer-based quizzes, and paper exams. A Bonferroni post-hoc test is then
applied to determine between which groups such difference exists. Literature has shown that
women are less likely than men to enroll in high school programming classes [1] and students
from lower socioeconomical status schools have limited resource to learn programming [2]. We
hope the result of this study will provide insights on advising freshmen in ECE on preparation for
the first programming course in the major, which in turn could help improve the retention rates of
under-represented and under-privileged students.

Introduction

Previous studies on impact of prior experience

Study of prior computing experience’s impact on student performance can be dated back to 1980s
[3], [4], [5]. These studies either have a broad definition of prior experience [4] including usage
of personal computers at home and at school or a narrow cut-off of having taken at least one high
school computer science course [3], [S]. These early studies indicated that prior computing

experience would give students advantage in their entry-level programming course.

Later studies have focus on prior programming experience gained through both inside and outside
of school [6], [7], [8]. Results presented in these studies painted very different pictures. Bergin et
al. found no significant difference between students with prior experience versus those without.
They concluded that it may be due to the fact that secondary schools in their country do not offer
courses similar to those at the college level. In comparison, Hagan et al. found that prior
programming experience would give students initial advantages in the first two exams, but not the
final, and experience with more languages also led to better performance. Last but not least,
Holden et al. found that students with prior experience completed the first programming course
with 1.0 point higher than those without on a 4.0 scale.

Not all of these prior studies indicated the type of assessment methods used in their introductory
programming course. Depending on the type of assessment, the impact of prior programming
experience on course performance could be different.

Course content and components

In our sophomore level introductory programming course, we take a bottom-up approach to
introduce students to the design and programming of computing systems. Our course focuses on
C programming, but starts by covering low-level concepts such as system level 1/O, subroutines,
and run-time stacks in LC-3 assembly language. This is a follow-up from the freshman level
prerequisite course, in which students are introduced to digital circuits, basic computer
organization, and machine language programming. The course then covers basic programming
concepts, functions, arrays, pointers, recursion, simple data structures, and concepts in
object-oriented programming.

Student grades in our course are calculated from the following components: 12 programming
assignments, 6 computer-based quizzes, 2 midterm exams and a final exam. For each
programming assignment, students have at least one week from assignment release date to
complete it. Computer-based quizzes are 50-minute each taken on a terminal inside a campus
testing facility. Quiz questions generally require no more than 25 lines of code. Midterm exams
are 90-minute long each and final exam is 180-minute long, all in paper format. The first midterm
focuses on low-level concepts and programming in LC-3 assembly language. The second
midterm focuses on concepts related to C programming. The final is cumulative but weights
towards data structures and object-oriented programming. These exams have a mix of short
programming questions and concept questions. In this paper, we examine how prior programming
experience impacts student’s grade in each course component.

Historical background of changes in assessment

Assessments in our introductory programming course has gone through several phases of changes
since its inception. When the course was first created, all exams were paper-based. A curriculum
redesign in 2013 compressed a three-course sequence into a two-course sequence and assessments
in the introductory programming course changed to computer-based exams. In 2017, assessments
changed yet again to a hybrid model with computer-based quizzes and paper exams.

Data Collection and Categorization

In our course, prior programming experience information is collected in a pre-course survey.
Students are asked to indicate their level of experience ranging from less than 1 year to 4 or more
years. They are also asked to indicate their major programming languages. In order to have
groups of comparable size for our study, we define 4 groups based on students’ prior experience -
Group 1: less than one year, Group 2: one to two years, Group 3: two to three years, and Group 4:
three or more years. The pre-course survey is shown in Figure 1.

We don't grade this survey. You only need to save you answer.

1.How many years of programming experience do you have?
“1{a) <1year 1 (b)1year 1 (c)2years ((d)3years [(e)4years (f)>4years
2. What is your major programming language?

T{a)LC3 T (b)C T (c)C++ [(d)C# C (e) Python [(f)Java [(g) JavaScript I (h) Ruby
“1{i) Go 7 (j) Other
Select all possible options that apply. @

This question will be manually graded. m

Save only

Figure 1: Pre-course survey questions.

