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Who needs the method of sections and the method of joints? Use a 
unified problem-solving approach! 

 

Abstract 

Statics courses can sometimes give students the misconception that there are many different 
approaches to solving statics problems, such as the “method of sections” or the “method of 
joints.”  Students may also believe that trusses, frames, and machines are all fundamentally 
different and that they therefore require different approaches.  As a result, many students believe 
that there is a “right” approach to use in solving a particular problem and that they need to 
remember it and use it. In this paper, we present a simple, unified problem-solving approach for 
solving all statics problems, including particle problems and rigid body problems; the calculation 
of internal forces or external forces; and problems involving a frame, a machine, or a truss.  This 
approach is also applicable to solving problems in other courses such as Strength of Materials 
and Dynamics. In this approach, the first step in solving any problem is to articulate a “Strategy.” 
This simple step requires the students to take a few moments to reflect on the problem and write 
down a strategy rather than trying to pattern match or “find the right equation.”  If the strategy is 
Newton’s 2nd law, which it often is in Statics, then the next step is for students to “Choose a 
System.”  Students are required to define the system by drawing a dotted line around it or by 
stating the system in words.   Once a system is chosen, and only after it is chosen, then students 
draw a free-body diagram (FBD) for the system.  The mnemonic BREAD (B-Body, R-Reaction 
forces, E-External forces, A-Axis, D-Dimensions) has been found to be very helpful in teaching 
students how to draw complete and accurate FBDs. In this paper, we will present this problem-
solving approach with a specific focus on defining the system and drawing a complete FBD. 

Introduction 

Statics is typically the first engineering course students encounter, and it is often the first 
exposure students have to engineering problem solving. Statics is also one of the most 
foundational courses in the mechanical engineering curriculum; students will continuously draw 
upon the skills they learn in Statics throughout their engineering education. Students with a 
strong understanding of statics will likely have an easier time with related and more challenging 
concepts in subsequent courses. Specifically, Statics has been shown to be an effective predictor 
of how students will perform in Dynamics [1], and instructors in Capstone Design courses often 
state that lacking an understanding of statics concepts hinders achievement in design [2]. It is 
therefore worthwhile to examine common teaching practices in Statics and to develop 
instructional methods that will enable students to confidently apply the skills they learn in Statics 
to a wide variety of engineering problems.  

 



In many courses – Statics as well as others – it is common to present a solution process as 
tailored to a particular “type” of problem; for example, in Statics, students are taught separately a 
“method of sections” and a “method of joints” to solve for unknown forces acting on the 
members of a truss. Although this problem-solving structure may seem more procedurally simple 
for students, it creates the impression that the two types of problems are inherently different and 
must be solved differently, when in reality, the same foundational principles underlie both, and 
the choice of which method to use is simply one of convenience. This may teach students to rely 
heavily on identifying the “type” of problem they’re trying to solve, as well as an explicit set of 
steps associated with that problem type, rather than on fundamental engineering concepts. 
Therefore, we believe it is beneficial to present to students a more universally applicable 
problem-solving framework that is can be used for solving many different types of engineering 
problems.  

The systematic problem-solving approach presented in this paper is intended to free students 
from a reliance on limited problem-solving approaches that they may perceive as being 
applicable to only a small number of circumstances.  This approach emphasizes a few basic steps 
which can be applied to a wide variety of problems in statics or in other courses.  Several 
textbooks use a systematic, structured problem-solving approach, including Sheppard and 
Tongue [3], Plesha, Gray, and Costanzo [4], and more recently, Beer and Johnson et. al. [5]. In 
the engineering education literature, a variety of systematic approaches to problem solving have 
been proposed, including the Wankat and Oreovicz Model [6], the Plesh, Gray, and Costanzo 
Model [7], the Litzinger, Van Meter, Wright, and Kulikowich Model [8], and the Mettes, Pilot, 
Roossink, and Kramers-Pals Model [9]. A good summary of these approaches can be found in 
[10]. These models have many of the same steps, such as “list knowns and unknowns,” “identify 
assumptions/constraints,” “determine principles involved,” “draw a figure,” etc. The approach 
discussed in this paper is not as detailed or comprehensive as these approaches, but because it is 
relatively concise compared to these other approaches, it is the authors’ hope that it is more 
useful for students and can be easily implemented by them. Although the paper will focus 
primarily on solving problems in Statics, the general framework is applicable to other courses 
such as Dynamics, Strength of Materials, and Thermodynamics.  

