
Paper ID #30290

Work in Progress - Mathematical software and programming preparation of
undergraduate engineering students in mathematics courses

Mrs. Johannah L. Crandall, Washington State University

Johannah Crandall is a PhD student in Mathematics and Science Education, with research interests in-
cluding undergraduate engineering education, especially transferable mathematical knowledge for use in
modeling software and discrete solvers.

Dr. Kristin Lesseig, Washington State University Vancouver

Kristin Lesseig is an Associate Professor of Mathematics Education in the College of Education at Wash-
ington State University Vancouver. She earned her PhD at Oregon State University and currently teaches
elementary and secondary mathematics content and methods courses as well as doctoral level courses
focused on research in mathematics and science learning at WSUV. Kristin’s research focuses on mathe-
matical knowledge for teaching proof and the design of professional learning experiences that can support
teachers’ ability to promote mathematical reasoning in middle and high school classrooms. Kristin served
as principal investigator on a 3-year Math Science Partnership grant designed to support middle grades
teachers in implementing STEM Design Challenges aligned with CCSSM and NGSS content and practice
standards and continues to collaborate on STEM-related projects.

c©American Society for Engineering Education, 2020

 1

Work in Progress: Mathematical software and programming preparation of

undergraduate engineering students in mathematics courses

Introduction

This paper is reporting on work in progress investigating the perceived and actual contributions

mathematics and engineering departments make to the software and programming preparation of

undergraduate engineering students. Engineering students often must depend on multiple

departments within a university for the various components of their degree program, including

not only the department housing their core engineering courses, but also the mathematics

department, among others. Recognizing that these departments can function differently, and that

courses within them can focus on entirely disparate tool sets, this study draws on principles of

situated cognition to frame questions about the development of computing proficiencies across

disciplinary and departmental boundaries [1]. We investigate how mathematics courses which

support the engineering curriculum may or may not contribute to important repeated and early

exposure to software and programming tools in contextualized ways that help engineering

students develop the ability to skillfully leverage domain-specific software, practice algorithmic

thinking, and become familiar with the behavior and limitations of computational tools [2].

Even when engineering-inspired examples are used to motivate or practice a solution method in

differential equations courses, for example, it may be that math instructors’ treatment of those

examples does not ultimately advance engineering students’ understanding of how to engage

with the problem when it arises in an engineering scenario [3]. For example, the goal in a typical

mathematical treatment of a problem is to find the form of the ‘solution,’ often neglecting

exploration of how the given problem behaves as a system undergoing variable inputs. Practical

exploration of many system behaviors, however, requires computing tools, notably absent in the

classrooms of this study’s participants. Furthermore, if students encounter a tool too

infrequently, they may also experience the burden of “relearning” the tool, and lack of facility

with a programming platform can make its use in a mathematics setting a greater challenge than

the actual mathematics being tackled [4].

Objectives

The objectives of the study are to characterize the present condition of computing within the

mathematics curriculum at multiple institutions and its relationship to software and programming

preparedness of undergraduate engineering students. The following research questions have

guided data collection and analysis:

To what extent do engineering students encounter computing tools within their mathematics

coursework that they perceive as industry-critical?

To what extent is computing within mathematics education perceived as relevant to engineering

students’ engineering coursework and future careers?

To what extent does computation within mathematics education contribute to engineering

students’ proficiency with domain-specific computing paradigms in the engineering curriculum?

Methods

 2

Participants in the study included mathematics faculty and students in upper-division

mathematics courses at two western United States public universities housing ABET-accredited

engineering programs, referred to when necessary as universities I and II. The data reported were

gathered during the fall of 2019.

Faculty participants. Mathematics faculty members who were currently teaching or until

recently had taught upper-division mathematics courses aligned with typical engineering tracks

completed semi-structured in-person interviews. Seven participants from university I and four

from university II were able to meet for in-person interviews. One additional faculty member

from II was not able to meet for an interview, but did provide a written summary of their

thoughts on the interview topics, and their views have been included in the overall analysis.

Interviews lasted an average of 15 minutes and most were conducted in the office of the

interviewee. Audio recordings were made with permission of the participants and were later

transcribed for thematic coding and analysis. The interview protocol for faculty participants is

included in Appendix A. The interview was designed to gather information about the

programming tools and languages faculty used in their courses and in their own work as well as

elicit faculty perceptions of the tools they felt were most valuable in industry.

