
Paper ID #30821

WIP: Building a Bridge Between Hackathons and Software Engineering
Capstones Through Adaptive Expertise

Cecilia La Place, Arizona State University, Polytechnic campus

Cecilia La Place is a first-year Ph.D. student at Arizona State University (ASU) studying Engineering
Education Systems & Design. She has received her M.S./B.S. in Software Engineering through an ac-
celerated program at ASU. She began researching hackathons after she joined the Fulton Undergraduate
Research Initiative (FURI) in her junior year. This stemmed from her love of learning in hackathons
having participated in numerous hackathons from as far west as Southern California to as far east as
Pennsylvania.

Dr. Shawn S. Jordan, Arizona State University, Polytechnic campus

SHAWN JORDAN, Ph.D. is an Associate Professor of engineering in the Ira A. Fulton Schools of En-
gineering at Arizona State University. He teaches context-centered electrical engineering and embedded
systems design courses, and studies the use of context and storytelling in both K-12 and undergraduate
engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in
Electrical and Computer Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded
projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering De-
sign Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the
Future?,” and is a Co-PI on the NSF Revolutionizing Engineering Departments grant ”Additive Innova-
tion: An Educational Ecosystem of Making and Risk Taking.” He was named one of ASEE PRISM’s ”20
Faculty Under 40” in 2014, and received a Presidential Early Career Award for Scientists and Engineers
from President Obama in 2017.

c©American Society for Engineering Education, 2020

Work In Progress: Building a Bridge Between Hackathons and

Software Engineering Capstones Through Adaptive Expertise

Abstract

As hackathons become more commonplace and accessible at universities around the world,

surges of undergraduate Computer Science and Software Engineering students can be found

attending these events to have real world development experiences. Meanwhile, faculty find

themselves continuously adapting themselves and their curriculum to prepare students to be

adaptive experts, one who leverages prior or similar knowledge to solve new problems in new

contexts, when they enter the workforce. Capstones and culminating experiences test students’

abilities to be adaptive experts, but students are not always prepared to meet the challenge.

Hackathons present a unique but accessible opportunity to gain more adaptive experience prior

to and during capstone experiences. In this work in progress pilot study, the hackathon and

capstone experiences of graduated software engineering students are compared through an

adaptive expertise framework to begin exploring how hackathons can supplement academic

experiences.

Introduction

Educators face a difficult problem: teaching students how to solve problems they have never

seen before. Despite their best efforts, some students express feelings of unpreparedness when

entering the workforce as an intern or new full-time hire. Students in Computer Science (CS) and

Software Engineering have begun to leverage coding marathons known as hackathons to ease

this concern, believing they are developing real world experience in the process.

In the past decade, hackathons have been on the rise, and CS and software students are eagerly

throwing themselves into hackathons. Warner and Guo found that student participants say

hackathons give them more learning and networking opportunities than their schooling (2017).

The goal of these 36-hour coding marathons is not to encourage malicious activity such as

breaking into systems (e.g. hacking into emails). Instead, they encourage developing technical

solutions to problems presented or designing projects around themes (Briscoe & Mulligan,

2013). However, few understand what other impacts hackathons have. Even less understand how

hackathons impact students. Some work has begun to address knowledge transfer within

hackathons, specifically how students are sharing and receiving knowledge ((La Place et al.,

2017)). There remains a missing link in understanding what knowledge students bring into

hackathons and share with other participants, and how students use software process in their

hackathon projects.

This work in progress pilot study looks at a group of students from a project-based

undergraduate software engineering program at Arizona State University (ASU). The program

was designed to develop each student into an “agile engineer, a lifelong learner with a

comprehensive set of skills appropriate to the needs of today and tomorrow” (Roberts et al.,

2007) Students in this program have been taught to apply skills learned through project-based

courses with the intent of also learning how to contextually apply knowledge to solve different

problems (Gary, 2015). For students in this opportunistically structured program, hackathons

present a potentially familiar environment though shorter in duration. The projects developed in

each capstone and hackathons will allow for an exploration into a selection of skillsets software

engineers bring to hackathons, and the processes used in their projects both consciously and

unconsciously.

This work will inspire a series of research following knowledge transfer within hackathons as

more domains such as engineering, math, science, and art join the event and shape development

processes. Though motivational studies on hackathons are thorough, considering how these

motivations play into the projects developed at hackathons may lend to a deeper understanding

of student experiences, learning possibilities, and potential career-defining moments that can be

leveraged by university courses.