A systematic approach to solving problems  

In this paper, we propose a unified problem-solving approach rather than approaches such as the 
“method of sections” or “method of joints.” A flowchart of this approach is shown in Figure 1. 
This figure is generally not presented to students because it can be a bit overwhelming when first 
seen.  The primary focus of this figure is on presenting the process when the strategy is applying 
Newton’s 2nd law (which is often the case in Statics), while other principles that may need to be 
used are included in the single block called “Apply a different strategy.” The boxes in red 
indicate branch points, making it clear that this is not a linear process. The two key steps we will 
focus on in this paper are identifying a strategy and defining the system.    

 



 

Figure 1 – Statics problem-solving approach flowchart 

Identifying what you want to find and what is given 

The first step in solving any problem is to clearly identify what is given and what needs to be 
determined. In most Statics books, unless the problem is written poorly or is intended to be a 
design problem, this information is typically found in the problem statement.  

Identifying a strategy 

This is one of the key steps in this approach. The purpose of this step is to force the student to 
reflect on the problem and think about principles rather than asking themselves the dreaded 
question, “What equation do I use?”  In Statics, sometimes students want to draw a FBD or use 
Newton’s 2nd law for every problem, but this is not always the correct approach.  Sometimes the 
correct strategy would be to use the definition of moment or the definition of the 2nd moment of 
area.  A listing of common strategies used in Statics is shown in Table 1.  This table also 
contains some common strategies used in Dynamics and Strength of Materials.  

 

 

Problem 

Identify what you want 
to find and what is given 

Identify and write 
down a strategy 

Define the 
system 

Draw FBD 
using BREAD 

Apply Newton’s 
2nd law 

Solve 
equations 

Is there another 
system? 

No 

Yes 
Is it Newton’s 

2nd law? 

No Yes 

No Yes 

Does number of 
equations equal 

number of unknowns? 

Apply a different 
strategy to get 

equations 

Sanity 
check 



 
Table 1 –  Sample strategies for several engineering courses.   

 
Course Sample Strategies 

Statics 

 Newton’s 2nd law 
 Definition of moment or couple 
 Definition of centroid  
 Definition of resultant force (distributed loads, for example) 
 Definition of 2nd moment of area or centroid 
 Geometric constraints 

Strength of 
Materials 

 Newton’s 2nd law 
 Definition of stress or strain 
 Stress-strain relationships  
 Deformation  
 Mohr’s circle 

Dynamics 

 Kinematics 
 Newton’s 2nd law 
 Work-energy 
 Impulse‐momentum 

 

From Figure 1, it is clear that if Newton’s 2nd law is not the appropriate strategy, or it has already 
been applied to every system in the problem, then additional equations need to be determined 
using information in the problem statement or one of the additional strategies shown in Table 1. 
If the strategy to be used is Newton’s 2nd law, the next critical step is to clearly define a system.  

Defining a system 

We require students to define a system by drawing a dotted line around the desired system on the 
original figure associated with the problem or by clearly defining it in words. For 3D problems, it 
is harder to draw a clear line around the system and see what is being included, so the authors 
recommend the system be clearly defined in words.  This is 
also a useful way to define a system when dealing with 
frames and machines.  The system should be chosen based 
on what the student is interested in determining.   

