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Abstract 

Student use of makerspaces can vary greatly, with some students confidently using the space 
throughout their academic career and others quickly losing interest or never participating. Many 
of the potential roadblocks are nuanced or unpredictable and can only be discerned when 
multiple makerspace design parameters are evaluated in reference to each other. This preliminary 
investigation models the makerspaces as a network of actors (students and tools) connected by 
individual student-equipment interactions. This representation allows for a modularity analysis to 
be performed, a tool primarily used by ecologists to study mutualistic networks in nature and 
investigated here for its potential to understand and design the makerspace from a systems-
perspective. The modularity analysis can highlight the different roles, for example what are great 
introductory or stepping stone tools, that the students and tools play within and their respective 
contributions to the larger makerspace. The results suggests that the analysis has the potential to 
support makerspace decision-makers with information such as: which students act as recruiters 
for and which are not fully using a makerspace (enabling them to potentially be connected), 
which tools have low usage rates and potentially discourage students from the space versus, and 
how students navigate the overall space to identify enhancements. 

Keywords 

Makerspaces; modularity analysis; network design; engineering education 

Introduction 
 
Makerspaces are a powerful new tool in the engineering educators’ toolbox, a growing body of 
empirical data demonstrates their benefits to learning, but more needs to be done to ensure they 
meet their full potential. This paper presents novel makerspace network analysis techniques to 
measure the underlying network structure that leads to successful and impactful makerspace 
functioning. The proposed analyses will model the makerspace as a network of interactions 
between tools and students. The resultant network-level understanding has the potential to 
empower educators to 1) identify and remove previously undiscovered hurdles for students who 
underutilize the space, 2) design an effective space using limited resources, 3) understand the 
impact of new tools or staff, and 4) create learning opportunities such workshops and curriculum 
integration that increase student return rates.  
 
Makerspaces provide a multitude of opportunities to enhance the existing engineering 
curriculum, allow students to learn through pursuing their own passion projects, and can create 
communities for students. To ensure positive impacts to students, much more research is needed 
to improve these spaces making them effective for all students. Network analysis enables 
problem understanding and solution generation at a systems level. A systems-level analysis of a 
network of industries, for example, (as opposed to designing each industry individually) was able 
to reduce the overall environmental impact of all industries in the network without increasing the 
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cost of the network (thereby maintaining profits) [1-3]. Similar system-analyses of water 
distribution networks and power grids have also resulted in designs that reduced raw material 
usage, improved use of available resources, and reduced economic damages following 
disruptions [4-8].  
 
Modeling and analyzing makerspaces as networks is expected to similarly maximize student 
impact (use of available resources) and increase the stability and longevity of the educational 
space. The modeling approach will provide a completely new perspective, highlighting new 
techniques for constructing and operating a makerspace in the most productive way possible.  
 
Prior Work on Makerspaces 
 
There have been a number of studies of academic and non-academic makerspaces that guide this 
research but generally limited empirical data demonstrating impact to students. In a paper touting 
the promise of makerspaces for education, Martin identifies three elements essential to consider 
in determining potential affordances: 1) digital tools, including rapid prototyping and low-cost 
microcontrollers; 2) community infrastructure, including events; and 3) the maker mindset, 
aesthetic principles, a failure-positive approach, collaboration and habits of mind [9]. Wilczynski 
identified best practices for those planning new campus spaces: the importance of user training, 
the need for a clear definition of its mission, proper staffing, promoting collaboration, alignment 
with student work schedules, and attention to creating a maker community on campus [10]. 
While not focused exclusively on makerspaces, a study of collaborative co-working spaces found 
that a student-led organizational structure, access to the latest technology, and possibly 
partnerships with for-profit makerspaces were important for growing and sustaining these spaces 
[11]. In an informal interview study of five new makerspace users at Tufts, O’Connell [12] found 
that accessibility led to changes in perception for participants with regard to making in general 
and seeing themselves as makers. Similar access-related themes such as ease of entry, initial 
orientation to the space, and the physical arrangement of the space have been identified by early 
efforts to apply ethnographic techniques to study makerspaces [13].  
 
