
Paper ID #29813

Teaching the Culture of Quality from the Ground Up: Novice-Tailored
Quality Improvement for Scratch Programmers

Dr. Eli Tilevich, Virginia Tech

Eli Tilevich is an Associate Professor in the Dept. of Computer Science and the College of Engineering
Faculty Fellow at Virginia Tech. Tilevich’s research interests lie on the Systems end of Software Engi-
neering, with a particular emphasis on distributed systems, mobile/IoT applications, middleware, software
energy efficiency, software security, automated program transformation, music informatics, and CS edu-
cation. He has published over 100 refereed research papers on these subjects. His research awards include
a Microsoft Research Software Engineering Innovation Foundation Award and an IBM Faculty Award.
Tilevich has earned a B.A. summa cum laude in Computer Science/Math from Pace University, an M.S. in
Information Systems from NYU, and a Ph.D. in Computer Science from Georgia Tech. At Virginia Tech,
Tilevich leads the Software Innovations lab. The lab’s research projects have been supported by major US
federal funding agencies (i.e., NSF, ONR, AFOSR) and private industry. Tilevich is also a professionally
trained classical clarinetist, with experience in orchestral, chamber, and solo performances.

Dr. Simin Hall, Virginia Tech

Dr. Simin Hall is a research consultant. Her projects include collaborating with Dr. Eli Tilevich in the
Computer Science Department at Virginia Tech (VT) on a National Science Foundation IUSE funded
project to improve quality in Block Based programming. Previously, she was a Research Assistant pro-
fessor in the Department of Mechanical Engineering (ME) at VT. This year she is serving as an AAAS
Science & Technology Policy Fellow. Her applied research in education is in cognitive functioning using
online learning technologies. She maintains research and publishing tracks in nascent interdisciplinary
trust concepts, eLearning, and innovative teaching, learning in fields of statistics and research methods,
engineering, medical fields, and assessment methods.

Mr. Peeratham Techapalokul, Virginia Tech

Peeratham Techapalokul is a Ph.D. candidate in the Department of Computer Science at Virginia Tech.
His research interests lie on visual programming languages and computer science education.

c©American Society for Engineering Education, 2020



Teaching the Culture of Quality from the Ground Up:
Novice-Tailored Quality Improvement for Scratch Programmers

Abstract

As quality problems plague the modern society’s software infrastructure, a fundamental learning
objective of computing education has become developing students’ attitudes, knowledge, and prac-
tices centered around software quality. Teaching software quality and its disciplined practices has
thus far been limited to more advanced courses, due to the prevailing assumptions about the intro-
ductory learner’s unpreparedness for the topic and potential negative impacts on learner motivation.
In this paper, we present empirical evidence that starkly contradicts the established conventional
belief. Specifically, by exploring how novice programmers learn to refactor code duplication with
and without automated tools, we found strong evidence that novices grasp the importance of code
quality and its improvement. This empirical evidence motivated us, in retrospect, to closely exam-
ine the design of our online interactive tutorial, a platform that drove our experimental user study.
We identify and discuss the tutorial’s key design principles and affirm their efficacy based on the
observed learning experiences. The obtained insights can inform curricular interventions that in-
troduce introductory students to code quality and its disciplined improvement practices.

1 Introduction

The CS Education research literature has established the importance of teaching software quality
as part of the CS curriculum1,2,3,4. However, it remains subject to considerable debate whether the
topic of software quality is appropriate for introductory learners. Some computing educators argue
that promoting disciplined programming practices is incongruent with the guiding principles of
Constructivism, the educational philosophy centered around unconstrained experiential learning
that guides many of today’s introductory CS curricula5,6,7,8.

Our goal is to help settle this controversial debate with a systematic empirical study that explores
the impact of introducing novices to code quality and its improvement. Although our study cannot
fully resolve this contentious issue of introductory computing pedagogy, we gained new impor-
tant insights. Specifically, we focused on evaluating the impact of automated tools on helping
beginner Scratch programmers to learn how to refactor code duplication. Refactoring is a software
development technique that transforms a program to improve its code quality while preserving
its behavior9. Although industry practitioners have fully embraced this technique as part of their
professional toolset, refactoring is taught only late in the traditional computing curriculum.