As an example of how to define a system, let’s look at the 
truss shown in Figure 2. (This figure and many others in this 
paper are modified from those found in Ref. [5].  One of the 
co-authors of this paper is a co-author of this textbook).  If 
the students are asked to determine the force in member AC, 
they could use the system shown in Figure 3, or if they are 
asked to determine the force in member BE, they could use 
the system shown in Figure 4. The free-body diagrams 
(FBD) associated with these systems are also shown in these 
figures. There is no need to call these the method of joints or 

Figure 2 –  Truss example used to show 
how to define systems 



the method of sections.  All students need to know how to do is to clearly define a system.  Once 
a system has been chosen, the next step is to have students draw a FBD using the mnemonic 
BREAD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drawing the FBD using BREAD 

A previous paper discussed two mnemonics that can be useful when drawing FBDs [9].  The 
mnemonic BREAD has been found to be very helpful in teaching students how to draw complete 
and accurate FBDs. How to use this mnemonic with a clearly defined system is described below.  

Figure 3 – System that could be used to solve for the force in member AC 

System 

𝐹஺஻ 

𝐹஺஼  

FBD for this system 

Figure 4 – System that could be used to solve for the force in member BE 

𝐹஼ா 
𝐹஻ா 

𝐹஻஽ 

FBD for this system 



B − Body: As discussed in the previous section, the system is defined by drawing a dotted 
line around it.  The body is everything inside the dotted line. 

R – Reaction forces: The reaction forces are found by examining the system boundary, 
determining where the system interacts with the surroundings, and representing these 
interactions as forces on the FBD.  Examples of how interactions between the system 
and the surroundings are represented on a FBD are shown in Table 2. Most Statics 
books have a table similar to Table 2. The main difference between those found in 
most textbooks and Table 2 is that we try to be very consistent in representing various 
interactions between the system and the surroundings.  For example, if the system 
boundary cuts a pin, then the effect of the surroundings on the system is represented 
as two orthogonal forces. This is true even if the pin is connected to a frictionless 
slider as shown in the 2nd row of Table 2. If the interaction is a frictionless surface, 
roller, or slider, then the interaction is represented as a single normal force. In many 
Statics books, the slider or roller is not included in the body that is used for the FBD. 
In Statics, this will not make a difference, but in Dynamics, where a roller or slider 
can have mass, it is important to include it in the FBD, and therefore, by requiring it 
in Statics, students are developing good habits that can carry over into Dynamics. 
When a two-force member is cut, then the interaction is represented as a single force 
pointing between the two endpoints of the two-force member. Finally, if a rigid 
member is cut, as in the last row in Table 2, the interaction is represented as a force 
parallel to the cut surface, perpendicular to the cut surface, and a moment.  

E – External forces: The external forces that need to be included on the FBD are weight 
and applied forces and/or moments that act on the chosen system. 

A – Axis: A coordinate system needs to be defined and drawn near the body that is to be 
used when applying Newton’s 2nd law.   

D – Dimensions: The only dimensions that are required to be put on the FBD are those 
that are necessary for the application of Newton’s 2nd law, such as angles to resolve 
forces or distances required when taking moments.   

 

  



 

Table 2 –  Partial system boundaries and how to include the interaction between the system and the 
surroundings at the system boundary on a FBD.  

 

Description Partial system boundary How to include the interaction on a FBD 

Roller/ 
smooth 
surfaces 
 
 
 
 
 
 

 
 
 
 
 
 

 

Frictionless 
Pin 
 
 
 
 

 
 
 

 
 
 
 
 

Rough 
surface 

 
                           
 

Fixed 
support 
 
 
 
 

                                

                             

Two-force 
member or 
cable 
 
 
 

  

Cutting a 
rigid 
member 
 

 
 

 

 

 

 

 

 