The research on barriers to students’ participation in makerspaces remains limited. Still, some 
key barriers have been identified in the literature on best practices for makerspaces, and on 
creating inclusive environments. Work on best practices for makerspaces indicates that training 
and mentorship are essential, and a lack of training and mentorship are barriers [14]. Students 
sometimes do not feel qualified to enter the space [15]. Students may have difficulty finding the 
makerspace or knowing that the space exists. Strategic placement of makerspaces in high traffic 
locations may assist [16]. Individuals face fear of criticism and fear of failure [17]. Spaces that 
are loud, dusty, and disorganized can deter potential makers [17]. Narrow definitions of what is 
making, which do not include the more nontechnical creative areas like arts and crafts, has been 
identified in studies [14, 15, 18]. Gender imbalances in makerspaces can discourage women [18]. 
Many other barriers likely exist that research has yet to identify. The current work provides 
another avenue for identifying barriers.   

The proposed network modeling technique is reminiscent of actor-network theory (sociology of 
translation) from sociology [19], which has recently been applied by Braga and Guttmann to 
networks of knowledge exchanges between students [20] and by Biermeier to study emerging 
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properties in curriculums [21]. Lord et al. reframed the examination of persistence in engineering 
education by expanding the pipeline and pathway metaphor into an ecosystem. The ecosystem 
approach suggests more complex aspects of a system be recognized by offering a holistic 
understanding of educational experiences [22]. Lord et al. argue that the ecosystem approach 
offers insights into contextual factors such as multiple influential actors, gatekeepers, power 
relations, tacit knowledge, knowledge transmission, and disciplinary cultures. Much like this 
paper, we plan to apply network analysis techniques to makerspaces to provide richer insights.   
 
A survey measuring student participation in makerspaces and students’ self-efficacy for design 
related tasks [23] was deployed at Georgia Tech. The results of the study showed that students 
who are voluntary involved (not class-related) in the makerspaces, have statistically significant 
greater confidence, motivation, and expectation of success to complete design tasks and also 
lower levels of anxiety for design tasks [24-27]. This work also demonstrates that early 
engagement in the makerspace with a 3d printed project increases student voluntary (non-class 
related) participation later. A second qualitative study has shown that recurring catalysts 
(described by students) for engaging with a makerspace included friends, design classes, research 
projects, becoming shop hands/prototyping instructors, staff, and tours [15, 28].  Certain 
equipment like 3D printers and laser cutters are very commonly found in university makerspaces. 
Other equipment like computer stations and whiteboards are far less common but may serve 
critical roles in the spaces [29]. These pieces of equipment may be very important for students’ 
pathways into and through the spaces. Identifying with confidence those things that are 
“gateway” tools for the makerspace, especially when they are not obvious high-traffic items, is 
critical to improving student usage and return rates. Better understanding what aspects of a 
makerspace, especially relating to those tools and resources that are already present, can be better 
utilized to engage students has the potential to further increase these types of beneficial student 
reported feelings related to being a confident engineer. 
 
Modularity Network Analysis 
 
The modularity analysis is a network analysis technique often employed by ecologists to study 
ecosystems. Biological ecosystems have evolved over millions of years, creating complex 
networks of actors whose interactions create intricate thriving and resilient communities. 
Characteristics from biological ecosystems have been translated to human networks, imparting 
beneficial characteristics such as resilience, stability, and sustainability [2, 3, 7, 30-33]. Bio-
inspired power grids, water distribution networks, and industrial resource networks have all used 
an analogy with biological ecosystems coupled with network analysis and graph theory modeling 
techniques to gain structural and functional properties of ecosystems. A makerspace inherently 
seeks to support interactions between students and space that are mutually beneficial, a concept 
that is derived from the field of ecology and implies that interactions promote the well-being of 
both parties. A biological ecosystem primarily composed of these interactions is called a 
mutualistic network [34]. Applying the biological analogy to makerspaces enables both a 
modularity analysis to be performed and potential biological inspiration to be applied, improving 
both our understanding and the design of makerspaces. 
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Research Questions 
 
The modularity analysis conducted in this study is the first of its kind to be applied to 
makerspace design, but not for all human networks. Guimerà 2005 used the same modularity 
analysis for the global air transportation network and was able to conclude the number of 
nonstop connections and shortest path flights for each city have distributions that are scale free 
[35]. The identification of air travel roles of each city showed the potential for engineering more 
efficient networks and better connecting communities that are poorly connected. The 
disproportionate role of some communities in the transmission of infectious diseases such as 
severe acute respiratory syndrome could also be determined by this analysis. 
A modularity analysis for makerspaces has the goal of promoting student involvement and social 
networking on engineering projects involving fabrication. The research questions that must be 
answered to support this goal are as follows: 

1. Can modularity analysis describe which groups of students are most effectively 
navigating large portions of a makerspace? What cohorts are these? 