A valuable outcome of our study was an educational intervention that really pushes the bound-



aries of what is possible to teach to novice programmers, those who have never had any prior
programming experience. The unique aspect of our study was teaching the very fundamentals
of programming simultaneously with the principles and mechanics of refactoring and automated
refactoring support required to remove code duplication. In particular, the study participants went
through a learning experience, guided by an online interactive tutorial that taught them EXTRACT

CUSTOM BLOCK1, the refactoring transformation that replaces duplicate code snippets with calls to
a custom block. In Scratch, the custom block construct reifies procedural abstraction; it mimics
the functionality of a procedure in text-based languages, having a unique name, parameters, and a
body of statements. We discovered that not only could absolute beginners be effectively taught a
real software quality concept (i.e., code duplication), but they were quite receptive and apprecia-
tive of this knowledge. The majority of the study participants showed an inclination to keep using
automated quality improvement tools in their future programming pursuits. This discovery is an
important contribution to the understanding of the mindset of introductory learners, with respect
to their attitude toward not only learning how to write code, but how to do it well.

Being the central component of our study, the aforementioned tutorial proved remarkably effec-
tive, so we take a closer look at its underlying design principles. To help with designing similar
educational interventions, we identify the tutorial’s key principles and explain how they manifest
themselves. We attribute the success of our tutorial to having made careful design decisions based
on systematically researching the problem domain. Specifically, we followed a bottom-up exper-
imental design approach, eventually creating a tutorial that provides a real-world context for the
introduced technical subject, while keeping the learners engaged and motivated. The retrospective
insights gleaned from the tutorial and its instructional strategies can serve as a helpful guide that
informs future curricular interventions for novice programmers.

In this paper, we describe the aforementioned tutorial and how its design was instrumental to the
success of our experimental study. We begin by discussing the most closely related examples of
CS education research concerned with code quality. In the remainder of the paper, we identify
the underlying design principles of our online interactive tutorial. We discuss the analysis results
that affirm the tutorial’s efficacy based on participant’s learning experiences, extracted from the
collected log data and the administered learning experience survey. Finally we highlight the key
implications and recommendations that can inform curricular interventions that integrate software
quality into introductory CS curricula.

2 Related Work

Recent CS education research in code quality identifies the growing need to treat the topic as an
important part of the CS curriculum. Several recent studies uncover not only that student programs
are rife with quality issues, but also that students remain largely unaware of the importance of
code quality and its improvement. Keuning et al. identified several code quality issues in a large
dataset of student-authored Java programs, as well as the undisciplined practices that led to these
issues3. Through interviews, Börstler et al. uncovered that students possess a low degree of skills
and knowledge about code quality, concluding that code quality should be discussed more in CS
education programs1. Other works focus on developing guidelines that help educators give code

1In text-based programming languages, this refactoring is known as Extract Method



improvement feedback to students4,2.

In the context of Scratch, the early works that explore code quality focus on identifying code qual-
ity problems10,11,12,13 and applying program analysis tools to help educators better understand the
quality of programs written by novice programmers14,15,16. These code quality tools are intended
mostly for educators as an aid in grading student programs or providing informal feedback. In
contrast, this work studies an intervention whose primary target are introductory students in need
of effectively learning programming fundamentals while embracing disciplined software develop-
ment practices.

Several recent works explore how software engineering principles and practices that promote code
quality can be integrated into the introductory CS curriculum. Hermans and Aivaloglou conclude
that it is feasible and useful to teach K-12 students software engineering principles and practices,
including code duplication17. When taught software development skills in a Scratch project-based
workshop, K-6 learners responded positively to the covered material, thus indicating that even
introductory students can be receptive to software engineering ideas, introduced at the appropriate
level18. The findings of these prior studies inspired our work to investigate into the efficacy of
teaching refactoring, an advanced software development technique, to novice programmers.

A few other works focus on educational tools that help novice Scratch programmers improve code
quality. Rose et al. developed Pirate Plunder, a game-based intervention that teaches learners about
custom blocks to remove code duplication in a Scratch-like environment. Although different from
our approach, their work reports encouraging results that show how learners can internalize code
improvement skills Having played the game, learners were observed to be more likely to apply
custom blocks to reuse code when programming in Scratch, as compared to non-game control
groups19. In our prior work, we added automated refactoring to Scratch and studied whether auto-
mated support motivates novice programmers to improve code quality20. This work builds on these
preliminary results with the goal of identifying the underlying design principles of our tutorial, an
educational intervention that we empirically showed effective in teaching novice programmers the
importance of code quality and its improvement practices.

3 Tutorial: Refactoring Code Duplication without Any Programming Experience

In this section, we begin by describing our tutorial, the platform we used in the experimental user
study that explores the impact of automated tools on novice programmers learning how to refactor
code duplication. Then, we discuss the underlying design principles that were identified as having
most impacted the tutorial’s learning efficacy.