Literature Review

Hackathons

In order to understand knowledge transfer, we must first understand the environment in which it

occurs. Hackathons have received varied levels of attention in research, news, and communities.

CS and software engineering students flock to hackathons around the world eager to build

something with their friends, win a prize, and learn something new (Pedra, 2019). The

community is growing too as more engineering and non-engineering disciplines attend (Pedra,

2019). The hackathon culture is rapidly expanding from where it first started in the Northeastern

US, becoming a worldwide phenomenon (Swift, 2019).

Research on hackathons have categorized the many different types that exist such as tech and

focus centric (civic oriented) (Briscoe & Mulligan, 2013) or as 24-hour, industry, or competition

hackathons (Porras et al., 2018). Others have focused on hackathons in industrial settings,

identifying hackathons as a new way to innovate by leveraging companies own employees

instead of their research teams (Flores et al., 2018; Komssi et al., 2015). At a collegiate level, a

majority of hackathon research is centered around discovering what students think of hackathons

(Warner & Guo, 2017) or using hackathons as pedagogy to reinvent classroom experiences

(Calco & Veeck, 2015; Gama et al., 2018). Hackathons are also being used as a way to develop

solutions to existing problems such as encouraging CS interest in college students (Mtsweni &

Abdullah, 2015), diversifying tech (Richard et al., 2015), or resolving local community concerns

such as homelessness (Linnell et al., 2014) or self-harm (Birbeck et al., 2017). Other community

efforts appear in civic hackathons, where governments leverage open source development and its

local community of amateur to professional developers (Gama, 2017a). Despite the numerous

ways that hackathons can be used to impact other people, classes, and communities, there is little

work on how hackathons impact its participants.

The largest accessible group of research participants, undergraduate STEM students, are also the

least studied in the literature. Aside from the previous examples, preliminary research in

collegiate hackathons has identified small scale knowledge transfer within teams ((La Place et

al., 2017)). One of the only mixed-methods approaches confirmed student motivations are

centered around learning and networking, but also began to elicit from a small population why

some students do not attend hackathons (Warner & Guo, 2017). Current research understands

why students go to hackathons, but not how the hackathon experience affects participants, nor

what hackathons provide for students or educators outside of the main motivators (Briscoe &

Mulligan, 2013).

Adaptive Expertise

In order to develop engineers that are “experts who can adapt to novel situations and learn”

(Schwartz et al., 2005) we must “situate the research in a setting that allows—in fact requires and

rewards—learners to use knowledge in novel ways, i.e., to be innovative,” (McKenna, 2007).

However, Schwartz, Bransford, and Sears mention that having students apply their skills in

capstones after minimal exposure to thinking courses is not enough to promote adaptive

expertise (2005). They refer to Hatano and Inagaki’s 1986 work in which they believe long-term

processes are critical for adaptive expertise development (Hatano & Inagaki, 1986). In short,

adaptive expertise must be practiced repeatedly over time which traditional lecture-based

curriculum does not always allow for. As a result, students first exposure to adaptive expertise is

in their capstones or culminating experiences at the end of the degree. However, some academic

programs allow for the opportunity to conduct adaptive expertise-based research.

Adaptive expertise research is frequently situated in design challenges, education reform, and

knowledge transfer. In Peng et al’s work, two groups of undergraduate students across all

academic years were asked to create a CAD design from a real-life object and a drawing (2014).

The study focused on evaluating contextual exercises to measure and help the development of

adaptive expertise characteristics in the classroom. In another study, Vanasupa et al establish that

developing motivations to learn and making value visible is critical for adaptive expertise

development over time (2010). Meanwhile, McKenna sought to understand how design

knowledge transferred between design experiences (2007). Design of problem solutions and

curricula are extremely popular due to the need to create versatile engineers that can solve new

problems, but these approaches are not without their limitations.

In practice, there have been other drawbacks to studying adaptive expertise in academics. The

caveat of adaptive expertise when coupled with knowledge transfer are “transfer studies

focus[ing] too narrowly on measuring ‘replicative’ or procedural knowledge,” (McKenna, 2007).

Furthermore, McKenna argues that “traditional transfer approaches do not focus on capturing

types of knowledge individuals are capable of transferring into new situations, or on the types of

resources that better prepare students for subsequent learning” (2008). In order to effectively use

this framework, this study must overcome the limitations of past works.