Themes within faculty responses were identified through a multi-step coding process. First,

broad thematic coding was done after multiple readings of all transcripts, and often made use of

in vivo codes [5]. For example, the Black Box theme emerged first as an in vivo code, as did the

Language Agnostic theme. This first step produced over twenty possible thematic codes. After

the initial round of potential codes were generated, transcripts were reread to locate thematic

gaps and to identify which ideas could be grouped into larger themes, which ultimately resulted

in a condensation of themes into six major categories, each of which emerged repeatedly in

interviews with mathematics faculty: Software Development, Programming as Language

Agnostic, Mathematical Considerations for Computing, Restrictions on Computing in

Classrooms, Institutional Dynamics, and the Black Box theme. The major themes, together with

topical subcategories that emerged in interviews, are displayed in Figure 1.

Those faculty whose responses included the Software Development theme expressed the opinion

that understanding in the development process was valuable to understanding the inner workings

 3

of software tools. They also connected industry-preparedness with the ability to develop

software. Programming as Language Agnostic thematic responses centered around the perceived

ease of acquiring a second or more programming languages once one has been acquired, as well

as around the generalizability of computing concepts beyond any one specific language. Faculty

responses in the Mathematical Considerations for Computing theme included concerns that

students need to understand the mathematical underpinnings of algorithms implemented in

software packages like MATLAB and COMSOL, and that exposure to these things in

mathematical contexts was valuable. However, many faculty responses themed as Restrictions

on Computing in Classrooms highlighted perceived difficulties in that very mathematical

exposure, including students’ presumed lack of preparedness and the problem of fitting more into

the curriculum. Similar concerns were closely related in the Institutional Dynamics theme, in

which faculty cited unfamiliarity with engineering department software needs and the dynamic

nature of industry requirements over time. Finally, and acutely, faculty responses in the Black

Box theme included concerns that students do not currently consistently develop the means to

evaluate output of mathematical software packages, and therefore are not equipped to gauge the

trustworthiness or reasonableness of results.

Student participants. A subset of the faculty who agreed to participate were also asked whether

the student survey instrument could be distributed to students in their current courses. This

resulted in personal visits to six undergraduate classrooms (three differential equations, two

mathematical computing, one numerical analysis) where the current study was explained to

students and QR codes/URLs to participate in the study were distributed. Also, emails were sent

by the instructors of one applied mathematics and one linear algebra course with the same survey

information and access instructions to their classes. 78 student responses were received, of which

71 were retained after removing incomplete responses and responses from graduate students. Of

those retained, 58 were from university I and 13 were from university II, 47 were engineering

degree-seeking students, 8 were pursuing applied math, and 16 reported pursuing other degrees

which included mathematics (6), math education (7), a physical science discipline (2), and

marketing (1).

Student participants completed a 17-item online anonymous survey, which gathered information

about degree, year in program, experiences with software and programming in various settings,

and perceptions of industry-critical software tools. Responses were organized according to

degree type and year in program to assist in identifying any trends in software experiences by

sub-groups of students. The survey instrument for student participants is included in Appendix

B.

 4

Results

To what extent do engineering students encounter computing tools within their mathematics

coursework that they perceive as industry-critical?

A generalized ontology of software/computing tools, displayed in Figure 1, was constructed from

the various tools that student respondents (both engineer and non-engineer) provided regarding

the survey item: What software or programming tools do you think are important for you to

know for your future career? While this ontology does not completely exhaust every software or

programming tool referenced by students, it captures a large percentage of them, especially those

that were repeatedly mentioned. Tables 1, 2, and 3 illustrate the distribution of experience

undergraduates within this sample reported with software tools from this ontology. Civil,

environmental, chemical, mechanical, and materials science engineers are grouped in Table 1.

Electrical and computer engineers as well as computer scientists are grouped in Table 2. Table 3

lists students in applied math, physical science, math, and math education.

The primary tool with which students were experienced in the Mathematical Evaluation category

was MATLAB and the primary tools cited in the Code category were Python and C/C++. Almost

all the students in the engineering curriculum report experience with MATLAB, however, only a

small subset of engineering students consider it to be an industry-critical tool. Well under 10% of

students in an engineering degree track reported engaging with a tool they listed as industry

critical in a mathematics course, whereas over half of applied math students and about a third of

all other degree types reported engaging with their industry-critical tools in upper-division math.