3.1 Content Structure

Figure 1 depicts the tutorial’s Part 1 and Part 2. Because the study participants had no prior pro-
gramming experience, Part 1 introduced them to the basics of Scratch programming and procedural
abstraction. In classroom use, students already familiar with Scratch and the covered content may
safely skip this part. Then, Part 2 introduced the participants to code duplication and the EXTRACT

CUSTOM BLOCK refactoring. To clearly specify its objectives, each part includes an animation of
a correctly completed program’s intended behavior. Structured as a deck of learning cards, each



manual-
first

automated-
first

basics of 
Scratch

manual 
method

automated
method

basic slides 
along path

Part 1 Part 2

manual
method

automated 
method

refine all
slides

refactor 
"slide right" 
duplicates

refactor 
"slide up" 
duplicates

refine 
"slide right"

refine 
"slide up"

survey

Figure 1: Tutorial’s overall flow

containing step-by-step instructions, the resulting deck remained visible within our customized
Scratch programming environment for users to follow as they complete tutorial tasks. Because
the tutorial steps build on each other, the participants had to complete each step correctly before
proceeding to the next one.

The participants in both groups (MANUAL-FIRST and AUTOMATED-FIRST) learned how to refactor
by using both manual and automated methods but in different order. However, in this paper, rather
than focusing on ascertaining how automated tools impact learning experiences, we instead ana-
lyze which aspects of the tutorial’s design made it possible for novice programmers to learn basic
programming skills alongside real-world code quality issues and improvement.

Next, we describe each part of the tutorial in detail.

Figure 2: Screenshot of tutorial’s Part 1



Part 1: This part presents a short hands-on practice that covers the necessary basics of Scratch pro-
gramming including custom blocks, a procedural abstraction construct in Scratch. It helps learners
become familiarized with the basic Scratch programming interface for composing programs. It
then introduces custom blocks, how to create and use them to complete the overall objective for
Part 1: making a character jump to avoid touching the moving obstacles (Figure 2). The tutorial
introduces custom blocks by following the recommendations from the Creative Computing Cur-
riculum21, a Scratch instructor’s guide developed by the Harvard Graduate School of Education.
Specifically, learners work through the following sequence: 1) think about what custom block they
need to create, 2) create a custom block, 3) define the block’s body, and 4) use the created block in
their program.

Figure 3: Screenshot of tutorial’s Part 2; The skeleton project was scaffolded to help learners
visualize the program behavior when working on basic-slides task.

Part 2: This part guides learners to complete its objective by situating them in the scenario that
demands frequent code modifications, typical for the iterative software development process22.
Learners first complete the missing program part to make a character move within a grid of squares
(see Figure 3). The instructions specify “slide”, as a special movement of 100 units that moves
the character from one square to the next one, alluding to the use of procedural abstraction as the
recommended implementation of “slide”. Given the “slide right” code as an example, learners
complete the missing part to make the character slide through the specified path: “right”, “up”,
“up”, and “right”. The finished code contains two duplicate parts.

At this point, the tutorial presents the first refinement task (refine-all) that requires changing all
slide movements consistently, thus demonstrating how code duplication can make programs hard



Figure 4: Screenshots of instruction cards for different tasks: refine all slides (top), refactor slide
right duplicates (bottom left), and refine slide right (bottom right)

to understand and modify (see Figure 4, top screenshot). Then, it introduces learners how to carry
out the refactoring manually (see Figure 4, bottom left screenshot) and with automated tools. After
being introduced to each method, learners are instructed to refine the recently refactored sliding
implementation (see Figure 4, bottom right screenshot), as a way to demonstrate the beneficial
impact of custom blocks on code quality.

The tutorial explains how to carry out the EXTRACT CUSTOM BLOCK refactoring by hand by follow-
ing these steps: (1) identify the duplicate code parts, (2) create a custom block—a descriptively
named procedure with an empty body, (3) define the custom block in the procedure’s body by
making a copy of one of the duplicate parts to serve as the definition, and (4) replace the duplicate
parts with the calls to the newly created custom block.

When learning to refactor with the automated tool, all the participants have to do is to select an
automatically detected duplicate code segments, as highlighted by the tool and click the “Extract”
button, thus automatically transforming the selected segments into calls to a custom block.

3.2 Design Principles

This tutorial is an educational intervention with two key learning objectives. Upon completing
the tutorial, we expect learners to be able to 1) learn how to refactor code duplication in order to



systematically improve code quality and 2) grasp code quality concepts, developing an appreciation
for the importance of code quality and its systematic improvement practices. In retrospect, our
tutorial supports these learning objectives by following five design principles in its development.
We motivate each principle and explain how it manifests itself in the tutorial next.

1. Simple but representative examples: The tutorial explains how to refactor simple identical
duplicate code sequences that slide a character object. The goal is to replace these duplica-
tions with a single, reusable custom block. This refactoring use case is quite rudimentary
in the sense of replicating the simplest possible functionalities, introduced just before. Us-
ing such rudimentary use case can be viewed as a worked example, a simple example that
demonstrates the mechanics of how to perform a new task, an instructional strategy based
on cognitive load theory, applied in many areas including computer science23. By following
this rudimentary example, novice programmers acquire sufficient knowledge and skills to
apply this basic refactoring as part of their programming process.