Addressing the limitations allows for the adaptive expertise to bridge the gap between

knowledge transfer and software development process. Hackathons are a prime environment for

adaptive learning in that learners design their own experience and use of knowledge. Motivated

by prizes and other motivations, teams must design projects that satisfy prize criteria, and

provide them with a competitive edge against other teams competing in the category. No project

will be the same as another within a hackathon even within the same prize category. The

frequent occurrence of hackathons coupled with unique project experiences creates an ever-

changing space to study adaptive expertise in action.

By comparing capstone and hackathon experiences, how knowledge is transferred between the

two can be identified, and what preferred resources for problem solving can be elicited. Software

process has been found in civic hackathons, where governments use public transparency to

crowdsource software, but in modified forms (Gama, 2017b). However, this study was

conducted outside of a collegiate environment and does not clarify the development expertise of

the participants interviewed which could have ranged from amateur to professional. Previous

work on knowledge transfer within collegiate hackathons highlighted some resources

participants used, but was limited in understanding the extent of what knowledge was brought

into and out of a hackathon and did not address the process in which students worked on projects

(La Place et al., 2017).

Methods

To extend the previous knowledge transfer work and software development work, we offer the

following research questions:

1. What technical knowledge do students use in capstones and hackathons?

2. Where do students learn the knowledge used in capstones and hackathons?

3. How does the software development process used by students differ between capstone

and hackathon projects?

This is a qualitative pilot study meant to fuel future research on knowledge transfer between

hackathons and academic experiences. The nature of hackathons often results in participants

designing and developing a project that results in learning new skills. Despite this being a short-

term event, ASU software engineering students have a very similar experience over a longer

period by developing projects that apply the required skills and concepts within a classroom

setting.

Following IRB approval and receiving participant consent, qualitative interviews from five

graduated software engineering students were collected using an artifact elicitation methodology

(Douglas et al., 2015) leveraging an adaptive expertise framework (Schwartz et al., 2005). The

interviews underwent preliminary analysis using Glaser and Strauss’s grounded theory (1967)

and thematic analysis (Saldaña, 2012) to develop an overall understanding and familiarity of the

data for this work in progress.

Context

ASU’s undergraduate software engineering students are an ideal population to look at. Students

who have taken the full curriculum have been subject to semesterly project-based courses that

have them designing a project to help them develop key software skills over time. Each year

builds upon the previous year’s skills, thus creating a long-term process development approach.

The first year and a half of the program begins with introducing students to programming

concepts and other general sciences (ASU Software Engineering Major Map). In the second half

of the second year, a project spine is introduced in the form of a software development project

class. Every semester, students extend their software development knowledge. Throughout junior

to senior year, students are also expected to take classes in specific focus areas of their choosing,

which may also employ project-based course structures (ASU Software Engineering Major

Map).

More specifically, the software engineering curricular design has sophomores learning individual

professional skills and data structures and algorithms through a semester project, juniors

designing and implementing focus area concepts (Web, mobile, or game development) in a year-

long project, and seniors synthesizing advanced concepts in their industry capstone project over

their final year (Gary, 2015). Though hackathons are short-form experiences, no two projects are

ever alike, much like the projects found in this curriculum (Gary, 2015). Students within this

program have been taught to synthesize and apply concepts across different problem contexts.

The participants in this pilot study have attended hackathons across the United States. The

hackathons described have all been collegiate hackathons supported by the Major League

Hacking (MLH) organization and as a result were all similar in structure. An MLH-supported

hackathon begins with an opening in which the organizers describe the themes and prizes

available to the participants. Throughout the weekend, participants have access to free food, can

contact mentors for help, and workshops for learning experiences while they work on their

hackathon projects. At the end of the hackathon, participants are invited to demonstrate their

project to other participants, visitors, and judges.

Participants

As a result of strict selection criteria for the study, it was most appropriate to use snowball

sampling. Five participants were contacted via email and interviewed either in-person or

remotely. The participant needed to have been through the sophomore, junior, and senior project

courses of the ASU software engineering program. They must not have been under a non-

disclosure agreement (NDA) from when they completed their capstone in order to protect both

the participant and the researchers from accidental NDA breaches. Finally, they must have been

to at least one hackathon within two years of their capstone. These criteria set the stage for a

comparison of skillsets developed as a result of the program and hackathon experience. Though

it was not a requirement that they have graduated, the results of the sampling led to only

graduated students being available for interviews. The use of graduated students provided the

opportunity to have the participants reflect on their past experiences having completed their

capstones and hackathons. As a result of the selection criteria, some of the participants shared

either a capstone experience or a hackathon experience with at most one other participant.