 5

To what extent is computing within mathematics education perceived as relevant to

engineering students’ engineering coursework and future careers?

Even if the tools engaged with in mathematics curriculum are not the precise tools engineering

students anticipate encountering in their core engineering courses or in industry, the computing

experiences gained in any academic setting are hopefully beneficial to their overall development

as an engineer. This is most likely if the content of computing exercises in non-engineering

courses are transferable to their engineering coursework.

 6

Tables 1, 2, and 3 show the extent to which students of the various engineering disciplines, as

well as non-engineering students, felt the software-based examples in math courses were relevant

to their future disciplinary coursework and industry. 35% of civil and mechanical engineers

commented on the relevance of software examples, most of whom reported that software

examples were moderately or even highly relevant to their coursework or future industry needs.

38% of EE/CompE/CS students reported on relevance of software examples, about two thirds of

whom found examples moderately to highly relevant. Finally, half of non-engineering majors

 7

reported on relevance of software examples, with the majority of those characterizing them as

moderately to highly relevant.

To contextualize these responses further, it is necessary to notice: (1) many students reported no

engagement with software in math contexts and thus had no reason to report on the level of

relevance of examples; (2) we cannot infer the disciplinary relevance of math course computing

experiences of 28% of the students, who reported engagement but failed to report relevance; and

(3) there is not a direct connection between the level of hands-on experience a student reported

with software in a math course and the level of relevance of that experience to their discipline.

For example, CEs and MEs reported only minimal engagement with computing in math, but a

comparatively strong level of relevance of examples used. Fewer students reported, conversely, a

high level of engagement, but low relevance of examples. In broad terms, it appears that for this

set of undergraduates, if they were given an opportunity to compute in a mathematics course,

they often found the content of the examples, if not the tools themselves, to be relevant to their

disciplinary studies.

To what extent does computation within mathematics education contribute to engineering

students’ proficiency with domain-specific computing paradigms in the engineering

curriculum?

Much more work much be done to truly make any stong claims regarding our final research

question, which is beyond the current scope of data collection and analysis of this study thus far.

However, what can be observed about the mathematics faculty interviewed so far is a definite

concern for students’ depth of understanding of mathematical computing. Half of the

mathematics instructors indicated a need for students to gain more skill with software. Specific

skills included understanding and interpreting output, knowing what’s going on under the hood,

and recognizing possible software limitations and when to trust output. However, only half of

those who discussed a need for these types of skill development in software use also indicated

the need for software to be incorporated into mathematics education. Furthermore, math

instructors were more likely to reference the restrictions against incorporating computing tools or

software (such as overloaded curriculum, students’ lack of prior exposure, etc.) than to reference

any possible benefits of computing in the mathematics classroom.

Only one mathematics faculty member made any reference to the use of software or

programming as a means of enhancing the learning of mathematics (for example, using

technology to visualize three-dimensional objects or to numerically explore higher-dimensional

relations). The only other capacity in which an instructional relationship between math and

computing was mentioned was the insistence that students must learn the mathematical

underpinnings of software packages.

With regard to student software perceptions, none of the freshman or sophomores from non-

engineering degrees (3 students) reported having prior experience with software before the fall of

2019, whereas over 90% of sophomores in engineering degree tracks reported prior software

experience. About 90% of all junior respondents enrolled in these upper-division math courses,

whether in engineering tracks or not, reported having prior hands-on software experience of

 8

some level. Furthermore, 27% of sophomore engineering students attributed part of their

software experience to math courses, and 34% of junior engineering students and 39% of senior

engineering students attributed part of their software experience to math courses. The remaining

engineering students reported either having no exposure to computing in math settings or only

being shown in-class demos with no hands-on projects or homework involving computing. Civil

and mechanical were the only engineering degree types in which some students (2 MEs and 4

CEs) reported gaining their software and programming training exclusively from mathematics

courses.

Discussion and Conclusions

While a primary motivation of this ongoing study is to characterize the extent to which math

courses taken by engineering students are contributing to their overall software preparedness, an

additional line of questioning emerged in response to the feedback received from faculty.