2. Can cohorts of students be analyzed to determine which activities such as class projects, 
pop-up classes, and club involvement are most effective in promoting student use of a 
makerspace? 

3. Can modularity analysis describe which tools are effective entry points into the maker 
space? Which tools need to be invested in monetarily or with training to promote 
colonization of students to new and more advanced areas in the makerspace?  

Methods 

 
Analyze Texas A&M University makerspace-student interaction data 
 
The dataset used here is from Texas A&M University and portrays the nature of what a larger 
dataset would look like for a centrally located makerspace. Data was collected by coordinators in 
the makerspace and authors did not participate in this process. The data recorded includes 
general access authorizations, specialty training certificates, fabrication requests, and equipment 
reservations. Over 4000 students were granted general access to the makerspace at Texas A&M 
in the three semesters before spring 2020. As a result, this dataset offers a uniquely current and 
sizeable foundation for this preliminary investigation into makerspace design.  
 
The data used does have some limitation: equipment reservations are limited to senior design 
teams and the equipment list covers only the reservation of storage spaces, build spaces, and 
workbenches. High-resolution tool-use data collection is set to begin spring of 2020 at Texas 
A&M, including details that will remove some of these limitations. 
 
Because of these limitations a hypothetical dataset was created to reflect student-tool 
interactions. This hypothetical dataset is guided by current data and engineering curriculum for 
Texas A&M, so the results are reasonable. These results present a picture of the design advice 
modularity analyses will be able to provide once additional data is available. 

Hypothetical student-tool network creation 
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A hypothetical-realistic dataset of student-tool interactions is used here as a proof of concept on 
informing makerspace design by student-tool interactions. While the data used in this paper is 
hypothetical, it is based on data that could be available for research once the study is approved 
by the internal review board. The current Texas A&M University data contains current login 
data, equipment use data, and the student curriculum flowchart.  
 
Login data includes student name, a global identifier, semester classification, and a reason for 
requesting access to the central makerspace. Currently, the reason for access and the equipment 
used is not specific enough for this analysis, but if the current work shows that this data is highly 
useful, it can be added and an interval review board approval will be completed. A global 
identifier allows for future tracking of the interactions of a student with the space. These login 
details allow the filtering of data by cohort. The equipment use data makes the hypothetical 
student-tool use data created reasonable for Texas A&M. As a proof of concept, the results from 
the hypothetical dataset are not meant to be accurate, but instead are intended to portray how a 
modularity analysis could inform value-creating design decisions in a makerspace. The standard 
student curriculum flowchart for Texas A&M, describing when classes should generally be taken 
in the undergraduate program, also informs the hypothetical-realistic dataset. A total of 100 
students and 23 tools (the list of tools included can be found in Table 2) was deemed sufficient to 
conduct a modularity analysis capable of producing non-obvious makerspace design advice. This 
assumption is based on a modularity analysis done by ecologists Oleson and Bascompte on 
plant-pollinator networks where the authors found nested and modular structures developed for 
networks larger than 50 species [36]. The 23 tools include things such as general computing and 
printing, hand tools, electronics, benches, lathes, mills, and senior design workstations. 

 

 

Figure 1: A small-scale representation of the makerspace network (a), the resultant digraph made 
of the interactions between students and tools in the space (b), and the documentation of 

interactions into a binary structural matrix (c). 
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The modularity analysis in this study uses a binary matrix, like the one shown in Figure 1c, to 
describe the student-tool interactions of the network (shown in Figure 1a and b). The 
hypothetical makerspace data is depicted in this matrix by listing tools and students as the rows 
and columns respectively. The cells in the matrix are filled as zeros if there is no interaction and 
ones if there is an interaction between a student and tool. Additional data about student cohorts 
such as semester, major, and gender are used to filter the students into cohorts to provide 
multiple perspectives of the roles played by each cohort. This single data structure serves as the 
input for all calculations made in the modularity analysis.  

Modularity analysis 
 
The two main values calculated in the modularity analysis are inter-module connectivity (c) and 
intra-module degree (z). These values depict the role students and tools act out in a makerspace. 
The values c and z are depicted in graphs filtered by student cohorts, showing the roles played by 
each cohort.  