Students’ grades in course assignments and assessments are also collected from Fall 2017 to Fall
2019. Entries with no pre-course survey response or a zero grade in any course component were
removed. Based on students’ prior programming experience, they are then divided into 4 groups
defined previously. Table 1 reports the total number of valid student data used in our analysis and
their distribution among 4 groups across 4 semesters from Fall 2017 to Fall 2019. Data from Fall
2018 is not presented in this paper because pre-course survey was not conducted that semester. In
all tables, Fall 2017 is represented as FA17, Spring 2018 as SP18 and so on.

FA17 SP18 SP19 FAl9

Group 1 (<1 year) 94 80 64 54
Group 2 (1-2 years) 66 67 62 47
Group 3 (2-3 years) 52 55 56 50
Group 4 (>3 years) 35 58 57 32

Total 247 260 239 183

Table 1: Number of students in each group from FA17 to FA19.

Discussion

Impact of prior programming experience

The mean score and standard deviation for each group in each course component is shown in
Table 2. In general, the more years of prior programming experience a student has, the higher
their score is in most course components. One-way ANOVA tests are performed using IBM SPSS
Statistics [9] on each semester’s data to determine whether this trend in performance between
groups is statistically significant. Table 3 summarizes the p values from the one-way ANOVA test
in each course component from Fall 2017 to Fall 2019. A p value less than 0.05 indicates there is
a statistically significant difference between groups. To generalize the results over multiple
semesters, we focus on course components that show statistically significant difference in student
performance between groups for three or more semesters. Therefore, prior programming
experience has a statistically significant impact on a student’s performance in quizzes, the second
midterm (MT?2) and the final, but no statistically significant impact is found in performance in

programming assignments nor the first midterm (MT1).

(Stl(\fegrév‘) Group 1 Group 2 Group 3 Group 4

FA17 91.45(16.5) 95.21(11.0) 93.32(13.5) 94.90(9.6)

Prog. SP18 91.36(13.2) 93.46(11.9) 96.47(5.6) 96.46(9.2)
Asgmt. SP19 92.88(11.1) 94.55(12.0) 95.55(8.9) 95.37(13.8)
FA19 92.02(16.2) 95.65(7.5) 92.14(16.1) 92.41(14.9)

FA17 83.83(19.9) 89.09(13.8) 92.69(12.5) 95.14(10.2)

Quiz SP18 86.51(18.8) 92.25(13.1) 94.75(8.6) 97.17(7.7)
SP19 87.41(20.5) 92.14(15.9) 95.38(10.5) 97.16(7.8)

FA19 85.89(18.7) 90.81(15.1) 88.74(17.5) 96.81(8.0)

FA17 83.37(15.7) 83.18(14.2) 80.87(19.5) 89.24(8.4)

MTI SP18 82.11(14.7) 86.86(10.9) 82.63(15.3) 89.57(9.2)
SP19 86.10(11.5) 85.96(10.3) 87.17(11.2) 88.50(9.9)

FA19 89.94(8.1) 90.41(8.0) 90.35(7.7) 92.44(5.3)

FA17 69.61(20.5) 73.38(20.9) 78.38(15.5) 83.00(14.9)

MT2 SP18 66.10(19.5) 74.38(13.8) 77.33(15.0) 83.14(12.4)
SP19 68.22(20.6) 71.86(15.3) 72.61(17.1) 76.47(17.0)

FA19 76.64(14.7) 80.57(14.9) 80.60(12.5) 85.86(10.6)

FA17 61.61(19.9) 70.11(17.8) 70.31(17.5) 80.36(11.7)

Final SP18 70.34(21.4) 80.28(16.9) 75.71(18.8) 84.52(10.9)
SP19 70.67(18.5) 71.48(15.6) 75.73(13.4) 78.55(14.6)

FA19 74.41(18.8) 78.40(18.1) 79.82(14.7) 85.31(9.0)

Table 2: Mean and standard deviation of each group by course components from FA17 to FA19.

p value FA17 SP18 SP19 FA19

Prog. Asgmt. 0.327 0.014 0.565 0.548
Quiz 0.001 0.000 0.002 0.023
MT1 0.098 0.003 0.547 0.496
MT2 0.002 0.000 0.088 0.027
Final 0.000 0.000 0.021 0.027

Table 3: One-way ANOVA test results in all course components among groups from FA17 to
FA19.