Mathematics instructors frequently communicated frustration with students’ lack of prior

software/programming experience upon entering upper-division mathematics, citing this as a

major restriction on the incorporation of computing into the mathematics classroom. They

expressed further concern that even if computer science majors had prior programming

experience, it was unlikely that other majors would be entering with analogous coding and

software exposure, making the incorporation of software into the math classroom only slightly

more feasible, as the vast majority of students would require specialized help in rudimentary

programming. Student survey data, however, revealed that 71% of sophomores and 86% of

juniors entering engineering-related upper-division math (such as differential equations), whether

in a computer science track or not, professed prior hands-on programming or mathematical

software experience to a least a moderate extent. Further data gathering and examination is

necessary to determine the cause of this disparity between math faculty perception of general

lack of computing preparedness and students’ claim of computing experience.

Limitations. Derivation and classification of themes was bolstered by the representation of

perspectives of multiple faculty from two institutions, but represent only the topical concerns of

a subset of the mathematics faculty and may have excluded differing perspectives. We hope to

address this limitation through additional rounds of data gathering and analysis. Similarly, while

perspectives of undergraduate students are represented from multiple degrees and degree stages

within multiple institutions, all students were enrolled in upper-division mathematics courses,

which thus assumes that such mathematics courses sufficiently capture a reasonable cross-

section of engineering disciplines.

Relatedly, it must be acknowledged that participants in the online survey may not be

representative of all students at a given degree-level (i.e. sophomores), because they are

specifically drawn from a subset of students who are enrolled in upper-division mathematics.

Similarly, the participants are not held as strictly representative of all students in a given degree

path (i.e. mechanical engineering). However, because enrollment in differential equations is a

nearly universal requirement for those in engineering paths, and because the sample captured

students enrolled in differential equations at a cross-section of time-points in their degree

trajectories, the results are felt to be a fair reflection of the level of software exposure for

 9

multiple degree paths as they enter differential equations specifically, and upper-division math

courses more generally.

It is not possible to characterize the prior and current software exposure of students who did not

respond to the survey, therefore it is not possible to say that the percentages revealed by this

analysis are truly reflective of the percentages of mathematical software and programming

exposure among engineering (and non-engineering) students in general. When the study was

introduced, students were told that the aim was to discover how software is involved in their

degree program. Thus, students who do not consider themselves to have any software knowledge

may have elected not to participate. Thus, the percentages of students entering upper-division

mathematics with prior software knowledge found in this study is most safely treated as an over-

estimate rather than an under-estimate.

Future Work

The overall sampling for this study, even spread across two universities, suffers from limitations

of convenience sampling within a predefined geographical region. Further study would benefit

from investigating the perceptions and realities of upper-division student software preparedness

in a variety of geographical regions and in a variety of institutional structures.

A number of mathematics faculty referred to viewing engineering students and computer science

students as having different computing skills and different computing needs from, presumably,

all other students. Multiple instructors voiced a need to incorporate computing into differential

equations, in particular. Because there were a non-trivial number of math education majors

present in the class, the question is raised: what effects would a computing ‘overhaul’ of

differential equations have on those students? Would there be any explicit benefits or detriments

to students of other degree paths if computing were incorporated into this typically junior-level

course? Further investigation is necessary to determine the feasibility and impacts of

incorporating computing into a single course for an institution with structure similar to those of

the study.

Finally, goals of future work include the closer examination of whether students’

underperformance in mathematical software or programming implementations in core

engineering course work is attributable to either poor conceptual understanding of mathematics

or to poor understanding of programming principles.

Acknowledgments

Special thanks to Aaron Crandall, a clinical associate professor of computer science at

Washington State University, for his thoughtful assistance in outlining an ontology of computing

tools reported by participants in this study, especially those closely associated with specialized

engineering endeavors involving embedded systems, web development, and 3D drawing

solutions.

 10

References

[1] Brown, J. S., Collins, A. and Duguid, P. (1989). Situated cognition and the culture of

learning. Educational Researcher, 18, 32-42.

[2] Magana, A. J., Falk, M. L., Vieira, C. and Reese, M. J. (2016). A case study of

undergraduate engineering students' computational literacy and self-beliefs about computing in

the context of authentic practices. Computers in Human Behavior, 61, 427-442.

[3] Pennell, S., Avitabile, P. and White, J. (2009). An engineering-oriented approach to the

introductory differential equations course. PRIMUS, 19 (1), 88-99. DOI:

10.1080/10511970701474111.