The remainder of the process 

For each system, Newton’s 2nd law can be applied, resulting in three equations for planar 
problems (∑ 𝐹௫ ൌ 0, ∑ 𝐹௬ ൌ 0, ∑ 𝑀௣ ൌ 0) or six equations for three-dimensional problems.  At 
this point, the students number their equations and make a list of their unknowns.  If the number 
of equations does not equal the number of unknowns, then more equations are needed.  As 
shown in Figure 1, the first question students should ask themselves when needing more 
equations is, “Is there another independent system?” If there is, then the process of defining the 
system, drawing the FBD, and applying Newton’s 2nd Law is repeated with the new system.  If 
there are no additional systems, then students are asked to identify another strategy such as the 
ones listed in Table 1.  Only when the number of equations equals the number of unknowns can 
the students solve the resulting equations.  This process places a priority on formulating the 
governing equations and deemphasizes the algebraic solution. Software tools such as MATLAB, 
Mathematica, Maple, or Mathcad make the solution of algebraic equations relatively easy. Once 
the equations are solved, students are asked to perform a “sanity check,” that is, to think about 
whether the answer makes logical/physical sense.  

Example showing how to this process 

In this section, we will present an example of how to use this approach, and in particular, we will 
focus on the importance of clearly defining a system and drawing a FBD for the system.   

Example Problem 1:  For the frame shown in 
Figure 5, determine the forces at pin C acting on 
member ABCD.  Assume the weight and all the 
dimensions are known.  

Solution:  Since we are asked to determine forces, 
our strategy is Newton’s 2nd law.  Next, we need to 
choose a system to analyze.  We try to stress that it 
doesn’t really matter what system students choose.  
It is true that some systems make the algebra easier 
than others, but if students are allowed to use 
programs such as MATLAB, Mathematica, Maple, 
or Mathcad to solve the resulting governing 
equations, it is not particularly important to choose 
a system that makes the algebra easy. Students can 
choose bar ABCD, bar CEF, or the entire setup as a 
system.  

The system boundaries and FBD for system ABCD are shown in Figure 6. The dotted red line 
indicates the system boundary, and where there might be confusion such as cutting the pin at C, a 
callout is used for clarification. Notice that in the FBD for ABCD, there are a total of six 
unknowns.  Newton’s 2nd law will only give us three equations, meaning that another system is 
required, for example system CEF, as shown in Figure 7. The reactions at C are drawn equal and 
opposite to those drawn in Figure 6, using Newton’s 3rd law. There are no additional unknowns 

Figure 5 –  Frame problem to illustrate 
the choice of systems 



in this figure, and we can write three equations for this system, so we will end up with a total of 
six equations and six unknowns.  Note that students could have chosen the system to be the 
entire setup, but this is not required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice in Figure 6 that when drawing the system boundary for ABCD, we are cutting the pins at 
A and C and through the two-force member BE.  If the students did not recognized BE as a two-
force member, they may have chosen the system boundary as shown in Figure 8. Notice that in 
the FBD for this system, there are a total of seven unknowns.  Therefore, students will need at 
least two more systems, such as bar CEF and bar BE as shown in Figures 9 and 10.  In the three 
FBDs shown in Figures 8-10, there are nine unknowns, and since we have three systems, we will 
be able to write a total of nine equations.  

Cut two-force 
member BE 

Cut at the pin, 
not bar CEF 

 

𝐶௫ 
𝐶௬ 

𝐹஻ா  

𝑇஽ீ  

𝐴௬ 

𝐴௫ 

System: ABCD FBD 

Figure 6 – System ABCD that cuts the pin at C and through the two-force member 
and the system’s FBD.  The dimensions are left off the FBD for clarity.  

System: CEF plus the weight 

𝐹஻ா  

𝐶௬ 

𝐶௫ 

𝑊 

FBD 

Figure 7 – System CEF plus the weight that cuts the pin at C and through the two-force 
member and the system’s FBD. The dimensions are left off the FBD for clarity. 
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𝐵௬ 

𝐵௫ 

Figure 10 – System BE that cuts the pins at B and E and the system’s FBD. The 
dimensions are left off the FBD for clarity. 