Content of the different course components is examined to understand why prior programming
experience only impacts student performance in certain components of the course but not others.
For the programming assignments, students are given one to two weeks to complete. They are
allowed to consult lecture materials, seek help from course staff, and work in groups. One-way
ANOVA tests indicate that prior programming experience has no statistically significant impact
on student performance in programming assignments. We believe that when students are given
ample time and resources, they are able to perform at similar levels regardless of their prior
exposure to programming. On the other hand, prior programming experience has a statistically
significant impact on a student’s performance in the quizzes. Contrary to the programming
assignments, students are only given 50 minutes to complete each computer-based quiz, and they
are not allowed to consult outside material. During each quiz, students are expected to read the
problem statement, write no more than 25 lines of code with hints from provided algorithm,
compile and test their solution locally, and finally submit their solution to a server where our
auto-grader will run test cases and provide feedback. We think that prior programming experience
familiarizes students with the development process that involves compiling, testing and
debugging. As shown in Figure 2, students with more years of prior programming experience tend
to have experience in more languages. In addition, they are also likely to be more familiar with
language syntax. Majority of the quizzes are in C, which has similar syntax as C++. As shown in
Figure 3, only 9% of students in Group 1 reported that one of their major programming languages
1s C++, compared to 19.3% in Group 2, 31.9% in Group 3, and 24.3% in Group 4.

100% A 6.1%
90% 19.8% 16.8%
BO%
708 54.9%
B0% 0
i
50%: 1 2
40% 1 . =3
E 25.2%
20%: 28.2%
10% - 15.7%
6.1%
% . — mpm N
Group 1 Group 2 Group 3 Group 4

Figure 2: Number of major programming languages known by each group, excluding LC-3 and C
which are introduced in the prerequisite course.

Group 1 Group 2
B0% B0%
TL.3%
0% 0%
80% 80%
50% 50%

0% 1 381% 0%

30% A 30% A
20.1%

20% 20%

9.0%

10% 1 5.7% 10% 1
0.4% 16% pow Do%
ol I o .
LC-3 C C++ C# Pythen Java JavaScript Ruby Go Other - C# Pythen Jawa JavaScript Ruby
Group 3 Group 4

80% P 80% P
T0% 4 T0% 4
B0% 1 54.0% B0% 1 53 8%
50% 4 50% 4

3509 37.5%

40% 1 40% A

30% A 30% A
20% A 20% A

10% A 10% A

LC-3 C C++ C# Python Java JavaScript Ruby Go Other

LC-3 C C++ C# Python Java JavaScript Ruby Go Other

Figure 3: Distribution of students’ major programming languages by group. Students are
expected to have basic knowledge of LC-3 and C through the prerequisite course.

Out of the three paper exams in this course, prior programming experience has a statistically
significant impact on student performance on the second midterm and the final. It does not have a
statistically significant impact on the first midterm which covers concepts on LC-3 Assembly.
Assembly language is vastly different from the languages students have prior exposure to as
shown in Figure 3. Furthermore, the prerequisite for our course, which most students take during
their freshman year, introduces them to LC-3 Assembly. Regardless of which group a student is
in, they have similar amount of exposure to this topic. We believe the lack of prior programming

experience does not set students back in the situation where they are introduced to the topic at the
same time in a prerequisite course. On the contrary, the second midterm and the final exam covers
topics on basic C programming, data structures, algorithms, and object oriented programming.
Lack of prior programming experience puts students at a disadvantage in these topics [6], [7]
compared to those with prior programming experience. Additionally, around 50% of students in
Group 2, Group 3 and Group 4 reported that Java is one of their major programming languages,
while this number is only 15.2% for students in Group 1. Java is the language used in the AP
Computer Science exam [10] and according to its curriculum, students learn object oriented
programming, basic control structures, arrays, recursion, etc. which are all topics assessed in our
second midterm and final. If these students learned Java through the AP Computer Science
curriculum, they would have already had exposure to these topics. Therefore, students with
limited prior programming experience would be at a disadvantage.

Observing that prior programming experience impacts student performance in course components
differently, we gain insight into how assessments could be modified or curriculum could be
adjusted so that performance in an introductory programming course correlates less to prior
programming experience a student has. For example, courses could put more weight on
programming assignments, instead of timed programming quizzes. Exams could focus more on
conceptual questions that bridge prerequisite material with existing course content, instead of
programming questions that depend on familiarity with language syntax.

