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INTRODUCTION 
 
Recently, the microwave test equipment in the Electrical and Computer Engineering Department 
(ECE) at North Dakota State University (NDSU) was significantly upgraded.  A new Agilent 
E5071C 8.5 GHz ENA series network analyzer and an anechoic chamber were two major pieces 
added to the lab.  This upgrade required the development of an antenna measurement system 
(AMS) that could be used to measure the far-field behavior (i.e., field patterns) of an antenna.  
To develop an AMS a team consisting of ECE seniors was assembled.  This team designed an 
AMS system that uses LabView to interface with the Agilent network analyzer and a structure 
that rotates the antenna in both the E- and H-planes.  The computer running LabView interfaces 
with the network analyzer using the Ethernet and interfaces with the rotating structure using an 
infrared (IR) port.  By correlating the S12 data from a network analyzer to the angle of rotation of 
the structure, a complete far-field pattern of the antenna can be measured.  This paper will 
summarize the design and operation of the AMS along with the total cost.  The cost of the AMS 
is about 10% of the cost of commercially available systems, thus making the system attractive to 
programs with a limited budget.    
 
MOTIVATION FOR AN ANTENNA MEASUREMENT SYSTEM 
 
Wireless communications is being studied extensively and has attracted the attention of many 
researchers throughout the world.  A major component in all wireless systems is the antenna.  
These antennas mainly consist of three-dimensional antennas (Balanis, 2005) and planar 
antennas (Waterhouse, 2007).  Therefore, when a novel antenna is developed, a system of testing 
the performance of this antenna is required.  One method of testing a newly developed antenna is 
to use an AMS.   
 
An AMS measures two main properties of an antenna: radiation pattern and input impedance.  
By measuring the radiation pattern of an antenna, a designer is able to determine the performance 
of the antenna in the space surrounding the antenna (this space is usually air).  From this 
information, the direction the antenna is radiating the most power can be determined as well as 
how much power is actually radiated by the antenna (i.e., gain) and how much is being lost in the 
material used to construct the antenna.  The AMS can also be used to measure the input 
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impedance of the antenna.  If done correctly, this measurement results in a value representing the 
input impedance of the isolated antenna element and does not include the influence of the 
antenna feeding network.  This value is useful for proper design of efficient power delivery to 
the antenna by a transmitter or efficient power delivery by the antenna to a receiver. 
 
TOPOLOGY OF THE ANTENNA MEASUREMENT SYSTEM 
 
The AMS consists of three major components: 1) antenna positioner, 2) network analyzer and 3) 
computer.  The topology of the entire system is shown in Fig. 1.  The following sections describe 
the operation of each major component.     
 
Antenna Positioner 
The antenna positioner rotates the antenna under test 180 degrees in both the x-z and y-z planes.  
Photographs of the antenna positioner are shown in Fig. 2.  The step size of the positioner is 
defined by the user on the computer using the LabView software.  Two servo motors control the 
antenna positioner.  One servo motor rotates the antenna mast from 0 to 180 degrees (illustrated 
in Fig. 2 by the white arrows) at defined step sizes and the second servo rotates the plate at the 
top of the antenna mast from 0 degrees to 90 degrees in one step.  In summary, the motions of 
the antenna positioner during a measurement are as follows: 1) the bottom servo rotates the mast 
from 0 degrees to 180 degrees at step sizes defined by the user; 2) when the mast is rotated to 
180 degrees, the second servo rotates the antenna plate at the top of the mast 90 degrees in one 
step;  3) then the servo at the bottom of the mast rotates the mast back from 180 degrees to 0 
degrees at the step sizes defined by the user.  It should also be noted that the user can define a 
specific time delay between each step taken by the servo motor.  This allows the mast to settle 
before measurements are taken by the network analyzer.        
 

 
  

Fig. 1. The topology of the antenna measurement system. 
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Fig. 2.  Antenna positioner. 
 
Network Analyzer 
The network analyzer is the piece of equipment that takes the actual field measurements.  This is 
done by attaching an antenna to port 1 and the antenna under test (AUT) to port 2 (as shown in 
Fig. 1), both with coaxial cables, and placing both antennas in an anechoic chamber.  An image 
of the network analyzer and the anechoic chamber is shown in Figs. 3 and 4, respectively.  The 
network analyzer provides measurement results in the form of the scattering matrix.  These 
measurements determine how well the AUT is receiving power and how well the two antennas 
are linked in the chamber.  The measurements on how well the antennas are linked provide the 
necessary information about the antenna as to how well the AUT is radiating into the region 
around itself.    
 

 
    
        Fig. 3. Agilent Technologies network analyzer. 

Antenna mast 

Mast rotation 

Antenna plate 
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          Fig. 4.  Anechoic chamber. 
 
Computer 
For correct operation of the system, it is essential that the PC must manage the timing and 
information between the network analyzer and the antenna positioner.  The PC is connected to 
the network analyzer though the Ethernet port and connected to the antenna positioner through 
an infrared (IR) port.  An image of the IR port and controlling circuitry is shown in Figs. 5 ± 7 
(schematics for these boards are shown in the Appendix).  The PC controls the system with a 
single user interface written in LabView.  A screen-shot of the LabView interface is shown in 
Fig. 8.     
 