Demographic data for these participants were not collected.

Data Collection

Participants were asked to bring two artifacts, their capstone project and a recent hackathon

project, and then participate in artifact elicitation interviews (Douglas et al., 2015). Artifact

elicitation seeks to understand information about the artifact, and information surrounding when

and how the artifact was constructed. By using the artifact as a focus point to understand how the

builder was involved with the creation of the artifact, we can also understand what knowledge

was present, obtained, and used in its creation. Artifact elicitation has previously been used to

understand “the knowledge skills and attitudes,” (Douglas et al., 2015), “the process of designing

technology to support familial relationships (Paay et al., 2009), and understanding youth design

(Eyerman et al., 2018) in engineering contexts. For this study, artifacts were used to help

participants reflect on their project and the process in which it was built in order to elicit rich

description. Artifacts were not collected but were used a memory device throughout the

interviews. Participants were free to share the artifact with the researchers during the interview

but were not required to do so.

The semi-structured interview protocol was developed based on the adaptive expertise

framework (Schwartz et al., 2005) and situated in capstone and hackathon experiences based on

the first author’s experiences. Interviews were each an hour but were split into two parts. Each

part was 30 minutes and covered each project. If there was time at the end of the interview,

participants were asked to reflect and describe perceived comparisons between their project

experiences. Some questions from the overall interviews are as follows in Tables 1 and 2:

Questions Research Question

Tell me about an instance where you had a roadblock in your project 1, 2

How did you go about navigating that roadblock? 1, 2

Tell me about your personal development process in this project 3

Tell me about the process your class required for this project 1, 3

Table 1. Capstone Project Interview Questions

Questions Research Question

How did you come up with the project? 2,3

Tell me about an instance where you had a roadblock in your project 1, 2

How did you go about navigating that roadblock? 1, 2

Tell me about your process for this project 3

If you were to add a new feature to your project, what would it be

and how would you do so?

1, 3

Table 2. Hackathon Project Interview Questions

Information about some decisions that occurred during the project’s construction may be missing

within the interview due to lack of perceived importance from the engineer being interviewed.

As a result, there may be gaps in the processes that are derived from these interviews.

Validity

Interviews were transcribed by the researchers to develop familiarity with the data and ensure

accurate transcriptions. Member checking was also employed to build trust with the participants

and ensure they had full control over the data they provided for this study. Participants were

asked to review the transcribed interviews and make corrections, clarifications, and other

modifications as needed. Participants were also asked to select a pseudonym or confirm a

suggested pseudonym if they were unable to provide one for anonymity in this study.

Analysis

Preliminary analysis was conducted on the transcribed interviews in a qualitative analysis

program known as Dedoose using a grounded theory approach to create a high-level thematic

understanding of the data. The approach used Glaser and Strauss’s constant comparative method

(1967) which involves identifying “incidents” that are then coded into categories and compared

to other coded incidents. The categories for this study were created using an In Vivo coding

method (Saldaña, 2012), using the participants words to create the code, and compared to other

participant’s incidents to determine applicability. Next, the codes were reduced by categorizing

the preliminary codes into presenting themes. Finally, a model of the relationships between the

themes was developed.

Preliminary Results

Theme Definition Example

Challenge Challenge refers to any time a

participant encounters a

perceived blockage in their

work. This can be technical,

physical, and emotional. It

can often be as a result of

lack of knowledge or lack of

available resources.

“Plus, we spent a good chunk

of time, I want to say several

weeks, debugging,

debugging, debugging, until

finally we had a good work

around, and I do remember

this memory distinctively of

the capstone because I always

think of when employers ask

difficult challenges you had

to face and how you worked

around it and this was by far

one of the most difficult

technical challenges I had

throughout my

undergraduate.” – Frankie

“Break it Down” “Break it Down” refers to

when participants assess a

problem and describe discrete

actions to attempt to solve it.

This can be separating a team

into groups or individual

tasks or laying out a personal

course of action for a specific

or general problem.