Examples should match the programming knowledge already possessed by the target au-
dience. In our case, the example code contains basic programming concepts as well as the
programming constructs of sequences and loops, identified as appropriate for beginner learn-
ers in introductory CS education research24,25.

2. Engaging the learner: For learners to become fully engaged with the task at hand, they
need to understand the task and the subject computer code, used as an example for learning
how to refactor (the “sliding” code containing duplications). As opposed to displaying the
subject worked example code up front, the tutorial asked the learners to construct it for
themselves by completing a puzzle-like programming task (basic-slides) and refining them
(refine-all). This puzzle-like programming task helps sustain learner motivation in a style
similar to the ones commonly used in introducing learning activities to novice programmers
(e.g., Code.org online learning platform). More importantly, having written the necessary
code by themselves, learners are expected to understand the details of how the code works.
It is our goal to help learners become confident with the subject code and build a mental
model of how the refactored program changes structurally while retaining its behavior.

The design and implementation of our tutorial is tailored to encourage learners’ engagement
with the content materials, getting them in the loop of learning quality improvement. The
tutorial features a simple code check that gives on-demand feedback whether a learner cor-
rectly follows the provided instructions for a given task. According to Bandura’s cognitive
theory of self-efficacy26, allowing learners to check their own progress at a designated level
of proficiency impacts motivation positively. Constructivist theory27,28 also suggests that the
exchange of timely feedback can encourage learners to improve the quality of their work.
Aligning with these guiding learning theory, our tutorial kept learners engaged, so as to
increase their success rate of learning advanced code improvement technique.

3. Providing a relevant real-world context: We model our tutorial instructions as progressive
refinements, which often reflect an iterative process of software developers coming up with a
simple solution and iteratively improving it29. Situating learners in a real development con-
text provides a unique opportunity to convey the importance of code quality and its improve-
ment. It can be difficult to find simple examples that are also realistic. For code duplication,



one could create several duplications but they might not be convincing when looking at the
entire program. If the duplicate segments of program instructions appear artificial, it would
be quite hard to convincingly select the duplicate functionality to extract and also to come
up with a descriptive name for the extracted procedure.

Figure 5: Tutorial’s Part 2: A short note to help learners reflect on code quality

4. Encouraging reflective thinking: The tutorial content includes small breaks for learners to
reflect on the quality of their code they just worked on before and after they refactor their
code. For example, the refine-all task requires learners to make consistent changes in du-
plicate parts that make the character slide. Having modified the duplicated parts to refined
the “slide” functionalities, the participants were presented with a short note that guided them
to reflect on their experience of modifying and understanding duplicate code (see Figure 5)
before learning refactoring.

5. Scaffolding the learning: The tutorial loads up a skeletal Scratch project, scaffolded to en-
hance the introductory learning experience. For example, the project displays grid squares,
visual checkpoints and their behavior when touching the sliding character object, and path
tracing. All these additional aids provide helpful visual output that demonstrates how a pro-
gram’s behavior changes in response to source code modifications. Most importantly, by
observing the program’s output remaining the same as its structure changes, learners receive
a powerful yet easy-to-understand demonstration of two non-trivial software engineering
concepts: (1) the same functionality can be implemented differently; (2) refactoring is a
behavior-preserving transformation.

4 Method

We follow a mixed-method design. Specifically, we conducted an experimental study that teaches
novice programmers how to refactor code duplication. This study explores if the availability of
automated refactoring tool increases the effectiveness of novice programmers learning the sub-
ject. The study was conducted online via Amazon Mechanical Turk, with the participants admitted



on a rolling basis until reaching the target sample size of 24, spanning for three weeks in De-
cember 2019. The participants were divided into two equally sized groups (MANUAL-FIRST and
AUTOMATED-FIRST). Only the participants with no prior programming experience (i.e., those who
selected the lowest of the six levels: “I have never written any computer code.”) were admitted to
take a programming tutorial and a subsequent survey.

The collected evaluation data comprises: (1) learning performance data, based on the time taken
by each participant to complete each tutorial task and (2) survey questionnaire responses, which
reflect each participant’s self-reported learning experience.

In our study, both groups (MANUAL-FIRST and AUTOMATED-FIRST) experienced the same experi-
mental conditions but in different order. Despite this difference in conditions, the tutorial impacted
each group’s learning experience similarly, when accounted for the automated tool’s learning ef-
fect. In the following discussion, for brevity, we present the statistical results computed from the
data collected from the participants in the MANUAL-FIRST group only. However, when it comes to
open-ended responses, we present and carefully examine those of both groups to better understand
how the participants perceived the tutorial.