There are many types of modularity algorithms inspired from simulated annealing that have been 
used in a span of situations from plant-pollinator networks to global air travel [35, 36]. The 
algorithms used in this study are from the renetcarto package in R version 0.2.4 [37]. These 
algorithms are used for bipartite and unweighted networks, meaning the network can be 
separated into two groups (tools and students here) and the interactions are then logged as a 
Boolean value of 1 or 0. Equations 1-3 are from rnetcarto: 
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Where NM is number of modules in the network, I s is number of links between tools and students 
within module s, I is number of links in the network, and k s is the sum of degrees of all 
tools/students in s. 
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Where k is is number of links of i to other tools/students in its own module s, k̄ s and SD ks are 
average and standard deviation of within-module k of all tools/students in s, k i is degree of 
species I, and k it is number of links from i to tools/students in module t. 
 
The rnetcarto package assigns the network into modules, needed to solve Eq. 1.  Calculating 
modularity does not directly inform makerspace design decisions, but it describes the degree to 
which modules dominate the network. Modularity (M, Eq. 1) is on a scale of 0-1, where 
completely random networks have a modularity of zero and networks that display high 
modularity (dense communities of interaction that have few interactions with other communities 
in the network) have a modularity of one. In this study, a module is a community of students and 
tools that are highly connected but may not often interact with other communities of students and 
tools. Equation 2 calculates the intra-module degree (z), serving as the y-axis in the results. 
Equation 3 calculates the inter-module connectivity (c) and serves as the x-axis in the results. 
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Intra-module degree (z) is the tools/students’ standardized number of links to other tools/students 
in the same module. This contrasts with inter-module connectivity (c), which is the level to 
which the tools/students are linked to other modules. A combination of the c and z values 
determines the role of each tool/student in the network.  
 
Following the modularity analysis, the z-c graph was created for freshmen students. Filtering for 
the freshmen students requires the selection of the appropriate class parameter stored with each 
student’s global identifier. This was the only filter used in this case study. Alternative cohorts of 
students that could be used to filter the data in a modularity analysis include gender, major, 
and/or club affiliation.  

Results and Discussion 
 
The modularity (M, Eq. 1) of the student-tool network was 0.297 with a total of 4 modules (NM 
=4) of varying size. This M value is on the lower end of the range (0-1) indicating that the 
hypothetical makerspace network is structured closer to a completely random network (M=0) 
than a highly connected network of unique community groups (M=1). The four module roles 
classified in this study are ultra-peripherals (low z and c), connectors (low z and high c), 
peripherals (low z and moderate c), and connector hubs (high z and c). The boundary values for 
these roles were set according to prior studies done on plant-pollinator networks and airport 
networks using the rnetcarto package [36-38]. These studies are similar to student-tool networks 
in that both network groups are unweighted and bipartite networks. The boundary values are: are 
ultra-peripherals ( z<2.5 and  c<0.05), connectors ( z<2.5 and  c>0.62), peripherals ( z<2.5 and  
0.05<c<0.62), and connector hubs ( z>2.5 and  c>0.3). 
 
The results indicate that the modularity role of a student or tool can tell a lot about how it is 
being used. A student in an ultra-peripheral role has a minimal number interaction across the 
entire makerspace, only one or two interactions total. Highly specialized tools, which require 
extensive training and certifications, are also expected to be ultra-peripherals (seen in Table 2). 
Peripherals are tools and students that interact primarily within a module, promoting further 
interactions within their immediate design space. They have slightly more interactions than ultra-
peripherals, but do not connect modules together. Student connectors can be thought of as 
students that successfully navigate the entire makerspace, participating in many distinct design 
modules and often bringing new students with them into the makerspace for the first time. Tools 
in the connector role (seen in Table 2) can serve as launching points to other modules, but may 
not necessarily promote further student interaction with tools in that module. Separating students 
into cohorts informs on how to move makerspace users from ultra-peripherals and peripherals to 
connectors, better connecting the makerspace and promoting student-student interactions by 
enhancing soft skills. Students that fulfill the connector role are more likely to feel confident in 
all types of makerspace tasks, and because the design process is often a team activity, connector 
students are more likely to act as mentors to others. Connector hubs can be thought of as 
launching pads for the makerspace, made up of the most general nodes in the space. These are 
tools that get students in the door and make them more comfortable navigating the space into 
more challenging design areas. Connector hubs are more likely to be tools that have reduced 
access requirements and provide high value to students in their class work and extracurricular 
pursuits. Table 1 shows a distribution relative abundance of the modularity roles for the students 
and tools in the hypothetical makerspace.  
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Table 1: Distribution of students and tools in the hypothetical makerspace network between the 

four modularity roles (ultra-peripheral, peripheral, connector, and connector hub). 