 

Cut at the pin 

Cut at the pin 
not bar CEF 

 

𝐶௫ 

𝐶௬ 

𝑇஽ீ  

𝐴௬ 

𝐴௫ 

𝐵௫ 

𝐵௬ 

Figure 8 – System ABCD that cuts the pins at B and C and the system’s FBD. The 
dimensions are left off the FBD for clarity. 
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y 
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𝐹஻ா  

𝐶௬ 

𝐶௫ 

𝑊 

Figure 9 – System CEF plus the weight that cuts the pins at C and E and the 
system’s FBD. The dimensions are left off the FBD for clarity. 
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Notice that if students try to cut one of the members, as in the system shown in Figure 11, the 
FBD will include the forces and moments at the cut.  They will need to do this when they want to 
find internal forces or moments such as when they need to draw shear and bending moment 
diagrams or determine internal stresses in a member.  

 

 

 

 

 

 

 

 

 

 

If the student had chosen a system that cut the cable connecting the weight to F, then on the FBD 
they would have included a tension, because when a cable is cut, as shown in Table 2, the force 
in the cable is represented by a tension.  For this example problem, it is true that the tension is 
equal to the weight, but in Dynamics classes, this is usually not the case, so by using a consistent 
approach for representing the interactions as system boundaries, students are developing good 
habits that are transferable to other courses.  A system that includes cutting the cable and the 
associated FBD is shown in Figure 12.  
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𝐹஻ா  

𝑉 
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𝑃 

Figure 11 – System that cuts bar CE and the system’s FBD. The dimensions are 
left off the FBD for clarity. 

 
𝐹஻ா  

𝐶௬ 

𝐶௫ 
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Figure 12 – System CEF that cuts the cable connected to the weight and pin C and 
the system’s FBD. The dimensions are left off the FBD for clarity. 
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Example Problem 2: Two traffic lights are supported as illustrated. Calculate the tensions in 
cable segments AB, BC, and CD and the corresponding cable angles α, β, and γ. The total length 
of the cable is 36 ft. 

Strategy: Since we are asked to determine 
forces, one strategy will be Newton’s 2nd 
law. A quick look at the setup tells us that 
we will only be able to generate a maximum 
of four equations from Newton’s 2nd law, but 
we have 6 unknowns. Since we are provided 
with dimensions and must determine angles, 
geometric relations will also likely be a 
strategy. 

System: Two systems that can be chosen are the traffic light at B and the traffic light at C as 
shown with the FBDs in Figures 14-15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis: Applying Newton’s 2nd law to the FBD in Figure 14 will yield two independent 
equations and four unknowns (TAB, TBC, α, β). Doing the same to the FBD in Figure 15 will yield 
another two independent equations and an additional two unknowns (TCD, γ). We are clearly still 

Figure 13 – Traffic lights problem 

Figure 14 – System traffic light B and its associated FBD. 
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y 

Figure 15 – System traffic light C and its associated FBD. 



two equations short. A student might be tempted to take traffic light B, traffic light C and the 
cable connecting them as their system, draw their FBD and apply Newton’s 2nd law, but neither 
of the two equations that will be generated are independent.  We stress that if there are only two 
objects, in this case the two traffic lights, there will only be two independent systems.  Thus, we 
have exhausted Newton’s 2nd law as a strategy to solve this problem. Since we are given the 
length of the cables and have to solve for angles, our second strategy is simply using geometric 
constraints. From the original diagram, we can observe the following two geometric relations:  

From the distance between the walls:  12 cos 𝛼 ൅ 12 cos 𝛽 ൅ 12 cos 𝛾 ൌ 35 

From the vertical position of the light at C: 12 sin 𝛼 ൅ 12 sin 𝛽 ൌ 12 sin 𝛾 

These two equations are independent from the previous ones, and no new unknowns are 
introduced. This brings the total number of equations and unknowns to six. The problem can 
now be solved for the unknowns. 