Survey Data: The survey data comprises the participants’ self-reported responses: the agreement
rating with a series of statements below on a five point Likert scale (Strongly disagree, Some-
what disagree, Neither agree nor disagree, Somewhat agree and Strongly agree). Additionally,
the participants were asked a few open-ended questions about their perception of the tutorial and
suggestions for improvement.

(A) I found learning how to extract a custom block ...
1. enjoyable
2. easy
3. helpful in understanding custom blocks

(B) Overall, I found Part 2 helped me understand why ...
1. duplication can make code hard to understand
2. duplication can make code hard to modify
3. EXTRACT CUSTOM BLOCK can make code easy to understand
4. EXTRACT CUSTOM BLOCK can make code easy to modify

5 Results and Discussion

On average, it took 50 minutes per participant to complete the entire study (tutorial and survey). We
provided minimal help to some participants via a live support feature of our online study website.
Most of the help was given for the tutorial tasks prior to the refactoring tasks, in which participants
were asked to fill in the missing parts to complete Part 2’s objective (basic-slides). Next, we present
the analyses and their results and discuss how they ascertain the tutorial’s efficacy.

5.1 Log data

Figure 6 shows the distributions of time data of 12 participants in the MANUAL-FIRST group for
each tutorial’s task. Several interesting observations can be made about how long the participants



0

500

1000

1500

p1
.b

as
ic−

sc
ra

tch

p1
.cu

sto
m

−b
loc

k

p2
.b

as
ic−

sli
de

s

p2
.re

fin
e−

all

p2
.m

an
ua

l−r
efa

cto
r

p2
.re

fin
e−

1

p2
.a

ut
om

at
ed

−r
efa

cto
r

p2
.re

fin
e−

2

Task

T
im

e 
(s

ec
s)

Figure 6: Distributions of time spent on each tutorial’s task ordered chronologically

spent going through each part of the tutorial. The majority of the participants spent most of their
time learning how to create and use a custom block in Part 1 (p1.custom-block). Novice program-
mers clearly went through a learning curve to grasp and use this procedural abstraction construct.
Nevertheless, this time investment helped them when they learned how to carry out a manual refac-
toring in Part 2 (p2.manual-refactor). The second longest task the majority of the participants spent
on is completing the puzzle-like task, filling in the missing parts that slide the character through
checkpoints (p2.basic-slides). They also spent as much time as in the previous task when refining
their duplicate slide functionalities, possibly long enough that, upon the tutorial’s guided reflec-
tion, they realized by themselves that it was inefficient to modify the duplicate code to refine the
slide functionalities. Having eliminated the duplicate code, the participants took less time to refine
the sliding functionalities in the two tasks (p2.refine-1 and p2.refine-2) combined.

Overall, the extent to which the participants spent time in each task was in line with our expecta-
tions. By adjusting some of these tasks, one could affect certain learning experiences (e.g., adding
more duplicate program segments may help further highlight the issues of code quality and its
improvement, albeit at the risk of overburdening the participants).

5.2 Survey Questionnaire

Learning motivation and engagement: Figure 7 visualizes the raw results of the participants’ level of
agreement with statements A1-3 for the tutorial’s Part 1 (the basics of Scratch and custom blocks,



top figure) and Part 2 (code duplication and EXTRACT CUSTOM BLOCK refactoring, bottom figure).
Their perception about the difficulty level differs noticeably: 83% of the participants found Part
1 easy, while only 50% found Part 2 to be so as well. All participants either somewhat agreed or
strongly agreed that they found Part 1 enjoyable. Similarly, a high percentage (92%) of the partic-
ipants either somewhat agreed or strongly agreed when asked to rate the same agreement for Part
2. The majority of the participants agreed to the statement that they found Part 1 and Part 2 being
helpful in understanding custom blocks. Although we have not asked in what way did each part
helped, these results show that learning about EXTRACT CUSTOM BLOCK possibly enhanced their
understanding about the purpose and usage of custom blocks. Despite various factors that could
have negatively impacted their experience of learning to refactor (e.g., the increased difficulty, the
tedious steps involved), the overall participants’ learning experience turned out to be quite posi-
tive. We take this results as a promising sign that the tutorial succeeded in engaging and motivating
novice programmers to learn how to refactor code duplication.

0%

0%

8%

100%

100%

83%

0%

0%

8%

enjoyable

easy

helpful in understanding custom blocks

100 50 0 50 100
Percentage

Response Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree

Strongly
agree

Overall, participants found Part 1...

0%

0%

8%

92%

92%

50%

8%

8%

42%

enjoyable

easy

helpful in understanding custom blocks

100 50 0 50 100
Percentage

Response Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree

Strongly
agree

Overall, participants found Part 2...