“Using that information, we

were able to then say okay

what would be 5 meters in

front of me assuming the

camera was pointing straight

forward. Place a point 5m in

front of me. And now draw a

line between where the

camera is currently located on

the ground to the point.” -

Porter

Minimum Viable Product

(MVP)

MVP refers to when

participants describe what

their project or component’s

success criteria is. This can

come in the form of formal

and informal requirements,

“I think that pushing it that

extra 10% was the biggest

push to reach the MVP that

we had because it’s given it

was a capstone it was more of

a tech demo showing can we

diagrams, and user design. It

is closely linked to the

following theme.

do this and the answer is,

‘yeah, we can just a little

more and we can get there.’”

- Porter

Priority Evaluation Priority evaluation refers to

when participants identify a

need to re-evaluate the state

of the project. This can come

in the form of identified

constraints such as time,

stakeholder requirements, and

project needs. It can also

appear as adjusting the MVP

due to the constraints.

“Eventually, since time was a

constraint and we just needed

to get it working and we were

constrained on how long we

had to work on the project,

we decided there was a

different implementation of

SocketIO for Unity, but it

was part of a Unity plugin or

package that was paid. We

ended up just buying that

license to use that and it

worked, 100% fine. They had

a trial that we had used

beforehand to validate that it

actually worked.” - Mark

Table 3. Preliminary Themes

Challenge

The theme of challenge was apparent from the start. When participants were prompted to

describe impediments, issues, and problems encountered in their projects, they often expressed

feeling challenged, much like Frankie’s code example in Table 3. Their perceived challenges

were knowledge gaps when they did not know what they needed to know to complete their

project. Porter describes the challenge of drawing a line in their capstone project, stating that “it

took [his team and him] quite some bit to figure out what [they] had, how to basically draw a line

between where the camera was located and some arbitrary distance 5m in front of [them].” Porter

mentions that the technology and features that their team needed did not exist yet due to the

library’s “pre-release/pre-alpha” state. Frankie, similarly, consistently describes the challenges of

learning Virtual Reality and Augmented Reality frameworks and techniques in a time where it

was still a new field, and few mentors were available.

Challenges also appeared as features that would not come together as easily as planned, such as

Mark’s experience with a familiar library in both his capstone and hackathon project. In his

capstone project, he found himself having problems integrating the library. To work on the

problem, he “opened GitHub issues” for the library before “attempt[ing] to fork the library and

fix the issue [him]self.” He and his team did not want to pay for the alternative library for their

platform, but unfortunately, ended up having to as a result of time constraints. The library was

used again for his hackathon project, but this time was free and open source for the platform he

was using. However, it was a matter of detangling logic that challenged him. Notably, every

participant’s challenge was considered resolved in some way if it allowed them to continue on

with the project, even if was not solved as originally planned.

“Break it Down”

Frequently, participants broke down the steps they took to solve problems, broke up teams to

tackle different issues and tasks, and described their typical approach to resolving knowledge

gaps. Stepwise descriptions litter the interviews when participants were asked to describe their

various processes as exhibited in the code example in Table 3. When planning a project in

capstone and hackathon environments, individuals or groups were selected to accomplish

specific categories of tasks such as frontend sub-teams and backend sub-teams. In some of these

sub-teams, further identification and divvying of tasks occurred. To acquire new knowledge and

face new technology, Alex described breaking the task into smaller accomplishable

programming tasks that built up to the original task’s main goal. Frankie mentioned that breaking

the task into smaller parts allowed for rapid prototyping of new components that once successful

and refined, could be integrated into the main project.

Regardless the project, all participants use this technique to handle the challenges they face. By

taking the task or goal and making smaller accomplishable tasks, Alex conveyed that they

“gained confidence” through “little wins” that allowed them to tackle bigger and more difficult

challenges in unfamiliar knowledge spaces. As a result of diagramming and requirements

experience, Frankie frequently identified key inputs, outputs, and functionalities of projects he is

about to begin in order to start compartmentalizing how the project can be built from the bottom-

up.

Minimum Viable Product (MVP)

Throughout both capstone and hackathon projects, participants always returned to their MVP to

ensure they were on the right track. Both hackathons and capstones had demonstrative elements

that required the participants to develop their project in a way that was functional and could be

used by stakeholders and possible users in a live demonstration indicated by Porter in Table 3.

As a result, it was important to the participants to understand and distinguish from the start of

each project what is the MVP.