 Tools Students 
Ultra-
peripheral 

4.3% 21% 

Peripheral 56.6% 54% 
Connector 8.7% 25% 
Connector hub 30.4% 0% 

 
The results of the makerspace modularity analysis separated the students and tools into 4 
modules, with a modularity value (M, Eq. 1) of 0.297 for the makerspace. Table 1 shows a 
diversification of the students and tools within the hypothetical makerspace into different roles. 
Table 2 shows the 23 tools organized into their four different modular roles. The relative 
abundance of tools to students (23 to 100 respectively) is partially responsible for the two groups 
occupying largely different roles. This is because the makerspace interaction network is bipartite 
(every interaction is between a student and tool – no tool-tool or student-student interactions are 
allowed in the hypothetical makerspace network used in this study), where students interact 
directly with tools. With only 23 tools available to 100 students, the tools will experience far 
more interaction per tool than the students. Tools for this reason would generally express larger z 
and c values. The role of connector hubs, for example 3D printers are usually the main attraction 
of a makerspace to engineering students, involve a high number of connections to actors 
throughout the space resulting in a high intra-modular degree (z). Most of the students in the 
hypothetical makerspace never have high enough intra-modular degrees to reach this role, while 
29.2% of the tools in the network are highly connected enough to classify as connector hubs.  

 

Table 2: The 23 tools of the hypothetical makerspace, arranged in their 4 module roles as 
determined by Eqs. 1-3. 

Ultra-
peripherals 

Peripherals Connectors Connector Hubs 

CNC metal CNC Wood Soldering iron 
CAD 

station 
Specialty print 

 Water jet Protomat S103 Protolaser S General comp. 
 Band saw CNC vinyl  Hand tools 

 Drill press 
3D printer (high 

quality) 
 

Electronics bench 

 
Fluids 

workbench 
Welding  

 
Lathe 

 Rolling cabinet 
3D printer 
(standard) 

 
Mill 

 
Basement 

locker 
 

 Senior design 
workbench 
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Figure 2 displays the inter-module connectivity (c) versus the intra-module degree (z) for all 23 
tools and 100 students in the hypothetical makerspace. These two axes determine the role (ultra-
peripherals, peripherals, connectors, and connector hubs) of each student and tool interacting in 
the makerspace environment. Figure 3 displays only the 100 students in the makerspace, a subset 
of the same dataset used in Figure 2. Freshmen students are highlighted in orange (only 7 of the 
24 orange data points are visible because there are multiples of identical students within the 
population data - students with identical tool use patterns often occurs when they only use one or 
two tools). This is possible because Texas A&M University already tracks how many semesters 
the students using the makerspace had attended the university, enabling the hypothetical dataset 
here to realistically determine this information. The average inter-module connectivity (c) value 
is 0.12 for freshmen students compared to 0.39 for the entire population of students, suggesting 
that freshmen are much less connected to the makerspace at large when compared to their more 
experienced classmates. This result is not unexpected, freshmen represent the student body that 
has the fewest number of course or design group related opportunities motivating use of the 
space. The average the z value is –0.34 for freshmen students compared to –0.37 for the entire 
population of students. The similarity of these two values suggest that freshmen are just as likely 
to interact within a module as is the entire population of students. 
 
 

 

Figure 2: The intra-modular degree (z) vs the inter-module connectivity (c) is shown for 23 tools 
(red icons) and 100 students (green icons). The results highlight the four discovered modularity 

roles (ultra-perifpherals, peripherals, ocnnectors, and connector hubs) of the analyzed 
makerspace tools and student users – indicated with dashed lines.  
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Figure 3: The modularity roles of 24 freshmen (orange circles) vs. all 100 students (blue 
crosses), highlighting the effect of filtering the intra-module degree (z) vs the inter-module 

connectivity (c) of makerspace students. The results highlight the four discovered modularity 
roles (ultra-perifpherals, peripherals, ocnnectors, and connector hubs) of the analyzed 

makerspace tools and student users – indicated with dashed lines. 