Figure 7: Participants’ self-reported learning experience for Part 1 and Part 2 of the tutorial

Code quality perception: Figure 8 visualizes the raw results of the participants’ level of agreement
about how useful they found the tutorial in helping them understand the importance of code quality
and its improvement practices. The majority of the participants agreed to the statement that the
tutorial helped them understand why EXTRACT CUSTOM BLOCK refactoring can make code easy to
understand (B3) and that EXTRACT CUSTOM BLOCK refactoring can make code easy to modify (B4).
However, they agreed less strongly that the tutorial helped them understand why code duplication
can make code hard to understand (B1), and similarly to the statement that the tutorial helped
them understand why code duplication can make code hard to modify (B2). The results show that
the tutorial was more effective in conveying the benefits of code improvement practices but less
so in the more subjective matters of the quality problems making code hard to understand and
modify.



0%

0%

50%

50%

100%

92%

50%

42%

0%

8%

0%

8%

Code duplication can make code hard to understand

Code duplication can make code hard to modify

Extract Custom Block can make code easy to
understand

Extract Custom Block can make code easy to modify

100 50 0 50 100
Percentage

Response Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree

Strongly
agree

Overall, Part 2 helped me understand why...

Figure 8: Participants’ perception of the tutorial’s efficacy in demonstrating the importance of code
quality and its improvement practices

Part 1’s learning experience: Participants expressed positive learning experiences about Part 1.
They found this introductory part of the tutorial fun, interesting, and educational. Some samples
of their responses are as follows:
“I had a fun time learning what I could do with the blocks”
“That was really interesting, I’ve always wanted to learn programming but was a bit anxious about
how difficult it might be and I was worried that I might not like it but this really helped out a lot.”
“I thought this was a lot of fun. After I got the instructions down it was super easy. It felt good to
complete something and make a block jump!”
“The instructions were clear and the exercises were helpful. Overall, it was fun and educational.”
“I think this style of programming is very interesting. I hope there’s more in the rest of this study.”
“I liked the visuals it helped me a lot. I also really liked how I could check each change and view
the results.”

Part 2’s learning experience: Several participants reported positive learning experiences. They
found the learning enjoyable and interesting. One participant felt “I would have enjoyed doing
more” while another said “It was fun and the program was intuitive. I could see it being a lot
of fun to work with and to learn code on.” Feeling appreciative of the learning experience, one
participant said, “Thank you for introducing me to something new!”

However, several participants found Part 2 challenging. One participant said, “I thought it went
pretty well. I was scared going into it, but proud that I was able to finish it with minimal struggle.”
One participant said, “It was a little bit more challenging but I really enjoyed it.” while another
said “It was still a bit intense for a beginner but after a deeper read, I could follow along. The
pictures of the blocks helped the tutorial immensely.”

Other responses suggest improvements to the tutorial. One participant said, “I liked how simple
the program made the overall concept – but the instructions were a bit convoluted for a beginner.”
Few other suggestions are mostly about improving the usability and accessibility of the tutorial
instructions when viewing the tutorial on a small screen.

Overall, the observed learning experiences demonstrate the tutorial’s learning efficacy for teaching
novice programmers to refactor code duplication. The high completion rate among the participants
indicates that the subject matter’s difficulty and examples are appropriate for the target audience.



Despite the challenging technical subject of Part 2, the participants’ positive self-reported experi-
ence demonstrates that our design principles are effective in engaging and motivating the learners,
who overwhelmingly found the scaffolded learning content helpful. Finally, using a convincing,
relevant, real-world context, as well as the reflective learning activities may explain why most
participants recognized the importance of code quality and its improvement.

6 Implications and Recommendations

Novice-level code quality principles and improvement practices: One caveat of using an extremely
straightforward example is that learners are unlikely to realize how error-prone refactoring can
be. When manipulating source code, a common strategy to prevent introducing errors is to use
automated programming tools that verify whether an attempted manipulation is safe. It would be
unrealistic to expect novice programmers to learn the inner workings of refactoring (e.g., check-
ing preconditions—what needs to hold true to ensure that the semantics of the refactored pro-
gram would remain intact). Nevertheless, even introductory learners are capable of grasping the
behavior-preserving nature of refactoring and can check this property by comparing the refactored
program’s behavior before and after the refactoring.

Integrating code quality topics in introductory curricula: Our evaluation results clearly show that
it is feasible and useful to teach code quality alongside the fundamental CS concepts. With the
tutorial’s material related to refactoring learned in a short time, a well-designed software quality
intervention can naturally fit the time and content constraints of typical introductory computing in-
class lessons. Our results call for computing educators to rethink what is possible when it comes
to introducing novice programmers to code quality, a topic traditionally reserved for introduction
only much later in the curriculum and often not raised unless students participate in real-world
project-based capstone courses.