 
 

Fig. 5.  IR boards used to communicate 
between the PC and the antenna positioner 

 

 
 

Fig. 6. PC board used to send data from the PC to 
the antenna positioner to control the servos. 
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Fig. 7. PC board used on the antenna positioner 
to receive data from the PC to control the servos. 

 
 

 
 

Fig. 8. LabView Interface. 
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DESCRIPTION OF THE ANTENNA MEASUREMENT SYSTEM 
 
When a measurement is underway, the following sequence of events occurs: 
 

1) When the system is setup and initialized (i.e., angle = 0 degrees), the PC records the first 
values from the network analyzer. 

2) When this value is recorded the PC communicates with the antenna positioner and rotates 
the mast from 0 degrees to 0 + ǻ degUeeV ZheUe ǻ iV Whe XVeU-defined angle step size in 
LabView. 

3) After a short wait time, the new value measured by the network analyzer is recorded by 
the PC and stored in a manner related to the angle of the mast (i.e., each measurement 
corresponds to an angle of the antenna positioner).   

4) After this value is recorded by the PC, the PC rotates the antenna positioner to 0 + 2ǻ 
degrees. 

5) The PC then waits a short time and records the new measurement in the same manner as 
in step 3).   

6) Steps 4) and 5) are repeated until the antenna positioner reaches a mast angle of 180 
degrees.  At that point the antenna plate rotates 90 degrees and the measurement process 
is repeated from 180 degrees back down to 0 degrees. 

7) The result from this measurement is a matrix that contains measurement values from the 
network analyzer and corresponding antenna positioner angles.   

8) LabView draws a polar plot of the measurement values and corresponding angles. 
 

 
COST 
 
The AMS system developed at NDSU has shown to be a reliable and accurate system.  The 
budget for the entire project was $750.  This low cost places the AMS system in reach of many 
smaller ECE programs.   
 
 
CONCLUSION 
 
A simple cost-effective antenna measurement system has been presented.  The topology of the 
system has been summarized and details of the three main components have been summarized.  
Furthermore, a detailed sequence of events involved with a typical measurement has been 
offered.  This was then followed by a total cost summary of $750 which makes this system 
affordable for many smaller ECE programs.   
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APPENDIX 
 
 

 
 

Fig. 9.  Transmitter schematic. 
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Fig. 9 is an image of the Transmitter schematic. This circuit contains the following components: 
 

 (2) LED indicators 
 (7) 4.77µF capacitors 
 (4) 1k� UeViVWRUV 
  (2) push button 
 (1) MC33063A voltage regulator 

 (1) MCP2120 IrDA driver 
 (1) 10k� TUimPRW 
 (1) 100k� TUimPRW 
 (1) PIC18F242-I  
 (2) 40MHz Crystals 

 
This circuit contains a PIC that sends data to a MCP2120, which is the IrDA encoder/decoder. 
The MCP2120 then sends the data to the IrDA transceiver.  There is a 1x4 header that connects 
to a 4 conductor ribbon cable from the IrDA PCB.  There is also a 2x8 header that connects to a 
16 conductor ribbon that runs to a backlit LCD screen. The various capacitors and resistors are 
used to reduce noise throughout the circuit.  The two push buttons are to reset various devices. 
 

 
 

Fig. 10.  Receiver schematic. 
 
Fig. 10 is an image of the schematic for the Receiver PCB. This circuit contains: 
 

 (2) LED indicators 
 (14) 4.77µF capacitors 
 (4) 1k� UeViVWRUV 
 (2) 10k� UeViVWRUV 
 (1) 100k� UeViVWRU 
 (4) push button 
 (1) MC33063A voltage regulator 

 (1) MCP2120 IrDA driver 
 (1) 10k� TUimPRW 
 (1) 100k� TUimPRW 
 (1) Pololu Micro-Controler  SSC03A 
 (1) MAX232A RS-232 driver 
 (1) PIC18F242-I  
 (2) 32.768kHz Crystals 
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This circuit contains a PIC that sends data to a MCP2120, which is the IrDA encoder/decoder. 
The MCP2120 then sends the data to the IrDA transceiver.  There is a 1x4 header that connects 
to a 4 conductor ribbon cable from the IrDA PCB.  There is also a 2x8 header that connects to a 
16 conductor ribbon that runs to a backlit LCD screen. The various capacitors and resistors are to 
reduce noise throughout the circuit.  The MAX232 is used to convert from UART to RS232 for 
the Pololu Micro-Controller.  The four push buttons are used to reset various devices, and the 
MC33080 is for power regulation.  
 
 

 
 

Fig. 11.  IR board schematic. 

 
 
Fig. 11 is an image of the schematic for the IR circuit.  This board contains the following 
components: 

 (2) 1k� UeViVWRUV 
 (2) 4.7µF capacitors 
 (2) TFDU4101 Vishay Infrared Transceivers 
 (1) 4 pin header to connect to transmitter or receiver 

 
This circuit connects two IrDA transceivers in parallel to increase our transmission range.  The 
1x4 header connects by a 4 conductor ribbon cable to either the transmitter or receiver.  The 
resistors and capacitors in the circuit are there to reduce noise throughout the circuit. 