 
Recognizing the role of a tool can help promote cost effective makerspace design. Understanding 
which tools are the connector hubs can provide a foundation for bringing new students into the 
makerspace. The connector hub tools in the hypothetical makerspace network used here are 
general computing and printing, hand tools, electronics, bench, lathe, mill, and senior design 
workstation. Two main takeaways from the set of tools used in the hypothetical makerspace here 
is that they either require no advanced skills or are required tools for classes in the engineering 
curriculum. Connector tools in a makerspace may be promising candidates to move toward 
connector hubs because of the relative ease to increase their use in the curriculum. For example, 
students may initially spend significant amounts of time in the makerspace using the whiteboards 
completing group projects or homework, and while they are there, they see a tool they would like 
to learn to use and a staff member with time to teach them. Only two connector tools exist in our 
hypothetical makerspace: the Protolaser S and the CAD station. These are tools students are 
required to use early in the engineering curriculum and then often voluntarily use later on for 
group design projects. Over 60% of the tools in our hypothetical makerspace fall into the 
peripheral or ultra-peripheral categories, as seen in Table 1. Examples of these tools include a 
CNC wood machine, soldering iron, bandsaw, waterjet, drill-press, and welding torch. Tools in 
the peripheral or ultra-peripheral categories require more extensive training and either do not or 
rarely show up in the curriculum as mandatory. Moving these tools into connector hub roles may 
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require things such as more available faculty or TAs in the design area or an increased focus on 
using these tools in the curriculum. Streamlining safety certifications to use specialized tools 
may also help with such a shift.  

Makerspace designers may want to consider the roles identified through a modularity analysis 
when purchasing equipment. The department that owns our hypothetical makerspace, if they 
wanted to further promote skills with CNC machines, the modularity analysis indicates that 
investing more in their current wood and vinyl CNC machines would be the most beneficial 
route, as the metal CNC was the only ultra-peripheral tool of the three. This ultra-peripheral 
status means that more makerspace-supporting resources such as curriculum changes and 
dedicated faculty help would be necessary before justifying a financial investment in additional 
metal CNC machines.  

The results of a modularity analysis can help recognize how students navigate the makerspace in 
a way that identifies enhancements for involving underrepresented groups and teamwork. Figure 
2 shows that the students have a much lower average z value than tools, largely a result of the 
bipartite network structure of the makerspace. Despite this, there is a large variation in inter-
module connectivity (c). Every student identified by the modularity analysis as being in an ultra-
peripheral role, and therefore having few interactions with tools, was also a freshman. This 
confirms that the actors in an ultra-peripheral role correspond with the logically appropriate 
actors in a makerspace. None of the students found in the modularity analysis to have connector 
roles were freshmen, pointing toward upper classmen as being pivotal to helping students 
colonize new modules in the makerspace. The average inter-module connectivity value for 
freshmen was more than three times lower than the average of the total set of 100 students. 
Future work will use real data collected from Texas A&M University, including identifiers for 
each student, to perform similar filters as the freshman filter used to create Figure 3, determining 
how other cohorts of students navigate the makerspace.  

Conclusions 
 
The modularity analysis of a hypothetical-realistic makerspace suggests its potential to support 
makerspace decision makers in improvements as a space grows, as well those creating a space 
from scratch. While more work needs to be done to fully understand the potential impact that a 
modularity analysis can have for both the creation and use of makerspaces, the analysis here was 
able to identify those areas where tool investment, curriculum planning, safety certifications, and 
faculty support could be best implemented based on the goals for the overall space. The 
modularity analysis found for the hypothetical makerspace investigated here that core course 
involvement is paramount to introducing students to new tools and areas within the space. The 
modularity results also show that the undergraduate classification (freshmen vs. others) is a valid 
way to sample interactions in the makerspace. Cohort filtering presents a rich method for gaining 
layered perspectives on how to promote the activities of all students.  For example in the space 
modeled, filtering for freshmen students confirmed that none of these students were actively 
using the entire makerspace. Using more nuanced cohorts, such as semester, major, and gender, 
in future work will help determine which makerspace activities (e.g. course-connected projects 
and popup classes) are most effective at moving students from peripheral roles (a student who 
only ever uses one tool in the space) to connectors (a student who successfully navigates the 
entire makerspace and introduces new students to the makerspace) with many tool interactions 
across the makerspace. Many interactions across the makerspace leads to more opportunities for 
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students to learn as they learn how to use new tools, teach and interact with other students, and 
work on new projects in the space.  Future work will also determine if the suggestions make 
based on this hypothetical data will change when real individual-tool data is made available at 
Texas A&M University.  
 