An interesting finding is that it is ineffective trying to convince introductory students that a given
code snippet’s quality should be improved (small code examples are insufficient as a means of
conveying the idea of poor-quality software being hard to understand and modify). Indeed, certain
code quality concepts and practices cannot be effectively conveyed to introductory learners. As our
results suggest, program comprehension is highly subjective and may require different learning
activities to explain (e.g., peer code review). In general, it calls for further investigation which
concepts and skills can be effectively taught to novice programmers and how to design the required
interventions.

Our findings demonstrate that a properly designed self-paced interactive tutorial can motivate and
engage introductory learners to learn both the basics of programming and how to improve code
quality. Major introductory computing education platforms, such as Scratch and AppInventor30,
can have an important role to play. They can integrate code quality topics into their catalog of
programming tutorials as a means of raising the awareness among novice programmers about the
importance of code quality.

Placing the teaching of code quality in the context of Constructivist-based learning: Our approach to
introducing novice programmers to code quality aligns well with the Constructivist-guided process
“...of learning through experience” or more specifically “learning through reflection on doing”31,
an experiential learning process. Specifically, our goal is to guide students to develop their own



experiences about code quality and its importance. Instead of viewing code quality as a constraint
to students’ learning experiences, we can view the topic as a core competency, a solid foundation
that supports their learning in understanding both CS fundamentals and software development
practices. One of Scratch’s design goals is to encourage learning through creative exploration32. In
that context, code quality principles and practices play a role that is related to the design principles
and guidelines in other creative activities (e.g., graphic design, music remixing, etc.)

7 Conclusion

The motivation of this work stems from a phenomenon we observed investigating how automated
tools impact the learning effectiveness in the context of teaching refactoring to novice program-
mers. Specifically, we observed that novice programmers were quite receptive to the importance of
code quality and its improvement, contradicting the conventional belief that the topic is inappropri-
ate for introductory learners. This positive learning outcome led us to revisit a more fundamental
question of what the contributing factors to our tutorial’s effectiveness are, as an educational inter-
vention intended for novice learners.

In this paper, we have identified several key design principles that contribute to the tutorial’s effi-
cacy. Altogether, these design factors situate students in a simple but relevant code quality problem
and an improvement scenario, with a learning scaffolding enhancing their engagement and motiva-
tion. By analyzing the results of this learning experience on the sample of 24 novice programmers,
we further ascertain and explain the efficacy of our approach in reaching the following objectives:
motivate and engage novice programmers to learn how to refactor code duplication, while helping
them develop an appreciation for code quality and its systematic improvement. Our findings can
help inform not only similar curricular interventions, but also the design of introductory comput-
ing curriculum that integrates the topics of software quality and other fundamental principles and
practices in software engineering.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable feedback that helped
improve this manuscript. This research is supported by the National Science Foundation through
the Grant DUE-1712131.

References

[1] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara Hooshangi, Johan Jeuring,
Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar. ” I know it when I see it” perceptions of code quality:
Iticse’17 working group report. In Proceedings of the 2017 ITiCSE Conference on Working Group Reports,
pages 70–85, 2018.

[2] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. How teachers would help students to improve their code.



In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education,
pages 119–125, 2019.

[3] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in student programs. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science Education, pages 110–115,
2017.

[4] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. Designing a rubric for feedback on code quality in pro-
gramming courses. In Proceedings of the 16th Koli Calling International Conference on Computing Education
Research, pages 160–164, 2016.

[5] Iwona Miliszewska and Grace Tan. Befriending computer programming: A proposed approach to teaching
introductory programming. Informing Science: International Journal of an Emerging Transdiscipline, 4(1):
277–289, 2007.

[6] Mark J Van Gorp and Scott Grissom. An empirical evaluation of using constructive classroom activities to teach
introductory programming. Computer Science Education, 11(3):247–260, 2001.

[7] José-Manuel Sáez-López, Marcos Román-González, and Esteban Vázquez-Cano. Visual programming lan-
guages integrated across the curriculum in elementary school: A two year case study using Scratch in five
schools. Computers & Education, 97:129–141, 2016.

[8] Shuchi Grover and Roy Pea. Using a discourse-intensive pedagogy and Android’s App Inventor for introducing
computational concepts to middle school students. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 723–728, 2013.

[9] Martin Fowler and Kent Beck. Refactoring: Improving the design of existing code. Addison-Wesley Professional,
1999.

[10] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. Habits of programming in Scratch. In
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Ed-
ucation, ITiCSE ’11, pages 168–172, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0697-3. doi:
10.1145/1999747.1999796. URL http://doi.acm.org/10.1145/1999747.1999796.