[4] Burton, L., Falk, L. and Jarner, S. (2004). "Too Much, Too Seldom." International Journal

of Mathematical Education in Science and Technology, 35, 219-226.

[5] Saldaña, J. and Omasta, M. (2018). Qualitative Research: Analyzing Life. (Chapters 4 and 5:

analytic coding of transcribed interviews.) Los Angeles: Sage.

Appendix A: Mathematics Faculty Semi-Structured Interview Protocol

What mathematics courses that may support the engineering curriculum have you taught in the past five

years?

Which engineering disciplines are being pursued by students who take your classes?

What programming languages do you personally use for your work or research?

What programming languages do you use in your classes, either as a requirement or as a demonstration?

Which, if any, mathematical modeling software do you personally use for your work or research?

Which, if any, mathematical modeling software do you use in your classes, either as a requirement or as a

demonstration?

What languages and software do you feel are most crucial for engineering students' industry

preparedness?

Other thoughts about mathematical and computational tool learning for (engineering) students?

Appendix B: Student Survey Instrument

What is your academic major?

What year of your college degree are you currently in?

In what mathematics course(s) are you currently enrolled? (Course number OR title)

Think of your PREVIOUS MATH CLASSES. What software or programming tools, if any, have you

used in any MATH courses before beginning this semester?

 11

• NO software or programming in previous math classes

• Matlab

• Mathematica

• Python

• Other software or programming tools (list as many as necessary)

In previous math classes that used programming or software, did you do homework assignments or

projects USING the programming or software?

• Not at all (no assignments used software or programming)

• Somewhat (a few assignments used software or programming)

• Frequently (most assignments used software or programming)

• None of these is quite right. COMMENT below:

Think about PREVIOUS NON-MATH CLASSES. What software or programming tools, if any, have you

used in any NON-MATH courses BEFORE beginning this semester?

• NO software or programming used in previous non-math classes

• I used the following software/programming tools in previous non-math classes: (list as many as

necessary)

In previous non-math classes that used programming or software, did you do homework assignments or

projects using the programming or software?

• Not at all (no assignments used software or programming)

• Somewhat (a few assignments used software or programming)

• Frequently (most assignments used software or programming)

• None of these is quite right. COMMENT below:

Think about software or programming use OUTSIDE OF UNIVERSITY COURSEWORK. Were there

any non-academic sources of software or programming learning for you before beginning this semester?

NO previous non-academic software or programming tool learning.

I learned the following software or programming tools at or for WORK: (list as many as

necessary)

I learned the following software or programming tools ON MY OWN: (list as many as necessary)

I learned the following software or programming tools in some OTHER setting: (list as many as

necessary)

Think of your CURRENT MATH CLASSES. What software or programming tools do you or your

instructors use in your current math course(s)?

• Python

• Mathematica

• Matlab

• Other software or programming tool(s): (list as many as necessary)

• NO software or programming used in current math course(s).

 12

In your current math classes that use programming or software, do you do homework assignments or

projects using the programming or software?

• Not at all (no assignments use software or programming)

• Somewhat (a few assignments use software or programming)

• Frequently (most assignments use software or programming)

• None of these is quite right. COMMENT below:

To what extent has the software used in your current math course(s) been explicitly connected to the math

content of your course(s)?

• 1 - Software use has no connection to math content

• 2 - Software is occasionally connected to math content

• 3 - Almost all software use is explicitly tied to math content

To what extent have the demonstrations or assignments using software or programming in these classes

been based on examples that are relevant to your future studies and/or future career?

• 1 - Examples using software have no relevance to my future studies or career

• 2 - Examples using software are occasionally relevant to my future studies or career

• 3 - Examples using software are highly relevant to my future studies or career

Are there any software or programming tools that you are currently using in a NON-MATH course?

• I currently use the following software/programming tools in NON-MATH course(s): (list as many

as necessary)

• NO software or programming used in my current non-math courses.

Are there any software or programming tools that you are currently using that are not related to university

coursework?

• NO software or programming that is unrelated to coursework.

• I use the following software/programming tools that are unrelated to coursework:

What software or programming tools do you think are important for you to know for your future career?

Do you have any additional comments about the use of software or programming tools in ANY of your

CLASSES?

Do you have any additional comments about the use of software or programming tools NOT connected to

any of your classes?