References 

[1] Y. Lu, B. Chen, K. Feng, and K. Hubacek, "Ecological network analysis for carbon 
metabolism of eco-industrial parks: a case study of a typical eco-industrial park in 
Beijing," Environmental Science & Technology, vol. 49, no. 12, pp. 7254-64, Jun 16 
2015. 

[2] A. Layton, B. Bras, and M. Weissburg, "Industrial Ecosystems and Food Webs: An 
expansion and update of existing data for eco-industrial parks and understanding the 
ecological food webs they wish to mimic," Journal of Industrial Ecology, vol. 20, no. 1, 
pp. 85–98, 2016. 

[3] A. Layton, B. Bras, and M. Weissburg, "Designing Industrial Networks Using Ecological 
Food Web Metrics," Environmental Science & Technology, vol. 50, no. 20, pp. 11243-
11252, 2016. 

[4] M. Chertow and D. R. Lombardi, "Quantifying economic and environmental benefits of 
co-located firms," Environmental Science & Technology, vol. 39, no. 17, pp. 6536-6541, 
2005. 

[5] H.-S. Park, E. R. Rene, S.-M. Choi, and A. S. F. Chiu, "Strategies for sustainable 
development of industrial park in Ulsan, South Korea--from spontaneous evolution to 
systematic expansion of industrial symbiosis," Journal of Environmental Management, 
vol. 87, no. 1, pp. 1-13, Apr 2008. 

[6] J. J. Reap, "Holistic biomimicry: A biologically inspired approach to environmentally 
benign engineering," Ph.D., Mechanical Engineering Georgia Institute of Technology, 
Atlanta, GA, 2009. 

[7] V. Panyam, H. Huang, K. Davis, and A. Layton, "Bio-Inspired Design for Resilient 
Power Networks," Applied Energy, vol. 251, 2019. 

[8] T. Dave and A. Layton, "Designing Ecologically-Inspired Robustness into a Water 
Distribution Network," Journal of Cleaner Production, vol. 254, no. 1, p. 120057, 2020. 

[9] L. Martin, "The Promise of the Maker Movement for Education," Journal of Pre-College 
Engineering Education Research, vol. 5, no. 1, pp. 30-39, 2015. 

[10] V. Wilczynski, "Academic Maker Spaces and Engineering Design," presented at the 
122nd ASEE Annual Conference & Exposition, Seattle, WA, June 14-17, 2015.  

[11] J. Myers, "Creating Collaborative Spaces at the University of Arizona: Ways to 
Encourage Interdisciplinary Research and Ideas," College of Architecture, University of 
Arizona, 2015. 

[12] B. O'Connell, "Going from Curious to Maker: New User Experiences in a University 
Makerspace," in VentureWell OPEN 2015 National Convention, Washington, DC, 2015, 
p. 1. 

[13] M. Penney et al., "'Making’ an Impact: An Ethnographic Approach to University Maker 
Spaces," in American Society for Engineering Education Annual Conference, New 
Orleans, LA, 2016. 

[14] Intel/Harris_Poll, "MakeHers: Engaging girls and women in technology through making, 
creating, and inventing," intel2014, Available: 



2020 ASEE Conference 

 

© American Society for Engineering Education, 2020 

 

https://www.intel.com/content/www/us/en/technology-in-education/making-her-future-
report.html. 

[15] M. Tomko, "Developing One’s “Toolbox of Design” through the Lived Experiences of 
Women Students: Academic Makerspaces as Sites for Learning " PhD Dissertation, 
Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 2019. 

[16] B. Levy et al., "MAKER: How to Make a University Maker Space," presented at the 
American Society for Engineering Education Annual Conference, New Orleans, LA, 
2016.  

[17] V. Bean, N. M. Farmer, and B. A. Kerr, "An exploration of women’s engagement in 
Makerspaces," Gifted and Talented International, vol. 30, no. 1-2, pp. 61-67, 2015/07/03 
2015. 

[18] S. Faulkner and A. McClard, "Making change: Can ethnographic research about women 
makers change the future of computing?," presented at the Ethnographic Praxis in 
Industry Conference, 2014.  