Extent of prior programming experience

Since the one-way ANOVA test has shown that prior programming experience’s impact on
quizzes, the second midterm and the final is statistically significant, a Bonferroni post-hoc test is
then carried out using IBM SPSS Statistics [9] to determine whether the performance difference
is between any two groups or only some groups. Table 4 summarizes the results. Statistically
significant difference in performance is observed between Group 4 and Group 1 in quizzes, the
second midterm and the final. There is also a statistically significant difference in performance
between Group 3 and Group 1 in quizzes only. However, there are no statistically significant
difference in performance between all other groups. This result shows that having less than one
year of prior programming experience puts students at a disadvantage compared to those with
more years of experience. However, the difference in performance is statistically insignificant
once students have at least one year of prior programming experience. In other words, once
students have one year of prior programming experience, they are no longer at an disadvantage.
This discovery provides insight into how to best prepare students with almost no prior
programming experience to have an equal opportunity to perform as well as those with extensive
programming experience. For example, curriculum designers could offer programming studio
courses concurrently with the prerequisite course to those with no programming experience.
Freshman advisors could suggest students to join student organizations or study online material
that would expose them to programming prior to the start of the course.

Groups 4-1 4-2 43 3-1 3-2 2-1
FA17 1.000 1.000 1.000 1.000 1.000 0.534
Prog. SP18 1 0.039 0.731 1.000 0.043 0.757 1.000
Asgmt. SP19 1.000 1.000 1.000 1.000 1.000 1.000
FA19 1.000 1.000 1.000 1.000 1.000 1.000
FA17 0.002 0.412 1.000 0.008 1.000 0.237
Quiz SP18 1 0.000 0.259 1.000 0.003 1.000 0.064
SP19 1 0.002 0.394 1.000 0.022 1.000 0.448
FA19 0.016 1.000 0.016 1.000 0.754 0.754
FA17 0.336 0.370 0.083 1.000 1.000 1.000
MT1 SP18 0.005 1.000 0.027 1.000 0.428 0.158
SP19 1.000 1.000 1.000 1.000 1.000 1.000
FA19 0.839 1.000 1.000 1.000 1.000 1.000
FA17 0.003 0.096 1.000 0.047 0.935 1.000
MT2 SPI18 0.000 0.013 0.308 0.000 1.000 0.010
SP19 0.066 0.940 1.000 1.000 1.000 1.000
FA19 0.016 0.539 0.525 0.824 1.000 0.878
FA17 0.000 0.039 0.064 0.031 1.000 0.020
Final SPI8 0.000 1.000 0.054 0.513 0.949 0.005
SP19 0.038 0.090 1.000 0.480 0.866 1.000
FA19 0.017 0.385 0.815 0.539 1.000 1.000

Table 4: Bonferroni post-hoc test results.

Female Students Male Students
100% 100%
0% % 25.4% 26.1% 27.0%
80% e 36.1% 38.1% 80% 35.9%
0% 53.3% 0%
B0% B0%
o l o
40% 40%
23.7%
19.4% 26.2% 3.1% 27 79,
30% 30% :
’ B.6% "]
20% 20%
e : : . : P : . :
FALlY SP18 SP19 Fal% Faly SP18 SP19 Fale
Group 1 BN Group 2 Group 3 BN Group 4

Figure 4: Group distribution by gender.

Access to pre-college Computer Science education

As indicated by literature [1], it is less likely for women than men to take programming courses in
high school although their access to computer is equivalent. To check whether that is the case in
our course, we compare how students are distributed among the four groups across semesters by
gender. Figure 4 shows that for every semester, there is a lower percentage of female students
than male students coming in with more than one year of prior programming experience. We

believe performance difference between male and female students, if any, can be attributed to the
difference in prior programming experience at the start of the course. However, the situation is
promising if we look at the trend over 2 years. In Fall 2017, only 46.7% of female students were
coming in with at least one year of prior programming experience, compared to the 64.1% for
male students. However, this number grew to 61.9% for female students in Fall 2019. Moreover,
the number of female students who have two or more years of programming experience grew
from 13.3% to 45.2%, while the distributions have stayed about the same for male students.