“I think that especially for a hackathon type setting it’s important to focus on what is

your MVP and getting to that point. A lot of the ideas that are tossed about are […]

going to be added to the important things we need to do and that’s going to be added to

the MVP or that’s cool, goodbye we have 48 hours left” - Porter

In both environments, formal and informal uses of requirements elicitation and diagramming of

the project occurred. Formal uses typically involved following classroom requirements and

extensive documentation. Informal uses did not involve any documentation aside from the

occasional free form diagram or discrete requirements between sub-teams to ensure component

integration success. As seen from Porter’s excerpt, the MVP took form conversationally as key

ideas were kept and requirements were designed. It is important to note that MVP’s in

hackathons are not always met as show in the following quote from Alex:

“I was working on one very specific thing and other members were working on very

specific things. It ended up not... It didn’t end up fully coming together. There was a lot of

brand new stuff that we were doing.” - Alex

Requirements in hackathons are dependent on the team and how responsibilities are broken

down. An excerpt from Mark’s hackathon project shows a slightly contrasting way that he

planned his work with his teammate.

“Especially since we had divided the work between the frontend and the backend. We

had to come up with the requirements between them so that we weren’t working on two

totally independent things so that they would be able to connect.” – Mark

The capstone course, as Frankie mentions, involved following a “strict and orderly” project

lifecycle. He describes how “[his team] spent a good few months on design and then [they]

started working on requirements and then coding and then testing and then finally deployment.”

Though this makes for a stark contrast between the environments, we still see evidence of

software development process in the project developments.

Priority Evaluation

When participants were not on the right track or had constraints affecting project progress,

priorities were always re-evaluated to determine the next steps that were necessary to develop the

MVP. Time was a constant constraint in both capstone and hackathon environments, and often

determined whether specific libraries, methods, or frameworks would be used. At times,

constraints also affected the timeline of feature development and coding habits when paired with

specific lifecycle and course requirements.

In capstone, priorities were time and course requirements. In Mark’s example in Table 3, he

mentions that time constraints led to buying a license for an alternative to the library they were

trying to use. In regard to course requirements, Frankie describes a “lingering pressure to get

some code done in the sprint just to satisfy our stakeholders.” As a result, he says he and his

team “started kind of aimlessly coding pointless things to add to this just to say [they] got the

code done.” The time constraint can also lead to “blue sky features” being planned, but never

actually executed as Seth explains.

Hackathons present some different constraints besides time. In the case of Alex’s experience, it

was only his first hackathon and did not expect the environment he was, “it was kind of like that

hierarchy of needs.” Though he did reach his goal, he focused more on the “other things in [his]

brain that [he] was trying to take care of,” to start. As a contrasting point, Seth found out his

original project goal was “easier than [they] thought it would be so [they] kind of just kept adding

things to make […] it feel like an actual experience that you would remember.” For Seth, the priority was

to make his hackathon project a memorable experience.

Figure 1. Preliminary Process Model

Preliminary Model

The preliminary model in Figure 1 shows the problem-solving process that the participants

employed in both projects. First, they identified a challenge to tackle. Next, they broke down

what it would take to resolve the challenge. Third and fourth, they cycled between checking what

needed to be accomplished to achieve their MVP and what the current constraints of the product

were. At times, they may run into new challenges, thus starting the overall cycle again, or have

succeeded, and move on to the next challenge in the project. There is also the possibility that

they have addressed all challenges or have completed the project, therefore ending the cycle.

Conclusions and Next Steps

In this work in progress pilot study, we have leveraged adaptive expertise in two unique project

development environments. We have identified some preliminary themes about how students

approach structured projects such as capstones, and messy projects such as hackathons. These

students employ formal and informal uses of software process such as requirements development

and various diagramming methods. In both environments, students broke down the challenges

they faced into manageable parts and referred to their MVP to guide feature development and

decision making. The constraints of each environment require participants to constantly evaluate

the state of their project and make adaptations as problems arise.

The next steps for this project involve conducting analysis using a more rigorous set of coding

methods: process coding, and versus coding (Saldaña, 2012). Process coding will highlight

specific techniques and methods participants use to problem solve, debug, plan, design, and work

on their development projects. As a result of using an artifact elicitation interview, we will be

able to understand the subconscious decisions and processes behind the artifact’s creation. To

better draw comparisons between the two environments, versus coding between hackathons and

capstones will be used. Similarly, pattern coding will address similarities between the two

environments in greater detail.