[19] M. Callon, "The sociology of an actor-network: The case of electric vehicle," in Mapping 
the dynamic of science and technology, M. Callon, J. Law, and A. Rip, Eds. London: 
Palgrave Macmillan, 1986, pp. 19-34. 

[20] M. Braga and G. Guttmann, "The Knowledge Networks in a Makerspace: the Topologies 
of Collaboration," International Journal of Science and Mathematics Education, vol. 17, 
no. 1, pp. 13-30, 2019/06/01 2019. 

[21] M. A. Biermeier, "Inspired by Reggio Emilia: Emergent Curriculum in Relationship-
Driven Learning Environments," National Association for the Education of Young 
Children, vol. 70, no. 5, 2015. 

[22] S. M. Lord, M. W. Ohland, R. A. Layton, and M. M. Camacho, "Beyond pipeline and 
pathways: Ecosystem metrics," Journal of Engineering Education, vol. 108, no. 1, pp. 
32-56, 2019. 

[23] A. R. Carberry, H.-S. Lee, and M. W. Ohland, "Measuring Engineering Design Self-
Efficacy," Journal of Engineering Education, vol. 99, no. 1, pp. 71-79, 2010/01/01 2010. 

[24] R. Morocz, "Classifying and Characterizing University Maker Space Users: A 
Foundation," M.S., Mechanical Engineering, Georgia Institute of Technology, Atlanta, 
GA, 2016. 

[25] R. Morocz et al., "Relating Student Participation in University Maker Spaces to their 
Engineering Design Self-Efficacy," presented at the ASEE's 123rd Annual Conference & 
Exposition, New Orleans, LA, 2016.  

[26] E. Hilton, "Approaches for the Development of Early Stage Design Skills " Ph.D. Ph.D. 
Thesis, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 2019. 

[27] E. Hilton, M. Tomko, A. Murphy, R. Nagel, and J. Linsey, "Impacts on Design Self-
Efficacy for Students Choosing to Participate in a University Makerspace," presented at 
the The 5th International Conference on Design Creativity, Bath, UK., 2018.  

[28] M. Tomko, M. Alemán, R. Nagel, W. Newstetter, and J. Linsey, "Changing the Narrative 
Around Making: Understanding Women’s Pathways into University Makerspaces," 
Journal of Engineering Education, in review. 

[29] T. Barrett et al., "A Review of University Maker Spaces," presented at the American 
Society for Engineering Education Annual Conference, Seattle, WA., 2015.  



2020 ASEE Conference 

 

© American Society for Engineering Education, 2020 

 

[30] A. Layton, B. Bras, and M. Weissburg, "Ecological Principles and Metrics for Improving 
Material Cycling Structures in Manufacturing Networks," Journal of Manufacturing 
Science and Engineering, vol. 138, no. 10, pp. 101002-1 – 101002-12, 2016. 

[31] J. Reap and A. Layton, "Lessons from Living Systems for the Development of 
Sustainable Industrial Resource Networks," Journal of Energy Challenges and 
Mechanics, vol. 4, no. 1, pp. 1-10, 2017. 

[32] C. Brehm and A. Layton, "Designing eco-industrial parks in a nested structure to mimic 
mutualistic ecological networks," Procedia CIRP, vol. 80, pp. 590-595, 2019. 

[33] T. Dave and A. Layton, "Bio-inspired design for resilient water distribution networks," 
Procedia CIRP, vol. 80, pp. 275-280, 2019. 

[34] D. H. Boucher, S. W. James, and K. H. Keeler, "The ecology of mutualism," Annual 
Review of Ecology and Systematics, vol. 13, pp. 315-347, 1982. 

[35] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral, "The worldwide air 
transportation network: Anomalous centrality, community structure, and cities' global 
roles," PNAS, vol. 02, no. 22, pp. 7794-7799, 2005. 

[36] J. M. Olesen, J. Bascompte, Y. L. Dupont, and P. Jordano, "The modularity of pollination 
networks," PNAS, vol. 104, no. 50, pp. 19891-19896, 2007. 

[37] G. Doulcier and D. Stoufer, "Rnetcarto: Fast Network Modularity and Roles 
Computation by Simulated Annealing," ed. GitHub, 2015. 

[38] R. Guimera, M. Sales-Pardo, and L. A. Nunes Amaral, "Module identification in bipartite 
and directed networks," Physical Review E, vol. 76, p. 036102, 2007. 

 