[11] Jesús Moreno and Gregorio Robles. Automatic detection of bad programming habits in Scratch: A preliminary
study. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–4. IEEE, 2014. doi:
10.1109/fie.2014.7044055.

[12] F. Hermans and E. Aivaloglou. Do code smells hamper novice programming? A controlled experiment on
Scratch programs. In 2016 IEEE 24th International Conference on Program Comprehension (ICPC), pages
1–10, May 2016. doi: 10.1109/ICPC.2016.7503706.

[13] Peeratham Techapalokul and Eli Tilevich. Understanding recurring quality problems and their impact on code
sharing in block-based software. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC, 2017.

[14] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and Diana Franklin. Hairball: Lint-
inspired static analysis of Scratch projects. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 215–220. ACM, 2013.

[15] Jesús Moreno-León and Gregorio Robles. Dr. Scratch: A web tool to automatically evaluate Scratch projects.
In Proceedings of the Workshop in Primary and Secondary Computing Education, WiPSCE ’15, pages 132–
133, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3753-3. doi: 10.1145/2818314.2818338. URL
http://doi.acm.org/10.1145/2818314.2818338.

[16] P. Techapalokul and E. Tilevich. Quality Hound — an online code smell analyzer for Scratch programs. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 337–338, Oct 2017.
doi: 10.1109/VLHCC.2017.8103498.



[17] Felienne Hermans and Efthimia Aivaloglou. Teaching software engineering principles to K-12 students: A
MOOC on Scratch. In Proceedings of the 39th International Conference on Software Engineering: Software
Engineering and Education Track, ICSE-SEET ’17, pages 13–22, Piscataway, NJ, USA, 2017. IEEE Press.
ISBN 978-1-5386-2671-9. doi: 10.1109/ICSE-SEET.2017.13.

[18] Francisco J. Gutierrez, Jocelyn Simmonds, Nancy Hitschfeld, Cecilia Casanova, Cecilia Sotomayor, and
Vanessa Peña Araya. Assessing software development skills among K-6 learners in a project-based work-
shop with Scratch. In Proceedings of the 40th International Conference on Software Engineering: Soft-
ware Engineering Education and Training, ICSE-SEET ’18, page 98–107, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450356602. doi: 10.1145/3183377.3183396. URL
https://doi.org/10.1145/3183377.3183396.

[19] Simon P. Rose, M.P. Jacob Habgood, and Tim Jay. Using Pirate Plunder to develop children’s abstraction
skills in Scratch. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems,
CHI EA ’19, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450359719. doi:
10.1145/3290607.3312871. URL https://doi.org/10.1145/3290607.3312871.

[20] P. Techapalokul and E. Tilevich. Code quality improvement for all: Automated refactoring for Scratch. In 2019
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Oct 2019.

[21] Creative Computing Lab at the Harvard Graduate School of Education. Creative Computing Curriculum.
https://creativecomputing.gse.harvard.edu/guide/curriculum.html, 2020. Online;
accessed 24 November 2019.

[22] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave macmillan, 2005.

[23] Ben Skudder and Andrew Luxton-Reilly. Worked examples in computer science. In Proceedings of the Sixteenth
Australasian Computing Education Conference-Volume 148, pages 59–64. Australian Computer Society, Inc.,
2014.

[24] Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing the development of computa-
tional thinking. In Proceedings of the 2012 annual meeting of the American educational research association,
Vancouver, Canada, volume 1, page 25, 2012.

[25] LeChen Zhang and Jalal Nouri. A systematic review of learning computational thinking through Scratch in K-9.
Computers & Education, 141:103607, 2019.

[26] Albert Bandura. Social foundations of thought and action. Englewood Cliffs, NJ: Prentice Hall, 1986.

[27] Barbara Rogoff. Social interaction as apprenticeship in thinking: Guided participation in spatial planning.
American Psychological Association, 1991.

[28] Karen Swan. A constructivist model for thinking about learning online. In Elements of Quality Online Education:
Engaging Communities, Volume 6 in the Sloan-C Series Sloan-C Foundation, pages 13–31.

[29] Niklaus Wirth. Program development by stepwise refinement. In Pioneers and Their Contributions to Software
Engineering, pages 545–569. Springer, 2001.

[30] David Wolber. App Inventor and real-world motivation. In Proceedings of the 42nd ACM technical symposium
on Computer science education, pages 601–606, 2011.

[31] Patrick Felicia. Handbook of research on improving learning and motivation through educational games: Mul-
tidisciplinary approaches: Multidisciplinary approaches. iGi Global, 2011.

[32] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan,
Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, et al. Scratch: programming for all. Communica-
tions of the ACM, 52(11):60–67, 2009.