Classroom Observations and Pitfalls 

The authors of this paper have each adopted the system-driven approach to problem solving 
presented in this paper and have used it in Statics as well as in other courses such as Dynamics 
and Thermodynamics. This approach has also been applied by one of the authors at the United 
States Air Force Academy (USAFA) in a large multi-section offering of a combined statics and 
mechanics of materials class. Anecdotal evidence indicates that this approach led to improved 
student performance in the course.  In general, students who use this systematic approach seem 
to have an easier time applying fundamental principles to problems which do not fit the exact 
style of the examples they may have encountered during class. For instructors who may be 
interested in implementing this approach in their classrooms, this section identifies some 
common issues students face as beginners to this problem-solving approach and some 
suggestions for how to guide them in learning this process.  

First, it is common for students to be less comfortable with problem-solving approaches which 
allow for more freedom of choice. These solution strategies tend to be less procedural and 
require more care in justifying choices made and steps taken. For students who do not have a 
strong understanding of the fundamental concepts underlying Statics, it may be possible to 
follow a procedure (such as the method of sections) and to arrive at a correct solution, but a more 
open-ended problem-solving approach may prove challenging. A related issue is that students 
struggle specifically with choosing a system. It has often become ingrained in them through 
previous coursework that there is a single, direct, “right” path to a solution, and this habit can be 
difficult to break. There are several effective ways to counter this discomfort in the classroom. 
First, it is important to emphasize repeatedly that there may be a variety of possible paths to a 
correct solution which may involve different choices of systems and different strategies. And 
second, to support this idea, it may be beneficial to solve a single example using two different 
combinations of systems or strategies and to encourage students to pursue problem-solving 
approaches which are more intuitive to them. Finally, as students begin to gain some comfort 
with the problem-solving process, it is helpful to draw on their own intuition by asking them to 
contribute suggestions for choices of systems, choices of strategies, and other steps. This 



suggestion is especially helpful for showcasing that even if a particular choice of system doesn’t 
lead directly to the solution, it can often be combined with other systems which together will 
provide the necessary information.  

Students also tend to struggle with knowing which strategy to implement and when. For 
example, they have trouble identifying when choosing another system and writing Newton’s 2nd 
Law will no longer be helpful, requiring them to pursue other strategies (such as geometric 
constraints) instead. Most often, it is difficult for students to discern whether or not their choices 
of multiple systems are linearly independent. For example, consider the scenario shown in Figure 
16. A student may first choose Pulley A as a system (labeled “System 1”), then choose the 150 
kg weight as a system (labeled “System 2”) and write Newton’s 2nd Law equations for both. 
Lacking more equations to solve for all unknown variables, the student may next choose both the 
weight and pulley together as a third system (labeled “System 3”), failing to recognize that this 
choice of system is nothing more than a combination of the other two. An effective way to 
address this confusion is to spend some time while solving example problems in class showing 
what will happen if the third system is chosen and explaining why it will not provide new 
information.  

 

Figure 16. Choosing linearly independent systems  

 

Conclusions 

In this paper, we have presented a unified problem-solving strategy for Statics, but we have 
focused on its usefulness when applying Newton’s 2nd law.  The key step when starting any 
problem is to begin with reflection and ask, “What is the strategy?”  If the strategy is applying 
Newton’s 2nd law, then the next key step is to clearly “Define the system.” This is done by 
drawing a dotted line around what is being set aside for analysis.  Once a system is defined, we 
stress the importance of consistency when drawing the FBD by examining where the system 
interacts with the surroundings at the system boundary. We do not have any quantitative 
assessment results indicating that this method improves students’ problem-solving abilities, but 
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the anecdotal evidence from the authors’ many years of teaching indicates that students benefit 
from this systematic approach.  

 

Disclaimer:  The views expressed in this article are those of the authors and do not necessarily 
reflect the official policy or position of the United States Air Force Academy, the Air Force, the 
Department of Defense, or the U.S. Government. Distribution A. Approved for public release, 
USAFA-DF-2020-27: distribution unlimited. 
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