This pilot study will then capture the experiences of undergraduate students at ASU still in their

capstones and obtain more real-time reflection on projects and work toward achieving theoretical

saturation. When considering Walther’s concept of theoretically validating the process of making

the data (Walther et al., 2013), a purposive sampling approach will be limited by the lack of

voice from students who have an incomplete experience or are not from the software engineering

program. Therefore, software engineering undergraduate students will be selected across the in-

person and online ASU software engineering students who are currently in or have already

completed their capstone course. Having both in-person and online students account for

differences that could be present in the software engineering bachelor’s program.

Finally, innovations continue to change the face of technology, and engineers must rise to meet

that challenge. This work opens a conversation on how to support student development outside

the classroom. Not all classrooms have the opportunity or freedom to teach adaptive expertise to

students. Faculty are already working to develop students into adaptive experts, but non-

classroom experiences may provide a supplemental benefit toward this goal.

References

ASU Software Engineering Major Map. (n.d.). Arizona State

University. https://webapp4.asu.edu/programs/t5/roadmaps/ASU00/TSSERBS/null/ALL/

2020

Birbeck, N., Lawson, S., Morrissey, K., Rapley, T., & Olivier, P. (2017). Self Harmony:

Rethinking Hackathons to Design and Critique Digital Technologies for Those Affected

by Self-Harm. Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems - CHI ’17, 146–157. https://doi.org/10.1145/3025453.3025931

Briscoe, G., & Mulligan, C. (2013). Digital Innovation: The Hackathon Phenomenon.

http://www.creativeworkslondon.org.uk/wp-content/uploads/2013/11/Digital-Innovation-

The-Hackathon-Phenomenon1.pdf

Calco, M., & Veeck, A. (2015). The Markathon: Adapting the Hackathon Model for an

Introductory Marketing Class Project. Marketing Education Review, 25(1), 33–38.

https://doi.org/10.1080/10528008.2015.999600

Douglas, E., Jordan, S., Lande, M., & Bumbaco, A. (2015). Artifact elicitation as a method of

qualitative inquiry in engineering education. Proceedings of the American Society for

Engineering Education (ASEE) Annual Conference and Exposition, 26.235.1-26.235.10.

https://doi.org/10.18260/p.23574

Eyerman, S., Hug, S., McLeod, E., & Tauer, T. (2018). Uncovering K-12 Youth Engineering

Design Thinking through Artifact Elicitation Interviews. 11.

Flores, M., Golob, M., Maklin, D., Herrera, M., Tucci, C., Al-Ashaab, A., Williams, L., Encinas,

A., Martinez, V., Zaki, M., Sosa, L., & Pineda, K. F. (2018). How Can Hackathons

Accelerate Corporate Innovation? In I. Moon, G. M. Lee, J. Park, D. Kiritsis, & G. von

Cieminski (Eds.), Advances in Production Management Systems. Production

Management for Data-Driven, Intelligent, Collaborative, and Sustainable Manufacturing

(Vol. 535, pp. 167–175). Springer International Publishing. https://doi.org/10.1007/978-

3-319-99704-9_21

Gama, K. (2017a). Crowdsourced Software Development in Civic Apps—Motivations of Civic

Hackathons Participants: Proceedings of the 19th International Conference on Enterprise

Information Systems, 550–555. https://doi.org/10.5220/0006377005500555

Gama, K. (2017b). Preliminary Findings on Software Engineering Practices in Civic

Hackathons. 2017 IEEE/ACM 4th International Workshop on CrowdSourcing in

Software Engineering (CSI-SE), 14–20. https://doi.org/10.1109/CSI-SE.2017.5

Gama, K., Alencar Gonçalves, B., & Alessio, P. (2018). Hackathons in the formal learning

process. Proceedings of the 23rd Annual ACM Conference on Innovation and Technology

in Computer Science Education - ITiCSE 2018, 248–253.

https://doi.org/10.1145/3197091.3197138

Gary, K. (2015). Project-Based Learning. Computer, 48(9), 98–100.

https://doi.org/10.1109/MC.2015.268

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for

qualitative research. Transaction Publishers.

Hatano, G., & Inagaki, K. (1986). Two Courses of Expertise. In Child development and

education in Japan (pp. 262–272). H. Stevenson, H. Azuma, & K. Hakuta (Eds.), New

York: Freeman.