The situation is less optimistic for under-privileged students because their access to high school
computer science courses is limited. As early as 1994, it has reported that ownership of a
computer is the most significant factor on success in college level computer science [5]. Unlike
today, owning a computer more than 25 years ago can be considered a symbol of high
socioeconomic status. Recent studies have shown that socioeconomic status remains a problem
for access to high school computer science resource. In South Carolina, more than 70% of
computer science classes are offered in the three largest cities; 46.2% of public schools in the
state receive federal Title I funding yet only 25.3% of public schools offer computer science
education fall under such category, resulting in a 20.9% gap [11], [12]. While in California, only
24% of schools with the highest percentage of low income students offer any kind of computer
science course while that number is 61% for those with the lowest percentage of low income
students [2]. Although we do not have demographic information on students in our course, we
hope that these insights could guide us in better preparing students with limited exposure to
computer science courses in high school to have equal opportunities to succeed.

Conclusion

We surveyed four semesters of students in an introductory programming course in ECE about
their prior programming experience and analyzed the responses and their performance in five
different course components. We found that students with more years of programming experience
generally perform better in certain course components. This difference is only statistically
significant in quizzes, the second midterm and the final. It showed that students with limited prior
programming experience are at a disadvantage when the assessment format is timed programming
at a terminal, and when topics assessed are covered in high school Computer Science curriculum
in which they had limited exposure to. However, prior programming experience has limited
impact on student performance when the assessment is not timed and allows students to seek
help, or when the topics assessed are only covered in a college level prerequisite course in which
all students took around the same time.

Furthermore, we found that students with less than one year of prior programming experience are
at a disadvantage in the course components mentioned above compared to those with more years
of experience. However, the difference in performance among students with at least one year of
experience is statistically insignificant. We conclude that by having at least one year of prior
programming experience places students at a similar starting line in a college level introductory
programming course compared to those with extensive programming experience.

The extent of prior programming experience of female students and male students is analyzed and

it shows that, as indicated by literature, a lower percentage of women took computer science
courses in high school. However, the percentage of female students coming in with at least one
year of prior programming experience has grown tremendously over the course of two years. It is
encouraging to see that a much higher percentage of female students are starting the course
already having extensive programming experience.

References

[1] J. Margolis and A. Fisher. Unlocking the Clubhouse: Women in Computing. The MIT Press. MIT Press, 2002.
ISBN 9780262632690. URL https://books.google.com/books?id=StwGQw45YoEC.

[2] Alexis Martin, Frieda McAlear, and Allison Scott. Path not found: Disparities in Access to Computer Science
Courses in California High Schools. Technical report, Level Playing Field Institute, 2015.

[3] Roger E Franklin Jr. What academic impact are high school computing courses having on the entry-level
college computer science curriculum? ACM SIGCSE Bulletin, 19(1):253-256, 1987.

[4] Zoe A Kersteen, Marcia C Linn, Michael Clancy, and Curtis Hardyck. Previous experience and the learning of
computer programming: The computer helps those who help themselves. Journal of Educational Computing
Research, 4(3):321-333, 1988.

[5] Harriet G Taylor and Luegina C Mounfield. Exploration of the relationship between prior computing
experience and gender on success in college computer science. Journal of educational computing research, 11
(4):291-306, 1994.

[6] Edward Holden and Elissa Weeden. The impact of prior experience in an information technology programming
course sequence. In Proceedings of the 4th conference on Information technology curriculum, pages 41-46,
2003.

[7] Dianne Hagan and Selby Markham. Does it help to have some programming experience before beginning a
computing degree program? In Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSEconference on
Innovation and technology in computer science education, pages 25-28, 2000.

[8] Susan Bergin and Ronan Reilly. Programming: factors that influence success. In Proceedings of the 36th
SIGCSE technical symposium on Computer science education, pages 411-415, 2005.

[9] IBM Corp. IBM SPSS statistics for macintosh. URL
https://www.ibm.com/products/spss—statistics.

[10] College Board. AP computer science A course at a glance, effective fall 2019. 2019.

[11] Barbara Ericson, W Richards Adrion, Renee Fall, and Mark Guzdial. State-based progress towards computer
science for all. ACM Inroads, 7(4):57-60, 2016.

[12] Quinn Burke, Madeleine Schep, and Travis Dalton. Cs for sc: A landscape report of k-12 computer science in
south carolina. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, pages 705-705, 2017.