Komssi, M., Pichlis, D., Raatikainen, M., Kindstrom, K., & Jarvinen, J. (2015). What are

Hackathons for? IEEE Software, 32(5), 60–67. https://doi.org/10.1109/MS.2014.78

La Place, C., Jordan, S., Lande, M., & Weiner, S. (2017). Engineering Students Rapidly

Learning at Hackathon Events. Proceedings of the American Society for Engineering

Education (ASEE) Annual Conference and Exposition.

Linnell, N., Figueira, S., Chintala, N., Falzarano, L., & Ciancio, V. (2014). Hack for the

homeless: A humanitarian technology hackathon. IEEE Global Humanitarian

Technology Conference (GHTC 2014), 577–584.

https://doi.org/10.1109/GHTC.2014.6970341

McKenna, A. F. (2007). An investigation of adaptive expertise and transfer of design process

knowledge. Journal of Mechanical Design, 129(7), 730–734.

McKenna, A., Linsenmeier, R., & Glucksberg, M. (2008). Characterizing Computational

Adaptive Expertise. 13.288.1-13.288.11. https://peer.asee.org/4415

Mtsweni, J., & Abdullah, H. (2015). Stimulating and maintaining students’ interest in Computer

Science using the hackathon model. The Independent Journal of Teaching and Learning,

10(1), 85–97.

Paay, J., Sterling, L., Vetere, F., Howard, S., & Boettcher, A. (2009). Engineering the social: The

role of shared artifacts. International Journal of Human-Computer Studies, 67(5), 437–

454. https://doi.org/10.1016/j.ijhcs.2008.12.002

Pedra, E. (2019, September 3). Hackathon Demographics—Who’s Going to MLH Hackathons?

Major League Hacking News. https://news.mlh.io/mlh-hackathon-demographics-09-03-

2019

Peng, X., McGary, P., Ozturk, E., Yalvac, B., Johnson, M., & Valverde, L. M. (2014). Analyzing

Adaptive Expertise and Contextual Exercise in Computer-Aided Design. Computer-

Aided Design and Applications, 11(5), 597–607.

https://doi.org/10.1080/16864360.2014.902693

Porras, J., Khakurel, J., Ikonen, J., Happonen, A., Knutas, A., Herala, A., & Drögehorn, O.

(2018). Hackathons in software engineering education: Lessons learned from a decade of

events. Proceedings of the 2nd International Workshop on Software Engineering

Education for Millennials - SEEM ’18, 40–47. https://doi.org/10.1145/3194779.3194783

Richard, G. T., Kafai, Y. B., Adleberg, B., & Telhan, O. (2015). StitchFest: Diversifying a

College Hackathon to Broaden Participation and Perceptions in Computing. Proceedings

of the 46th ACM Technical Symposium on Computer Science Education - SIGCSE ’15,

114–119. https://doi.org/10.1145/2676723.2677310

Roberts, Chell, Morrell, D., Henderson, M., Danielson, S., Hinks, R., Grondin, R., Sugar, T., &

Kuo, C.-Y. (2007, June). An Update On The Implementation Of A New Multidisciplinary

Engineering Program. 2007 Annual Conference & Exposition, Honolulu, Hawaii.

https://peer.asee.org/2964

Saldaña, J. (2012). The coding manual for qualitative researchers. Sage.

Schwartz, D. L., Bransford, J. D., Sears, D., & others. (2005). Efficiency and innovation in

transfer. Transfer of Learning from a Modern Multidisciplinary Perspective, 1–51.

Swift, M. (2019, September 30). Major League Hacking (MLH) is coming to APAC! Major

League Hacking News. https://news.mlh.io/mlh-is-coming-to-apac-09-29-2019

Vanasupa, L., Stolk, J., & Harding, T. (2010). Application of Self-Determination and Self-

Regulation Theories to Course Design: Planting the Seeds for Adaptive Expertise. 26(4),

914–929.

Walther, J., Sochacka, N. W., & Kellam, N. N. (2013). Quality in Interpretive Engineering

Education Research: Reflections on an Example Study: Quality in Interpretive

Engineering Education Research. Journal of Engineering Education, 102(4), 626–659.

https://doi.org/10.1002/jee.20029

Warner, J., & Guo, P. J. (2017). Hack.edu: Examining How College Hackathons Are Perceived

By Student Attendees and Non-Attendees. Proceedings of the 2017 ACM Conference on

International Computing Education Research - ICER ’17, 254–262.

https://doi.org/10.1145/3105726.3106174

